Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of HEP Feed
2.2. Animal Experiments
2.3. Detection of Gastrointestinal Hormone Levels in Plasma
2.4. Histological Evaluation
2.5. Immunohistochemistry
2.6. Inflammatory Cytokine Analysis
2.7. Metagenomics Analysis
2.8. Serum Metabolomics
2.9. Determination of Short-Chain Fatty Acids
2.10. Data Analysis
3. Results
3.1. HEP Improves the Disorder of Digestive Hormone Secretion in Rats Induced by Weightlessness
3.2. HEP Inhibits Intestinal Microflora Imbalance Caused by Weightlessness
3.3. HEP Alleviates Intestinal Barrier Disorder Induced by Weightlessness in Rats
3.4. HEP Improves the Serum Metabolic Profile Disorder Induced by Weightlessness in Rats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CALP | Calprotectin |
CCK | Cholecystokinin |
DAO | Diamine oxidase |
D-Lac | D-Lactic acid |
GAS | Gastrin |
GLP-1 | Glucagon-like peptide-1 |
H&E | Hematoxylin and eosin |
HEP | Hericium erinaceus polysaccharide |
LPS | Lipopolysaccharides |
MTL | Motilin |
OXM | Oxyntomodulin |
PCA | Principal component analysis |
PYY | Peptide YY |
SCFAs | Short-chain fatty acids |
VIP | Vasoactive intestinal polypeptide |
5-HT | 5-hydroxytryptamine |
References
- Badran, B.W.; Caulfield, K.A.; Cox, C.; Lopez, J.W.; Borckardt, J.J.; DeVries, W.H.; Summers, P.; Kerns, S.; Hanlon, C.A.; McTeague, L.M.; et al. Brain stimulation in zero gravity: Transcranial magnetic stimulation (TMS) motor threshold decreases during zero gravity induced by parabolic flight. NPJ Microgravity 2020, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- King, S.A.; Kutz, C.J.; Chough, N.G. Spaceflight environment. Emerg. Med. Clin. North. Am. 2024, 42, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.; Tan, C.; Liu, S.; Zhang, J.; He, S.; Zou, P.; Liu, W.; Li, Y. Physiological effects of weightlessness: Countermeasure system development for a long-term Chinese manned spaceflight. Front. Med. 2019, 13, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Afonin, B.V.; Sedova, E.A. Digestive system functioning during simulation of the microgravity effects on humans by immersion. Aviakosm Ekolog Med. 2009, 43, 48–52. [Google Scholar]
- Da Silva, M.S.; Zimmerman, P.M.; Meguid, M.M.; Nandi, J.; Ohinata, K.; Xu, Y.; Chen, C.; Tada, T.; Inui, A. Anorexia in space and possible etiologies: An overview. Nutrition 2002, 18, 805–813. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, H.; Zhao, K.; Xu, C.; Shao, D.; Huang, Q.; Shi, J.; Yang, H. Responses of intestinal mucosal barrier functions of rats to simulated weightlessness. Front. Physiol. 2018, 9, 729. [Google Scholar] [CrossRef]
- Gu, R.; Liu, H.; Hu, M.; Zhu, Y.; Liu, X.; Wang, F.; Wu, L.; Song, D.; Liu, Y. D-Mannose prevents bone loss under weightlessness. J. Transl. Med. 2023, 21, 8. [Google Scholar] [CrossRef]
- Navarro Morales, D.C.; Kuldavletova, O.; Quarck, G.; Denise, P.; Clement, G. Time perception in astronauts on board the International Space Station. NPJ Microgravity 2023, 9, 6. [Google Scholar] [CrossRef]
- Shende, C.; Smith, W.; Brouillette, C.; Farquharson, S. Drug stability analysis by Raman spectroscopy. Pharmaceutics 2014, 6, 651–662. [Google Scholar] [CrossRef]
- Esteves, A.R.; Munoz-Pinto, M.F.; Nunes-Costa, D.; Candeias, E.; Silva, D.F.; Magalhaes, J.D.; Pereira-Santos, A.R.; Ferreira, I.L.; Alarico, S.; Tiago, I.; et al. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 2023, 72, 73–89. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, L.; Gao, J.; Zhu, M.; Zhang, Y.; Zhang, H.L. Gut Microbial Metabolites in Parkinson’s Disease: Implications of Mitochondrial Dysfunction in the Pathogenesis and Treatment. Mol. Neurobiol. 2021, 58, 3745–3758. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yao, W.; Li, J.; Shao, Y.; He, Q.; Xia, J.; Huang, F. Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Tian, S.; Liu, J.; Huang, S.; Yang, M.; Yang, X.; Xu, R.; Lin, J.; Han, L.; Zhang, D. Combination therapy with indigo and indirubin for ulcerative colitis via reinforcing intestinal barrier function. Oxid. Med. Cell Longev. 2023, 2023, 2894695. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, Q.; Zhao, T.; Sui, L.; Wang, S.; Xiao, Z.; Nan, Y.; Ai, K. Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biol. 2021, 45, 102046. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016, 611, 58–65. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottiere, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Margolis, K.G.; Stevanovic, K.; Li, Z.; Yang, Q.M.; Oravecz, T.; Zambrowicz, B.; Jhaver, K.G.; Diacou, A.; Gershon, M.D. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 2014, 63, 928–937. [Google Scholar] [CrossRef]
- Liu, N.; Sun, S.; Wang, P.; Sun, Y.; Hu, Q.; Wang, X. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int. J. Mol. Sci. 2021, 22, 7931. [Google Scholar] [CrossRef]
- Voigt, J.P.; Fink, H. Serotonin controlling feeding and satiety. Behav. Brain Res. 2015, 277, 14–31. [Google Scholar] [CrossRef]
- Jiang, P.; Green, S.J.; Chlipala, G.E.; Turek, F.W.; Vitaterna, M.H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 2019, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.D.; Thissen, J.B.; Karouia, F.; Mehta, S.; Urbaniak, C.; Venkateswaran, K.; Smith, D.J.; Jaing, C. Investigation of spaceflight induced changes to astronaut microbiomes. Front. Microbiol. 2021, 12, 659179. [Google Scholar] [CrossRef] [PubMed]
- Minoretti, P.; Fontana, J.M.; Yilmaz, Y. Pilots, astronauts, and the aerospace microbiota: A narrative review of occupational impact. Cureus 2024, 16, e72268. [Google Scholar] [CrossRef]
- Siddiqui, R.; Akbar, N.; Khan, N.A. Gut microbiome and human health under the space environment. J. Appl. Microbiol. 2021, 130, 14–24. [Google Scholar] [CrossRef]
- Saitsu, Y.; Nishide, A.; Kikushima, K.; Shimizu, K.; Ohnuki, K. Improvement of cognitive functions by oral intake of Hericium erinaceus. Biomed. Res. 2019, 40, 125–131. [Google Scholar] [CrossRef]
- Szucko-Kociuba, I.; Trzeciak-Ryczek, A.; Kupnicka, P.; Chlubek, D. Neurotrophic and neuroprotective effects of Hericium erinaceus. Int. J. Mol. Sci. 2023, 24, 5960. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, D.D.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Recent developments in Hericium erinaceus polysaccharides: Extraction, purification, structural characteristics and biological activities. Crit. Rev. Food Sci. Nutr. 2019, 59, S96–S115. [Google Scholar] [CrossRef]
- Wu, L.; Lv, Y.; Ge, C.; Luo, X.; Hu, Z.; Huang, W.; Zhan, S.; Shen, X.; Yu, D.; Liu, B. Polysaccharide from Hericium erinaceus improved laying performance of aged hens by promoting yolk precursor synthesis and follicle development via liver-blood-ovary axis. Poult. Sci. 2024, 103, 103810. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, Q.; Gao, R.; Sheng, Y.; Guan, T.; Li, W.; Zhou, L.; Liu, C.; Li, H.; Lu, Z.; et al. Low weight polysaccharide of Hericium erinaceus ameliorates colitis via inhibiting the NLRP3 inflammasome activation in association with gut microbiota modulation. Nutrients 2023, 15, 739. [Google Scholar] [CrossRef]
- Liang, D.; Ma, J.; Wei, B. Oral absorption and drug interaction kinetics of moxifloxacin in an animal model of weightlessness. Sci. Rep. 2021, 11, 2605. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhong, C.; Liu, L.; Wang, G.; Huang, X.; Yang, X.; Yang, H.; Li, L. The influence of simulated weightlessness on the composition and function of gut microbiota and bile acid metabolism products. Life Sci. Space Res. 2024, 41, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, T.; Kono, K.; Satou, R.; Kurashima, R.; Yamaguchi, K.; Kimura, M.; Shibukawa, Y. Upregulation of Amy1 in the salivary glands of mice exposed to a lunar gravity environment using the multiple artificial gravity research system. Front. Physiol. 2024, 15, 1417719. [Google Scholar] [CrossRef] [PubMed]
- Senatore, G.; Mastroleo, F.; Leys, N.; Mauriello, G. Growth of Lactobacillus reuteri DSM17938 under two simulated microgravity systems: Changes in reuterin production, gastrointestinal passage resistance, and stress genes expression response. Astrobiology 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Yu, T.; Xie, Y.; Wang, Z.; Li, J.; Shen, Y.; Yuan, J.; Gao, J.; Fakruddin, M.; Wu, Y.; Chen, H. Quercetin ameliorates celiac-related intestinal inflammation caused by wheat gluten through modulating oxidative stress, Th1/Th2/Treg balance, and intestinal microflora structure. Food Funct. 2024, 15, 9343–9356. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, B.; Yang, L.; Bai, Y.G.; Song, J.B.; Ge, Y.L.; Ma, H.Z.; Cheng, J.H.; Ma, J.; Xie, M.J. BMAL1 disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility of simulated microgravity rats by altering circadian regulation of miR-103/Ca(V)1.2 Signal Pathway. Int. J. Mol. Sci. 2019, 20, 3947. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Jiang, Y.; Wu, B.; Yu, Y. Aqueous Extract of Phyllanthus emblica L. Alleviates functional dyspepsia through regulating gastrointestinal hormones and gut microbiome in vivo. Foods 2022, 11, 1491. [Google Scholar] [CrossRef]
- Zong, B.; Wang, Y.; Wang, J.; Zhang, P.; Kan, G.; Li, M.; Feng, J.; Wang, Y.; Chen, X.; Jin, R.; et al. Effects of long-term simulated microgravity on liver metabolism in rhesus macaques. FASEB J. 2022, 36, e22536. [Google Scholar] [CrossRef]
- Ru, M.; He, J.; Bai, Y.; Zhang, K.; Shi, Q.; Gao, F.; Wang, Y.; Li, B.; Shen, L. Integration of proteomic and metabolomic data reveals the lipid metabolism disorder in the liver of rats exposed to simulated microgravity. Biomolecules 2024, 14, 682. [Google Scholar] [CrossRef]
- Thearle, M.S.; Pannacciulli, N.; Bonfiglio, S.; Pacak, K.; Krakoff, J. Extent and determinants of thermogenic responses to 24 hours of fasting, energy balance, and five different overfeeding diets in humans. J. Clin. Endocrinol. Metab. 2013, 98, 2791–2799. [Google Scholar] [CrossRef]
- Sanford, D.; Luong, L.; Vu, J.P.; Oh, S.; Gabalski, A.; Lewis, M.; Pisegna, J.R.; Germano, P. The VIP/VPAC1R pathway regulates energy and glucose homeostasis by modulating GLP-1, glucagon, leptin and PYY levels in mice. Biology 2022, 11, 431. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, Y.; Zhang, Q.; Xiao, X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024, 15, e0203223. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Dezaki, K.; Damdindorj, B.; Inada, H.; Shiuchi, T.; Mori, Y.; Yada, T.; Minokoshi, Y.; Tominaga, M. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 2011, 60, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.S.; Poon, C.H.; Roy, J.; Tsui, K.C.; Lew, S.Y.; Phang, M.W.L.; Tan, R.J.Y.; Cheng, P.G.; Fung, M.L.; Wong, K.H.; et al. Neurogenesis-dependent antidepressant-like activity of Hericium erinaceus in an animal model of depression. Chin. Med. 2021, 16, 132. [Google Scholar] [CrossRef] [PubMed]
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef]
- Chopra, V.; Fadl, A.A.; Sha, J.; Chopra, S.; Galindo, C.L.; Chopra, A.K. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J. Toxicol. Environ. Health A 2006, 69, 1345–1370. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, G.; Du, R.; Sun, W.; Li, J.; Lan, H.; Chen, P.; Yuan, X.; Cao, D.; Li, Y.; et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 2020, 11, 807–819. [Google Scholar] [CrossRef]
- Herp, S.; Durai Raj, A.C.; Salvado Silva, M.; Woelfel, S.; Stecher, B. The human symbiont Mucispirillum schaedleri: Causality in health and disease. Med. Microbiol. Immunol. 2021, 210, 173–179. [Google Scholar] [CrossRef]
- Bai, Z.; Huang, X.; Wu, G.; Zhou, Y.; Deng, X.; Yang, J.; Yin, J.; Nie, S. Hepatic metabolism-related effects of polysaccharides from red kidney bean and small black soybean on type 2 diabetes. Food Chem. 2023, 403, 134334. [Google Scholar] [CrossRef]
- Loy, A.; Pfann, C.; Steinberger, M.; Hanson, B.; Herp, S.; Brugiroux, S.; Gomes Neto, J.C.; Boekschoten, M.V.; Schwab, C.; Urich, T.; et al. Lifestyle and horizontal gene transfer-mediated evolution of Mucispirillum schaedleri, a core member of the murine gut microbiota. mSystems 2017, 2. [Google Scholar] [CrossRef]
- Shan, Y.; Lee, M.; Chang, E.B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef]
- Tian, B.; Geng, Y.; Xu, T.; Zou, X.; Mao, R.; Pi, X.; Wu, W.; Huang, L.; Yang, K.; Zeng, X.; et al. Digestive characteristics of Hericium erinaceus polysaccharides and their positive effects on fecal microbiota of male and female volunteers during in vitro fermentation. Front. Nutr. 2022, 9, 858585. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Q.; Jiang, N.; Li, Z.P.; Guo, S.; Chen, Z.Y.; Li, B.B.; Chai, S.B.; Lu, S.Y.; Yan, H.F.; Sun, P.M.; et al. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. Life Sci. Space Res. 2020, 27, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Sun, J.; Yu, B.; Liu, Z.; Chen, H.; He, J.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; et al. Gut microbiota absence and transplantation affect growth and intestinal functions: An investigation in a germ-free pig model. Anim. Nutr. 2021, 7, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Wang, M.; Yang, X.; Sun, J.; Weng, L.; Qiu, Z. Rice water-fried atractylodis rhizoma relieves spleen deficiency diarrhea by regulating the intestinal microbiome. Oxid. Med. Cell Longev. 2023, 2023, 1983616. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yuan, L.; Tang, Y.; Wu, Y.; Kong, J.; Zhou, B.; Wang, X.; Lin, M.; Li, Y.; Xu, G.; et al. Da-Cheng-Qi decoction improves severe acute pancreatitis-associated acute lung injury by interfering with intestinal lymphatic pathway and reducing HMGB1-induced inflammatory response in rats. Pharm. Biol. 2023, 61, 144–154. [Google Scholar] [CrossRef]
- Protti, A.; Fortunato, F.; Monti, M.; Vecchio, S.; Gatti, S.; Comi, G.P.; De Giuseppe, R.; Gattinoni, L. Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Crit. Care 2012, 16, R75. [Google Scholar] [CrossRef]
- Li, L.; Du, Y.; Wang, Y.; He, N.; Wang, B.; Zhang, T. Atractylone alleviates ethanol-induced gastric ulcer in rat with altered gut microbiota and metabolites. J. Inflamm. Res. 2022, 15, 4709–4723. [Google Scholar] [CrossRef]
- Semba, R.D.; Shardell, M.; Trehan, I.; Moaddel, R.; Maleta, K.M.; Ordiz, M.I.; Kraemer, K.; Khadeer, M.; Ferrucci, L.; Manary, M.J. Metabolic alterations in children with environmental enteric dysfunction. Sci. Rep. 2016, 6, 28009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, P.; Chen, P.; Chen, J.; Sun, J.; Lan, H.; Dong, H.; Liu, W.; Xu, N.; Wang, W.; Hou, L.; et al. Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats. Nutrients 2025, 17, 724. https://doi.org/10.3390/nu17040724
Zang P, Chen P, Chen J, Sun J, Lan H, Dong H, Liu W, Xu N, Wang W, Hou L, et al. Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats. Nutrients. 2025; 17(4):724. https://doi.org/10.3390/nu17040724
Chicago/Turabian StyleZang, Peng, Pu Chen, Junli Chen, Jingchao Sun, Haiyun Lan, Haisheng Dong, Wei Liu, Nan Xu, Weiran Wang, Lingwei Hou, and et al. 2025. "Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats" Nutrients 17, no. 4: 724. https://doi.org/10.3390/nu17040724
APA StyleZang, P., Chen, P., Chen, J., Sun, J., Lan, H., Dong, H., Liu, W., Xu, N., Wang, W., Hou, L., Sun, B., Zhang, L., Huang, J., Wang, P., Ren, F., & Liu, S. (2025). Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats. Nutrients, 17(4), 724. https://doi.org/10.3390/nu17040724