Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis
Abstract
:1. Introduction
2. Methodology
3. From the Celiac Immune Response to Inflammation
4. Gluten, the Intestinal Microbiota, and the Immune Response
5. n-6 and n-3 PUFA Nutritional and Metabolic Aspects
6. PUFAs and the Gut Microbiome
7. n-3 PUFA: Effects on the Gut Microbiota
8. Fatty Acids and Celiac Disease: Is There a Causal Relationship?
9. Therapeutic Application of n-3 PUFAs
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, N.K.; Guandalini, S.; Semrad, C.; Kupfer, S.S. A Clinician’s Guide to Celiac Disease HLA Genetics. Am. J. Gastroenterol. 2019, 114, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Sanders, D.S.; Green, P.H.R. Coeliac Disease. Lancet 2017, 391, 70–81. [Google Scholar] [CrossRef]
- Kang, J.Y.; Kang, A.H.Y.; Green, A.; Gwee, K.A.; Ho, K.Y. Systematic Review: Worldwide Variation in the Frequency of Coeliac Disease and Changes over Time. Aliment. Pharmacol. Ther. 2013, 38, 226–245. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Jeong, J.; Underwood, F.E.; Quan, J.; Panaccione, N.; Windsor, J.W.; Coward, S.; deBruyn, J.; Ronksley, P.E.; Shaheen, A.-A.; et al. Incidence of Celiac Disease Is Increasing Over Time: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2020, 115, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, F.; Branchi, F.; Dell’Osso, B.; Conte, D.; Elli, L. Coping with Celiac Disease: How Heavy Is the Burden for Caregivers? Rev. Esp. Enfermedades Dig. 2017, 109, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Nachman, F.; Mauriño, E.; Vázquez, H.; Sfoggia, C.; Gonzalez, A.; Gonzalez, V.; Plancer del Campo, M.; Smecuol, E.; Niveloni, S.; Sugai, E.; et al. Quality of Life in Celiac Disease Patients: Prospective Analysis on the Importance of Clinical Severity at Diagnosis and the Impact of Treatment. Dig. Liver Dis. 2009, 41, 15–25. [Google Scholar] [CrossRef] [PubMed]
- White, L.E.; Bannerman, E.; Gillett, P.M. Coeliac Disease and the Gluten-Free Diet: A Review of the Burdens; Factors Associated with Adherence and Impact on Health-Related Quality of Life, with Specific Focus on Adolescence. J. Hum. Nutr. Diet. 2016, 29, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Dakó, E.; Dakó, S.; Papp, V.; Juhász, M.; Takács, J.; Csobod, É.C.; Pálfi, E. Monitoring the Quality of Life and the Relationship between Quality of Life, Dietary Intervention, and Dietary Adherence in Patients with Coeliac Disease. Nutrients 2024, 16, 2964. [Google Scholar] [CrossRef]
- Sciurti, M.; Fornaroli, F.; Gaiani, F.; Bonaguri, C.; Leandro, G.; Di Mario, F.; De’ Angelis, G.L. Genetic Susceptibilty and Celiac Disease: What Role Do HLA Haplotypes Play? Acta Bio-Medica 2018, 89, 17–21. [Google Scholar] [CrossRef]
- Megiorni, F.; Mora, B.; Bonamico, M.; Barbato, M.; Nenna, R.; Maiella, G.; Lulli, P.; Mazzilli, M.C. HLA-DQ and Risk Gradient for Celiac Disease. Human. Immunol. 2009, 70, 55–59. [Google Scholar] [CrossRef]
- van Heel, D.A.; Franke, L.; Hunt, K.A.; Gwilliam, R.; Zhernakova, A.; Inouye, M.; Wapenaar, M.C.; Barnardo, M.C.N.M.; Bethel, G.; Holmes, G.K.T.; et al. A Genome-Wide Association Study for Celiac Disease Identifies Risk Variants in the Region Harboring IL2 and IL21. Nat. Genet. 2007, 39, 827–829. [Google Scholar] [CrossRef] [PubMed]
- Trynka, G.; Hunt, K.A.; Bockett, N.A.; Romanos, J.; Mistry, V.; Szperl, A.; Bakker, S.F.; Bardella, M.T.; Bhaw-Rosun, L.; Castillejo, G.; et al. Dense Genotyping Identifies and Localizes Multiple Common and Rare Variant Association Signals in Celiac Disease. Nat. Genet. 2011, 43, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Achury, J.; Zhernakova, A.; Pulit, S.L.; Trynka, G.; Hunt, K.A.; Romanos, J.; Raychaudhuri, S.; van Heel, D.A.; Wijmenga, C.; de Bakker, P.I.W. Fine Mapping in the MHC Region Accounts for 18% Additional Genetic Risk for Celiac Disease. Nat. Genet. 2015, 47, 577–578. [Google Scholar] [CrossRef] [PubMed]
- García-Santisteban, I.; Romero-Garmendia, I.; Cilleros-Portet, A.; Bilbao, J.R.; Fernandez-Jimenez, N. Celiac Disease Susceptibility: The Genome and Beyond. Int. Rev. Cell Mol. Biol. 2021, 358, 1–45. [Google Scholar] [CrossRef]
- Bascuñán, K.A.; Vespa, M.C.; Araya, M. Celiac Disease: Understanding the Gluten-Free Diet. Eur. J. Nutr. 2017, 56, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Lanzini, A.; Lanzarotto, F.; Villanacci, V.; Mora, A.; Bertolazzi, S.; Turini, D.; Carella, G.; Malagoli, A.; Ferrante, G.; Cesana, B.M.; et al. Complete Recovery of Intestinal Mucosa Occurs Very Rarely in Adult Coeliac Patients despite Adherence to Gluten-Free Diet. Aliment. Pharmacol. Ther. 2009, 29, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Newnham, E.D.; Shepherd, S.J.; Strauss, B.J.; Hosking, P.; Gibson, P.R. Adherence to the Gluten-Free Diet Can Achieve the Therapeutic Goals in Almost All Patients with Coeliac Disease: A 5-Year Longitudinal Study from Diagnosis. J. Gastroenterol. Hepatol. 2016, 31, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.V.; Auricchio, R.; Nanayakkara, M.; Greco, L.; Troncone, R.; Auricchio, S. Pivotal Role of Inflammation in Celiac Disease. Int. J. Mol. Sci. 2022, 23, 7177. [Google Scholar] [CrossRef] [PubMed]
- Meresse, B.; Ripoche, J.; Heyman, M.; Cerf-Bensussan, N. Celiac Disease: From Oral Tolerance to Intestinal Inflammation, Autoimmunity and Lymphomagenesis. Mucosal Immunol. 2008, 2, 8. [Google Scholar] [CrossRef]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten Free Diet and Nutrient Deficiencies: A Review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Buriánek, F.; Gege, C.; Marinković, P. New Developments in Celiac Disease Treatments. Drug Discov. Today 2024, 29, 104113. [Google Scholar] [CrossRef]
- Bascuñán, K.A.; Araya, M.; Roncoroni, L.; Doneda, L.; Elli, L. Dietary Gluten as a Conditioning Factor of the Gut Microbiota in Celiac Disease. Adv. Nutr. 2020, 11, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, S.; Asri, N.; Nikzamir, A.; Ahmadipour, S.; Rostami-Nejad, M.; Ciacci, C. Exploring Fatty Acid Effects in Celiac Disease: Potential Therapeutic Avenues. Tissue Barriers 2024, 2435552. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Junker, Y.; Barisani, D. Celiac Disease: From Pathogenesis to Novel Therapies. Gastroenterology 2009, 137, 1912–1933. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Verdu, E.F.; Bai, J.C.; Lionetti, E. Coeliac Disease. Lancet 2022, 399, 2413–2426. [Google Scholar] [CrossRef]
- Sollid, L.M. Coeliac Disease: Dissecting a Complex Inflammatory Disorder. Nat. Rev. Immunol. 2002, 2, 647–655. [Google Scholar] [CrossRef]
- Fasano, A.; Catassi, C. Current Approaches to Diagnosis and Treatment of Celiac Disease: An Evolving Spectrum. Gastroenterology 2001, 120, 636–651. [Google Scholar] [CrossRef]
- Nilsen, E.M.; Lundin, K.E.; Krajci, P.; Scott, H.; Sollid, L.M.; Brandtzaeg, P. Gluten Specific, HLA-DQ Restricted T Cells from Coeliac Mucosa Produce Cytokines with Th1 or Th0 Profile Dominated by Interferon Gamma. Gut 1995, 37, 766–776. [Google Scholar] [CrossRef]
- Castellanos-Rubio, A.; Santin, I.; Irastorza, I.; Castaño, L.; Carlos Vitoria, J.; Ramon Bilbao, J. TH17 (and TH1) Signatures of Intestinal Biopsies of CD Patients in Response to Gliadin. Autoimmunity 2009, 42, 69–73. [Google Scholar] [CrossRef]
- Anderson, R.P. Innate and Adaptive Immunity in Celiac Disease. Curr. Opin. Gastroenterol. 2020, 36, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Wapenaar, M.C.; van Belzen, M.J.; Fransen, J.H.; Sarasqueta, A.F.; Houwen, R.H.J.; Meijer, J.W.R.; Mulder, C.J.J.; Wijmenga, C. The Interferon Gamma Gene in Celiac Disease: Augmented Expression Correlates with Tissue Damage but No Evidence for Genetic Susceptibility. J. Autoimmun. 2004, 23, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Spaenij-Dekking, L.; Kooy-Winkelaar, Y.; van Veelen, P.; Drijfhout, J.W.; Jonker, H.; van Soest, L.; Smulders, M.J.M.; Bosch, D.; Gilissen, L.J.W.J.; Koning, F. Natural Variation in Toxicity of Wheat: Potential for Selection of Nontoxic Varieties for Celiac Disease Patients. Gastroenterology 2005, 129, 797–806. [Google Scholar] [CrossRef]
- Serena, G.; Huynh, D.; Lima, R.S.; Vise, L.M.; Freire, R.; Ingano, L.; Leonard, M.M.; Senger, S.; Fasano, A. Intestinal Epithelium Modulates Macrophage Response to Gliadin in Celiac Disease. Front. Nutr. 2019, 6, 167. [Google Scholar] [CrossRef]
- Meresse, B.; Cerf-Bensussan, N. Innate T Cell Responses in Human Gut. Semin. Immunol. 2009, 21, 121–129. [Google Scholar] [CrossRef]
- Londei, M.; Ciacci, C.; Ricciardelli, I.; Vacca, L.; Quaratino, S.; Maiuri, L. Gliadin as a Stimulator of Innate Responses in Celiac Disease. Mol. Immunol. 2005, 42, 913–918. [Google Scholar] [CrossRef]
- Szebeni, B.; Veres, G.; Dezsofi, A.; Rusai, K.; Vannay, A.; Bokodi, G.; Vásárhelyi, B.; Korponay-Szabó, I.R.; Tulassay, T.; Arató, A. Increased Mucosal Expression of Toll-like Receptor (TLR)2 and TLR4 in Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 187–193. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Teskey, G.; Abrahem, R.; Cao, R.; Gyurjian, K.; Islamoglu, H.; Lucero, M.; Martinez, A.; Paredes, E.; Salaiz, O.; Robinson, B.; et al. Glutathione as a Marker for Human Disease. Adv. Clin. Chem. 2018, 87, 141–159. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. IJBS 2008, 4, 89–96. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Oxidative Stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef]
- Ambrożewicz, E.; Wójcik, P.; Wroński, A.; Łuczaj, W.; Jastrząb, A.; Žarković, N.; Skrzydlewska, E. Pathophysiological Alterations of Redox Signaling and Endocannabinoid System in Granulocytes and Plasma of Psoriatic Patients. Cells 2018, 7, 159. [Google Scholar] [CrossRef]
- Stojiljković, V.; Pejić, S.; Kasapović, J.; Gavrilović, L.; Stojiljković, S.; Nikolić, D.; Pajović, S.B. Glutathione Redox Cycle in Small Intestinal Mucosa and Peripheral Blood of Pediatric Celiac Disease Patients. An. Acad. Bras. Cienc. 2012, 84, 175–184. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Saturni, L. Celiac Disease, Inflammation and Oxidative Damage: A Nutrigenetic Approach. Nutrients 2012, 4, 243–257. [Google Scholar] [CrossRef]
- Li, X.; Bi, X.; Wang, S.; Zhang, Z.; Li, F.; Zhao, A.Z. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front. Immunol. 2019, 10, 2241. [Google Scholar] [CrossRef]
- Galipeau, H.J.; McCarville, J.L.; Huebener, S.; Litwin, O.; Meisel, M.; Jabri, B.; Sanz, Y.; Murray, J.A.; Jordana, M.; Alaedini, A.; et al. Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice. Am. J. Pathol. 2015, 185, 2969–2982. [Google Scholar] [CrossRef]
- Perez-Lopez, A.; Behnsen, J.; Nuccio, S.-P.; Raffatellu, M. Mucosal Immunity to Pathogenic Intestinal Bacteria. Nat. Rev. Immunol. 2016, 16, 135–148. [Google Scholar] [CrossRef]
- Girbovan, A.; Sur, G.; Samasca, G.; Lupan, I. Dysbiosis a Risk Factor for Celiac Disease. Med. Microbiol. Immunol. 2017, 206, 83–91. [Google Scholar] [CrossRef]
- Nistal, E.; Caminero, A.; Vivas, S.; Ruiz de Morales, J.M.; Sáenz de Miera, L.E.; Rodríguez-Aparicio, L.B.; Casqueiro, J. Differences in Faecal Bacteria Populations and Faecal Bacteria Metabolism in Healthy Adults and Celiac Disease Patients. Biochimie 2012, 94, 1724–1729. [Google Scholar] [CrossRef]
- Cenit, M.C.; Olivares, M.; Codoñer-Franch, P.; Sanz, Y. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution? Nutrients 2015, 17, 6900–6923. [Google Scholar] [CrossRef]
- Zmora, N.; Suez, J.; Elinav, E. You Are What You Eat: Diet, Health and the Gut Microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef]
- Litvak, Y.; Byndloss, M.X.; Bäumler, A.J. Colonocyte Metabolism Shapes the Gut Microbiota. Science 2018, 362, eaat9076. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Costabile, A.; Bergillos-Meca, T.; Gonzalez, I.; Landriscina, L.; Ciuffreda, E.; D’Agnello, P.; Corbo, M.R.; Sinigaglia, M.; Lamacchia, C. Impact of Gluten-Friendly Bread on the Metabolism and Function of In Vitro Gut Microbiota in Healthy Human and Coeliac Subjects. PLoS ONE 2016, 11, e0162770. [Google Scholar] [CrossRef]
- Nylund, L.; Hakkola, S.; Lahti, L.; Salminen, S.; Kalliomäki, M.; Yang, B.; Linderborg, K.M. Diet, Perceived Intestinal Well-Being and Compositions of Fecal Microbiota and Short Chain Fatty Acids in Oat-Using Subjects with Celiac Disease or Gluten Sensitivity. Nutrients 2020, 12, 2570. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, Y.; Mercado, L.; Farias, C.; Beyer, M.P.; Alvear, I.; Echeverría, F.; Valenzuela, R. Impact of Polyunsaturated Fatty Acids during and Pregnancy and Lactation: A Comprehensive Review. Prostaglandins Leukot. Essent. Fat. Acids 2024, 203, 102656. [Google Scholar] [CrossRef]
- Sambra, V.; Echeverria, F.; Valenzuela, A.; Chouinard-Watkins, R.; Valenzuela, R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021, 13, 986. [Google Scholar] [CrossRef]
- Serhan, C.N.; Levy, B.D. Resolvins in Inflammation: Emergence of the pro-Resolving Superfamily of Mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Metherel, A.H.; Cisbani, G.; Smith, M.E.; Chouinard-Watkins, R.; Klievik, B.J.; Videla, L.A.; Bazinet, R.P. Protein Concentrations and Activities of Fatty Acid Desaturase and Elongase Enzymes in Liver, Brain, Testicle, and Kidney from Mice: Substrate Dependency. Biofactors 2024, 50, 89–100. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Endres, S.; Ghorbani, R.; Kelley, V.E.; Georgilis, K.; Lonnemann, G.; van der Meer, J.W.; Cannon, J.G.; Rogers, T.S.; Klempner, M.S.; Weber, P.C. The Effect of Dietary Supplementation with N-3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin-1 and Tumor Necrosis Factor by Mononuclear Cells. N. Engl. J. Med. 1989, 320, 265–271. [Google Scholar] [CrossRef]
- Meydani, S.N.; Endres, S.; Woods, M.M.; Goldin, B.R.; Soo, C.; Morrill-Labrode, A.; Dinarello, C.A.; Gorbach, S.L. Oral (n-3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison between Young and Older Women. J. Nutr. 1991, 121, 547–555. [Google Scholar] [CrossRef]
- Trebble, T.M.; Wootton, S.A.; Miles, E.A.; Mullee, M.; Arden, N.K.; Ballinger, A.B.; Stroud, M.A.; Burdge, G.C.; Calder, P.C. Prostaglandin E2 Production and T Cell Function after Fish-Oil Supplementation: Response to Antioxidant Cosupplementation. Am. J. Clin. Nutr. 2003, 78, 376–382. [Google Scholar] [CrossRef]
- Lee, T.H.; Hoover, R.L.; Williams, J.D.; Sperling, R.I.; Ravalese, J.; Spur, B.W.; Robinson, D.R.; Corey, E.J.; Lewis, R.A.; Austen, K.F. Effect of Dietary Enrichment with Eicosapentaenoic and Docosahexaenoic Acids on In Vitro Neutrophil and Monocyte Leukotriene Generation and Neutrophil Function. N. Engl. J. Med. 1985, 312, 1217–1224. [Google Scholar] [CrossRef]
- Rees, D.; Miles, E.A.; Banerjee, T.; Wells, S.J.; Roynette, C.E.; Wahle, K.W.J.; Calder, P.C. Dose-Related Effects of Eicosapentaenoic Acid on Innate Immune Function in Healthy Humans: A Comparison of Young and Older Men. Am. J. Clin. Nutr. 2006, 83, 331–342. [Google Scholar] [CrossRef]
- Sperling, R.I.; Benincaso, A.I.; Knoell, C.T.; Larkin, J.K.; Austen, K.F.; Robinson, D.R. Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Phosphoinositide Formation and Chemotaxis in Neutrophils. J. Clin. Investig. 1993, 91, 651–660. [Google Scholar] [CrossRef]
- Yaqoob, P.; Newsholme, E.A.; Calder, P.C. Influence of Cell Culture Conditions on Diet-Induced Changes in Lymphocyte Fatty Acid Composition. Biochim. Et Biophys. Acta (BBA)/Lipids Lipid Metab. 1995, 1255, 333–340. [Google Scholar] [CrossRef]
- Lokesh, B.R.; Hsieh, H.L.; Kinsella, J.E. Peritoneal Macrophages from Mice Fed Dietary (n-3) Polyunsaturated Fatty Acids Secrete Low Levels of Prostaglandins. J. Nutr. 1986, 116, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Brouard, C.; Pascaud, M. Effects of Moderate Dietary Supplementations with n − 3 Fatty Acids on Macrophage and Lymphocyte Phospholipids and Macrophage Eicosanoid Synthesis in the Rat. Biochim. Et Biophys. Acta (BBA)/Lipids Lipid Metab. 1990, 1047, 19–28. [Google Scholar] [CrossRef]
- Fritsche, K.L.; Alexander, D.W.; Cassity, N.A.; Huang, S.C. Maternally-Supplied Fish Oil Alters Piglet Immune Cell Fatty Acid Profile and Eicosanoid Production. Lipids 1993, 28, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Careaga-Houck, M.; Sprecher, H. Effect of a Fish Oil Diet on the Composition of Rat Neutrophil Lipids and the Molecular Species of Choline and Ethanolamine Glycerophospholipids. J. Lipid Res. 1989, 30, 77–87. [Google Scholar] [CrossRef] [PubMed]
- De La Puerta Vázquez, R.; Martínez-Domínguez, E.; Sánchez Perona, J.; Ruiz-Gutiérrez, V. Effects of Different Dietary Oils on Inflammatory Mediator Generation and Fatty Acid Composition in Rat Neutrophils. Metab. Clin. Exp. 2004, 53, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C. Points of Control in Inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef]
- Marion-Letellier, R.; Savoye, G.; Beck, P.L.; Panaccione, R.; Ghosh, S. Polyunsaturated Fatty Acids in Inflammatory Bowel Diseases: A Reappraisal of Effects and Therapeutic Approaches. Inflamm. Bowel Dis. 2013, 19, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Trebble, T.M.; Arden, N.K.; Wootton, S.A.; Mullee, M.A.; Calder, P.C.; Burdge, G.C.; Fine, D.R.; Stroud, M.A. Peripheral Blood Mononuclear Cell Fatty Acid Composition and Inflammatory Mediator Production in Adult Crohn’s Disease. Clin. Nutr. 2004, 23, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.D.; Clish, C.B.; Schmidt, B.; Gronert, K.; Serhan, C.N. Lipid Mediator Class Switching During Acute Inflammation: Signals in Resolution. Nat. Immunol. 2001, 2, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.L.; Hughes, C.E.; Flannery, C.R.; Little, C.B.; Harwood, J.L.; Caterson, B. N-3 Fatty Acids Specifically Modulate Catabolic Factors Involved in Articular Cartilage Degradation. J. Biol. Chem. 2000, 275, 721–724. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and Inflammatory Processes: Nutrition or Pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Takada, Y.; Boriek, A.M.; Aggarwal, B.B. Nuclear Factor-kappaB: Its Role in Health and Disease. J. Mol. Med. 2004, 82, 434–448. [Google Scholar] [CrossRef] [PubMed]
- Perkins, N.D. Integrating Cell-Signalling Pathways with NF-kappaB and IKK Function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. [Google Scholar] [CrossRef]
- Wei, Y.; Meng, Y.; Li, N.; Wang, Q.; Chen, L. The Effects of Low-Ratio n-6/n-3 PUFA on Biomarkers of Inflammation: A Systematic Review and Meta-Analysis. Food Funct. 2021, 12, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.-H.; Chen, L.-P.; Wang, C.-C.; Zhao, Y.-C.; Wang, Y.-M.; Xue, C.-H.; Zhang, T.-T. Docosahexaenoic Acid-Acylated Curcumin Diester Alleviates Cisplatin-Induced Acute Kidney Injury by Regulating the Effect of Gut Microbiota on the Lipopolysaccharide- and Trimethylamine-N-Oxide-Mediated PI3K/Akt/NF-κB Signaling Pathway in Mice. Food Funct. 2022, 13, 6103–6117. [Google Scholar] [CrossRef] [PubMed]
- Rasouli-Saravani, A.; Jahankhani, K.; Moradi, S.; Gorgani, M.; Shafaghat, Z.; Mirsanei, Z.; Mehmandar, A.; Mirzaei, R. Role of Microbiota Short-Chain Fatty Acids in the Pathogenesis of Autoimmune Diseases. Biomed. Pharmacother. 2023, 162, 114620. [Google Scholar] [CrossRef]
- Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. A Randomised Trial of the Effect of Omega-3 Polyunsaturated Fatty Acid Supplements on the Human Intestinal Microbiota. Gut 2018, 67, 1974–1983. [Google Scholar] [CrossRef]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Nyman, M.; Jönsson, J.A. Rapid Determination of Short-Chain Fatty Acids in Colonic Contents and Faeces of Humans and Rats by Acidified Water-Extraction and Direct-Injection Gas Chromatography. Biomed. Chromatogr. BMC 2006, 20, 674–682. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Dong, L.; Chang, P. Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Adv. Nutr. 2019, 10, 133–147. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediat. Inflamm. 2021, 2021, 8879227. [Google Scholar] [CrossRef] [PubMed]
- Wall, R.; Ross, R.P.; Shanahan, F.; O’Mahony, L.; Kiely, B.; Quigley, E.; Dinan, T.G.; Fitzgerald, G.; Stanton, C. Impact of Administered Bifidobacterium on Murine Host Fatty Acid Composition. Lipids 2010, 45, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, H.; Pédrono, F.; Boulier-Monthéan, N.; Catheline, D.; Rioux, V.; Legrand, P. Comparative Effects of Well-Balanced Diets Enriched in α-Linolenic or Linoleic Acids on LC-PUFA Metabolism in Rat Tissues. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 383–389. [Google Scholar] [CrossRef]
- Van Hees, N.J.M.; Giltay, E.J.; Geleijnse, J.M.; Janssen, N.; Van Der Does, W. DHA Serum Levels Were Significantly Higher in Celiac Disease Patients Compared to Healthy Controls and Were Unrelated to Depression. PLoS ONE 2014, 9, e97778. [Google Scholar] [CrossRef] [PubMed]
- Steel, D.M.; Ryd, W.; Ascher, H.; Strandvik, B. Abnormal Fatty Acid Pattern in Intestinal Mucosa of Children with Celiac Disease Is Not Reflected in Serum Phospholipids. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, R.; Galatola, M.; Cielo, D.; Amoresano, A.; Caterino, M.; De Vita, E.; Illiano, A.; Troncone, R.; Greco, L.; Ruoppolo, M. A Phospholipid Profile at 4 Months Predicts the Onset of Celiac Disease in At-Risk Infants. Sci. Rep. 2019, 9, 14303. [Google Scholar] [CrossRef]
- Solakivi, T.; Kaukinen, K.; Kunnas, T.; Lehtimäki, T.; Mkäi, M.; Nikkari, S.T. Serum Fatty Acid Profile in Celiac Disease Patients before and after a Gluten-Free Diet. Scand. J. Gastroenterol. 2009, 44, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Krilis, S.A.; Macpherson, J.L.; de Carle, D.J.; Daggard, G.E.; Talley, N.A.; Chesterman, C.N. Small Bowel Mucosa from Celiac Patients Generates 15-Hydroxyeicosatetraenoic Acid (15-HETE) after in Vitro Challenge with Gluten. J. Immunol. 1986, 137, 3768–3771. [Google Scholar] [CrossRef] [PubMed]
- Riezzo, G.; Ferreri, C.; Orlando, A.; Martulli, M.; D’Attoma, B.; Russo, F. Lipidomic Analysis of Fatty Acids in Erythrocytes of Coeliac Patients before and after a Gluten-Free Diet Intervention: A Comparison with Healthy Subjects. Br. J. Nutr. 2014, 112, 1787–1796. [Google Scholar] [CrossRef]
- Vincentini, O.; Quaranta, M.G.; Viora, M.; Agostoni, C.; Silano, M. Docosahexaenoic Acid Modulates in Vitro the Inflammation of Celiac Disease in Intestinal Epithelial Cells via the Inhibition of cPLA 2. Clin. Nutr. 2011, 30, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Peng, J.; Wu, C. Association of Dietary Intake and Serum Concentration of Omega-3 Fatty Acids on Celiac Disease: Evidence from Observational Study and Mendelian Randomization. Eur. J. Gastroenterol. Hepatol. 2024, 36, 1101–1108. [Google Scholar] [CrossRef]
- Tárnok, A.; Marosvölgyi, T.; Szabó, É.; Györei, E.; Decsi, T. Low N-3 Long-Chain Polyunsaturated Fatty Acids in Newly Diagnosed Celiac Disease in Children with Preexisting Type 1 Diabetes Mellitus. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 255–258. [Google Scholar] [CrossRef]
- Serhan, C.N.; Brain, S.D.; Buckley, C.D.; Gilroy, D.W.; Haslett, C.; O’Neill, L.A.J.; Perretti, M.; Rossi, A.G.; Wallace, J.L. Resolution of Inflammation: State of the Art, Definitions and Terms. FASEB J. 2007, 21, 325–332. [Google Scholar] [CrossRef]
- Wawrzyniak, P.; Noureddine, N.; Wawrzyniak, M.; Lucchinetti, E.; Krämer, S.D.; Rogler, G.; Zaugg, M.; Hersberger, M. Nutritional Lipids and Mucosal Inflammation. Mol. Nutr. Food Res. 2021, 65, e1901269. [Google Scholar] [CrossRef] [PubMed]
Study | Patients | Age Group | Location/Sampling Methods | Outcomes | Main Findings |
---|---|---|---|---|---|
Steel et al. (2006) [95] | Patients with active CD (n = 7) Patients with CD under treatment (n = 6) Controls (n = 11) | Active CD: Mean 75 months (range = 12–174 months). CD under treatment: Mean 98.5 months (range = 43–195 months). Controls: Mean 34 months (range = 18–176 months). | Duodenal biopsies and blood samples were obtained after an overnight fast. | Serum from patients with active CD: Increased levels of palmitoleic acid (16:1n-7), oleic acid (18:1n-9), and Mead acid (20:3n-9); decreased levels of long-chain saturated fatty acids such as behenic acid (22:0) and lignoceric acid (24:0). Serum from patients with CD under treatment: No significant differences from controls, except for a higher ratio of arachidonic acid (AA; 20:4n-6) to docosahexaenoic acid (DHA; 22:6n-3). Intestinal mucosa from patients with active CD: Elevated l n-6 PUFA levels, decreased linoleic acid, increased AA, and a 20:3n-9/20:4n-6 ratio, indicating a possible deficiency of essential fatty acids. | Active CD: The fatty acid profile in the intestinal mucosa shows an imbalance, particularly in the n-6 series, with an increased conversion of n-6 fatty acids to their derivatives. Serum levels do not accurately reflect the fatty acid status in the intestinal mucosa, indicating that tissues may vary in their ability to retain fatty acid status during essential fatty acid deficiency. CD under treatment: The fatty acid profiles in serum and intestinal mucosa did not show significant differences compared to controls, except for a higher ratio of AA/DHA. |
Bai et al. (2024) [101] | 13,403 subjects who responded to the National Health and Nutrition Examination Survey (NHANES) 2009–2014. Of these, 48 cases of CD were identified. | Adults aged 20 years or older (50.28 ± 17.34) | The data come from the National Health and Nutrition Examination Survey (NHANES) in the U.S. (2009–2014). A representative sample of non-institutionalized adults in the U.S. was used, with dietary intake and health information collected through interviews and questionnaires. | Cross-sectional study: No significant association was found between the dietary intake of n-3 PUFAs and CD. Mendelian randomization: A significant correlation was found between serum levels of n-3 PUFAs and CD. | The dietary intake of n-3 PUFAs did not show a significant association with CD in the cross-sectional analysis. However, Mendelian randomization revealed a positive causal relationship between the serum levels of n-3 PUFAs and CD, suggesting that the elevated blood levels of n-3 PUFAs may be associated with an increased risk of CD. |
Tárnok et al. (2015) [102] | Patients with utreated CD (n = 28), patients with CD and diabetes mellitus (CDDM) (n = 8), and healthy controls (n = 21) | The mean age was 13.1 years for patients with untreated CD, 11.6 years for patients with CD and diabetes mellitus, and 13.3 years for control individuals. | Plasma sample. Comparison of fatty acid composition using high-resolution gas–liquid chromatographic analysis. | Significantly reduced levels of docosapentaenoic acid (C22:5n-3), docosahexaenoic acid (C22:6n-3), and total n-3 (n-3 PUFA) were found in the chronic diabetes mellitus (CDDM) group compared to the controls and patients with CD. | Children with chronic diabetes mellitus (CDDM) exhibited the reduced availability of n-3 PUFA and long-chain n-3 PUFA in circulating lipids. Diabetes mellitus (DM) has a significant impact on the composition of plasma fatty acids in children, while CD alone did not show significant alterations in the metabolism of PUFAs in the plasma. |
Vincentini et al. (2011) [100] | Caco-2 cells, an intestinal epithelial cell line derived from a human colon adenocarcinoma, were used as in vitro models of CD. | — | Caco-2 cells were exposed to gliadin peptides (PT-gls) and docosahexaenoic acid (DHA) under various conditions. The exposure lasted for up to 24 h | Exposure to PT-gl increased the release of AA, the expression of cyclooxygenase-2, the activity of cytosolic phospholipase A2 (cPLA2), and the release of prostaglandin E2 and interleukin-8 in the culture medium. Simultaneous exposure to DHA and PT-gl prevented these increases. | Intestinal epithelial cells (Caco-2) release AA in response to gliadin exposure, which contributes to celiac inflammation. DHA may modulate celiac inflammation by inhibiting the release of AA by intestinal epithelial cells. |
Solakivi et al. (2009) [97] | Patients with CD (n = 50) and healthy controls (n = 61) | The mean age in CD patients was 44 years (range of 16–71 years), and the mean age of the controls was 40 years (range of 20–58 years). | Blood samples (serum) were taken after an overnight fast. Serum fatty acids were analyzed using capillary gas chromatography. | In patients with active CD, saturated and monounsaturated fatty acids were elevated, while polyunsaturated fatty acids were reduced compared to controls. After one year on a GFD, polyunsaturated fatty acids increased but remained low compared to controls. | In patients with active CD, essential fatty acid deficiency was reflected in decreased polyunsaturated fatty acids and increased saturated and monounsaturated fatty acids. Although the one-year GFD showed clinical and serological improvement, the fatty acid profiles remained abnormal, and a high triene/tetraene ratio was observed, which may predispose individuals to dermatitis and neurological disorders. |
Riezzo et al. (2014) [99] | Patients with CD (n = 20), healthy subjects (controls) (n = 20) | Subjects with CD, mean age: 34.0 years (±1.7 years) Control subjects, mean age: 40.2 years (±2.5 years) | Erythrocyte samples from newly diagnosed CD patients and healthy subjects. The comparison was made at the time of diagnosis and after 1 year of intervention with a GFD. | Patients with CD showed AA levels 2.08 times higher than those in healthy subjects. Additionally, the ratio of AA to dihomo-γ-linolenic acid was significantly lower (2.01 times) in CD patients, while the ratio of AA to docosahexaenoic acid was 1.40 times higher. After one year on a GFD, the fatty acid concentrations in patients with CD still differed from those observed in healthy subjects. | AA could be considered a potential marker for CD. Patients with CD have an inefficient synthesis of polyunsaturated fatty acids from their precursors. The intervention with a GFD is not sufficient to fully restore the fatty acid concentrations to their normal levels. Lipid analysis of erythrocytes may be a useful and less invasive method compared to evaluating the fatty acid pattern in the intestinal mucosa for assessing therapeutic interventions in patients with CD. |
Van Hees et al. (2014) [94] | Patients with CD (n = 71), 65% of whom had one or more current psychiatric diagnoses, primarily anxiety disorders. Healthy controls (n = 31). | Patients with CD: 18–93 years, mean age 54 years. Healthy controls: 22–66 years, mean age 51 years. | Patients with CD were recruited from the Dutch Celiac Association, and healthy controls were from the population-based “Normquest” study. Dietary intake was assessed using a 203-item food frequency questionnaire, and the serum levels of EPA and DHA were compared using analysis of covariance. Serum PUFA levels were determined via gas chromatography. | Dietary intake: No significant differences in EPA and DHA intake between patients and controls. Serum levels: DHA was significantly higher in patients with CD (1.72%) compared to controls (1.28%). EPA showed no significant differences. | Patients with CD have higher serum levels of DHA compared to controls, but this is not due to higher dietary intake. There is no significant association between EPA/DHA levels and major depressive disorder (MDD) in patients with CD. Adherence to a GFD and the duration of the diet do not significantly affect the serum DHA levels or DHA intake. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bascuñán, K.A.; Araya, M.; Rodríguez, J.M.; Roncoroni, L.; Elli, L.; Alvarez, J.D.P.L.; Valenzuela, R. Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis. Nutrients 2025, 17, 621. https://doi.org/10.3390/nu17040621
Bascuñán KA, Araya M, Rodríguez JM, Roncoroni L, Elli L, Alvarez JDPL, Valenzuela R. Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis. Nutrients. 2025; 17(4):621. https://doi.org/10.3390/nu17040621
Chicago/Turabian StyleBascuñán, Karla A., Magdalena Araya, Juan Manuel Rodríguez, Leda Roncoroni, Luca Elli, Josefina Del Pilar López Alvarez, and Rodrigo Valenzuela. 2025. "Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis" Nutrients 17, no. 4: 621. https://doi.org/10.3390/nu17040621
APA StyleBascuñán, K. A., Araya, M., Rodríguez, J. M., Roncoroni, L., Elli, L., Alvarez, J. D. P. L., & Valenzuela, R. (2025). Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis. Nutrients, 17(4), 621. https://doi.org/10.3390/nu17040621