Magnesium and Migraine
Abstract
:1. Introduction
2. Classification, Epidemiology, and Pathophysiology of Migraine
2.1. Classification
2.2. Epidemiology
2.3. Pathophysiology
3. Magnesium Role and Causes and Consequences of Its Deficit
3.1. Role of Magnesium in Cellular Functions
3.2. Magnesium Defficiency
4. Evidence for the Effects of Magnesium Supplementation on Migraine
4.1. Search Strategy
4.2. Magnesium Levels in Migraine
4.3. Systematic Reviews and Meta-Analyses
Authors Country Year | Type of Review | No. and Type of Studies Included | No. of Participants | Age Range (Years) | Intervention | Summary of Results |
---|---|---|---|---|---|---|
Teigen et al., USA, 2015 [77] | SR | 4 RTCs | 210 | 18 to 65 | Oral Mg in migraine prophylaxis | The strength of the evidence supporting oral Mg supplementation is limited at this time. |
Chiu et al., Taiwan, 2016 [83] | MA of RCTs | 21 RCTs: 11 on i.v. Mg in acute migraine; 10 on oral Mg in migraine prophylaxis | acute migraine: 948 migraine prophylaxis: 789 | 28 to 46 | i.v. Mg in acute migraine and oral Mg in chronic migraine | Significant acute migraine relief within 15–45 min, 120 min, and 24 h after i.v. Mg infusion (ORs = 0.23, 0.20, and 0.25, respectively). Oral Mg significantly alleviated the frequency and intensity of migraine (ORs = 0.20 and 0.27). Conclusions: i.v. and oral Mg should be adapted as parts of a multimodal approach to reduce migraine. |
von Luckner et al., Switzerland, Austria, 2018 [78] | SR | 5 RCTs | 171 | 20 to 65 | Oral Mg in migraine prophylaxis | One out of two Class I evidence trials showed significant reduction in migraine attacks vs. placebo; two out of three Class III trials evinced a significant reduction in the primary efficacy parameters vs. placebo. Conclusion: Grade C (possibly effective) evidence for prevention of migraine with Mg. Prophylactic migraine treatment with Mg dicitrate (600 mg) seems to be safe and cost-efficient in clinical use. |
Miller et al., USA, 2019 [79] | SR | 6 RCTs | 503 | >18 | i.v. MgSO4 in acute migraine | Improved pain intensity with MgSO4 vs. comparators at 60–120 min, but not at 30 min. Endpoint results (>50% pain reduction) were conflicting (3 studies reporting improvement, no change, and less with MgSO4). Complete pain relief achieved with MgSO4 in 1 study and in aura subgroup in another. The need for rescue analgesia at any point was improved with MgSO4 in 1 study and in the migraine with aura subgroup in another; 24 h recurrence was improved with MgSO4 in 1 study, but unchanged in others. MA was not possible due to study heterogeneity. Conclusion: non-firm conclusion, but the existing evidence indicates potential benefits in pain control beyond 1 h, aura duration, and need for rescue analgesia. |
Okoli et al., Canada, 2019 [81] | SR and MA | 6 RCTs | 542 | 3 to 65 | Oral Mg in migraine prophylaxis | Based on insufficient evidence, it is unknown if Mg is effective for migraine prophylaxis in adults. High-quality, adequately powered RCTs are needed to fully evaluate the efficacy and safety of vitamins and minerals for migraine prophylaxis. |
Park et al., France, Canada, Denmark, 2020 [80] | SR | 3 RCTs | 190 | 18 to 65 | Oral Mg in migraine prophylaxis | One study found some benefit, where Mg demonstrated a lower median post/pretreatment ratio for migraine severity vs. placebo. Two studies found no significant difference between Mg and placebo in reducing pain intensity. |
Veronese et al., Italy, 2020 [13] | Umbrella review | 3 RCTs | 186 | 28 to 46 | i.v. Mg in acute migraine and oral Mg in chronic migraine | Strong evidence for decreased risk of frequency and intensity of migraine relapses in people with migraine was observed using the GRADE assessment. |
Talandashti et al., Iran, 2024 [82] | SR and MA | 3 RCTs | 189 (frequency); 258 (severity); 150 (duration) | 18 to 65 | Oral Mg in migraine prophylaxis | Mg supplementation reduced migraine attacks, severity, and monthly migraine days vs. controls. However, notable heterogeneity was observed among the studies |
4.4. Trials in Acute Migraine
Authors Country Year | Type of Study | No. of Participants | Age in Years (Mean) | Intervention | Assessment | Summary of Results |
---|---|---|---|---|---|---|
Mauskop et al., USA, 1995 [74] | Case-control | 40 | 23 to 58 (40) | 1 g i.v. MgSO4 | Blood drawn for SiMg before i.v. infusion. Pain assessed with verbal scale (1–10) | Pain reduction of 50% after 15 min of infusion in 87.5% of patients. In 86%, complete relief or improvement persisted for ≥24 h. Pain relief lasted ≥24 h in 85.7% of patients with SiMg < 0.54 mmol/L, and in 16% with SiMg ≥ 0.54 mmol/L (p < 0.001) (OR = 27.9, p < 0.0001, 95% CI 5.4–194.4). Conclusion: SiMg may be useful in identifying migraine responsiveness to i.v. MgSO4. |
Demirkaya et al., Turkey, 2001 [88] | RCT | 30 (15 intervention– 15 placebo) | 20 to 57 (35 ± 9) | 1 g i.v. MgSO4 or 10 mL i.v. 0.9% saline | 0 = No pain; 1 = mild pain, normal ADL; 2 = moderate pain, partially affecting ADL; 3 = severe pain, hindering ADL. Assessment of nausea, vomiting, photophobia, phonophobia, intolerance to exercise, irritability, and difficulty in concentrating. Assessment immediately after treatment, 30 min and 2 h later | Pain disappeared in 86.6% of the patients, diminished in 13.4%; accompanying symptoms disappeared in all. In the placebo group, decreased pain severity but persisting nausea, irritability, and photophobia in 6.6%, while other symptoms disappeared in 20% of the patients 30 min after placebo administration. All patients initially receiving the placebo and subsequently receiving MgSO4 responded as follows: in 93.3% of them, the attack ended; in 6.6%, pain intensity decreased; in all (100%), other symptoms disappeared; 86.6% had mild side effects that did lead to discontinuing MgSO4 administration. Conclusion: in view of these results, the effect of MgSO4 in acute migraine should be examined in large-scale studies. |
Corbo et al., USA, 2001 [97] | RCT | 44 (23 metoclopramide plus placebo; 21 metoclopramide plus MgSO4) | metoclopramide plus placebo 37 ± 8; metoclopramide plus MgSO4 39 ± 12 | 20 mg of metoclopramide plus 0.9% saline or 20 mg of metoclopramide plus 2 g of MgSO4 | VAS scores at 0, 15, 30, and 45 min | All had >50 mm improvement in pain VAS score, with smaller improvement in the MgSO4 group. The NNH in the MgSO4 plus metoclopramide group vs. metoclopramide alone group was 4 patients (95% CI 2 to 36). Conclusion: the addition of MgSO4 to metoclopramide may attenuate the effectiveness of metoclopramide, which may be explained by cerebral vasodilatation caused by MgSO4, although unproven. Since mainly women were in the trial, these data may not be generalizable to men. |
Bigal et al., Brazil, 2002 [90] | RCT | 42 (21 intervention– 21 placebo) | MgSO4 27; placebo 28 | 1 g i.v. MgSO4 or 10 mL i.v. 0.9% saline | VAS scores 30 and 60 min after treatment | MgSO4 was superior to placebo (p < 0.05) 30 and 60 min after its administration; i.v. MgSO4 treatment was particularly effective in reducing aura compared to placebo. |
Bigal et al., Brazil, 2002 [89] | RCT | 60 (30 intervention–30 placebo) | MO: MgSO4 31.4; placebo 27. MA: MgSO4 27.1; placebo 28 | 1 g i.v. MgSO4 or 10 mL i.v. 0.9% saline | Seven parameters of analgesic evaluation and VAS to assess nausea, photophobia, and phonophobia | No difference between MgSO4 and placebo in pain relief and nausea in patients with migraine without aura but significant decreased intensity of photophobia and phonophobia. Significant pain relief and all associated symptoms in patients with migraine with aura associated with MgSO4 vs. placebo. Conclusion: MgSO4 can be used for the treatment of all symptoms in patients with migraine with aura or as an adjuvant therapy for associated symptoms in patients with migraine without aura. |
Cete et al., Turkey, 2004 [98] | RCT | 113 (37 metoclopramide; 36 magnesium; 40 placebo) | metoclopramide 40 ± 13; MgSO4 40 ± 12; placebo 40 ± 11 | 10 mg i.v. metoclopramide or 2 g i.v. MgSO4 or 10 mL i.v. 0.9% saline | VAS scores at baseline and 30 min after treatment | All the groups had >25 mm VAS score improvement at 30 min without differences among them. The rescue medication requirement was higher in the placebo group. Recurrence rate in 24 h was also similar for both groups. Conclusion: although patients receiving placebo required more rescue medication, metoclopramide and MgSO4 had an analgesic effect similar to placebo in migraine attacks. |
Rahimdel et al., Iran 2007 [91] | RCT | 120 (60 MgSO4 –60 DHE) | >15 | 1 g i.v. MgSO4 or 1 mg i.v. DHE | VAS scores at 30, 60, and 90 min after treatment | VAS pain score was significantly lower with i.v. MgSO4 at 60 and 90 min, although not at 30 min, vs. DHE. Conclusion: treatment with 1 g of MgSO4 provided significant pain relief in migraine without serious side effects. |
Abrishami et al., Iran 2010 [92] | RCT | 30 (15 intervention–15 placebo) | NA | 2 g i.v. MgSO4 or 10 mL i.v. 0.9% saline. If at 30 min no pain relief, MgSO4 and placebo crossover | VAS scores at baseline and 30 min, 2 h, and 24 h after treatment | Significant pain relief in 93.3% of patients receiving MgSO4. All had complete relief of nausea, vomiting, photophobia, and phonophobia. None in the placebo arm reported pain relief, but associated symptoms were relieved in 2 patients. In the second phase, after MgSO4 administration to placebo group, 93.3% of patients had significant relief of both headache and associated symptoms. No significant side effect of MgSO4, except flushing. Conclusion: clear-cut efficacy of 2 g MgSO4 infusion in acute migraine, but large-scale study is recommended. |
Shahrami et al., Iran, USA, 2015 [93] | RCT | 70 (35 MgSO4–35 dexamethasone/metoclopramide) | MgSO4 36 ± 13; dexamethasone/metoclopramide 38 ± 11 | 1 g i.v. MgSO4 or 8 mg dexamethasone + 10 mg metoclopramide | Pain score based on 11-point standard NRS at baseline and after 20 min, 1 h, and 2 h | MgSO4 i.v. treatment associated with decreased pain severity at three time intervals (5.2 ± 1.7, 2.3 ± 1.9, and 1.3 ± 0.66 points, respectively), which was significantly better vs. baseline and vs. that at corresponding time intervals in the dexamethasone/metoclopramide group. Conclusion: MgSO4 was more effective and fast-acting vs. a combination of dexamethasone and metoclopramide for the treatment of acute migraine headaches. |
Baratloo, et al., Iran, Egypt, 2017 [94] | RCT | 70 (35 MgSO4–35 caffeine citrate) | MgSO4 36 ± 2; caffeine citrate 30.2 ± 2 | 2 g i.v. MgSO4 or 60 mg caffeine citrate | VAS scores at baseline and 1 and 2 h after treatment | Both i.v. caffeine citrate and i.v. MgSO4 reduced pain scores significantly, but the MgSO4 group showed greater improvement than the caffeine citrate group after one hour (p < 0.001) and after two hours (p < 0.001). Conclusion: i.v. MgSO4 was more potent than caffeine citrate for the short-term management of migraine headache in ED. |
Motamed et al., Iran, 2020 [95] | RCT | Group A: n = 40 Group B: n = 40 | Group A:
| Group A: 2 g MgSO4 plus 10 mg metoclopramide Group B: 10 mg metoclopramide plus 0.9% saline | NRS at baseline, 15, 30, and 45 min after intervention | Pain reduction was significant in both groups, but the reduction slope was more pronounced in group A. Conclusion: the use of MgSO4 along with metoclopramide increased the effect of metoclopramide in managing acute migraine. The findings could not support the independent effect of MgSO4 on the reduction of migraine headaches. |
Kandil et al., USA, 2021 [96] | RCT | 157 (61 MgSO4 –52 prochlorperazine–44 metoclopramide) | median MgSO4 34; prochlorperazine 38; metoclopramide 38 | 2 g i.v. MgSO4, or 10 mg metoclopramide, or 10 mg prochlorperazine | Pain score based on an 11-point standard NRS at baseline and after 20 min, 1 h, and 2 h | No significant difference in NRS at 30 min between MgSO4, metoclopramide, and prochlorperazine. Prochlorperazine was more effective at 60 min but had greater adverse effects. No significant differences in ED LOS, rescue analgesia, or adverse effects. Conclusion: MgSO4 may be used as an adjunctive agent for the treatment of migraines or may serve as a safe alternative when agents such as prochlorperazine or metoclopramide are not appropriate. |
4.5. Trials in Chronic Migraine
Authors Country Year | Type of Study | No. of Participants | Age in Years (Mean) | Intervention | Assessment | Summary of Results |
---|---|---|---|---|---|---|
Facchinetti et al., Italy, 1991 [84] | RCT | 35 (20 with menstrual migraine, intervention–15 without any history of migraine or PMS, placebo) | 28 to 36 (Mg 30; placebo 28) | 360 mg/day oral Mg pyrrolidone carboxylic acid or placebo divided t.i.d. for 4 months | PTI, MDQ during the 2 run-in cycles, and at months 2 and 4 of treatment | PTI decreased with both treatments at month 2; the Mg group showed the lowest values (p < 0.03). The n of days with headache and MDQ significantly decreased only in the Mg group. PTI and MDQ score decreased also at month 4 when Mg was supplemented, for all the patients. PTI was inversely correlated with PMN intracellular Mg++. Conclusion: Mg supplementation is useful for menstrual migraine prophylaxis and could be related to Mg deficiency. |
Peikert et al., Germany, 1996 [85] | RCT | 81 (43 intervention–38 placebo) | 18–65 (Mg 44 ± 11; placebo 48 ± 10) | 600 mg/day oral triMg dicitrate or placebo for 12 weeks | Headache diary recording headache n, intensity (VAS), and duration, dose of acute medication(s), and adverse events. Recorded data were checked and recorded by researchers every 4 weeks | Mg reduced attack frequency (−41.6%) vs. placebo (−15.8%) in week 9–12 compared to baseline (p < 0.05). The n of days with migraine and acute drug consumption also decreased significantly in the Mg group vs. placebo. Adverse events were diarrhea (18.6%) and gastric irritation (4.7%). Conclusion: high-dose Mg appears to be effective in migraine prophylaxis. |
Pfaffenrath et al., Austria, Germany, Switzerland, 1996 [86] | RCT | 69 (35 intervention–34 placebo) | 18–64 (Mg 41 ± 12; placebo 40 ± 13) | 486 mg/day oral Mg–u-aspartate hydrochloride trihydrate or placebo for 12 weeks | 100 mm VAS | The n of responders (≥50% reduced intensity and duration of HA) was 1 in each group (Mg: 28.6%; placebo: 29.4%). No benefit regarding the n of migraine days or HA without center-specific differences. Assessments of treatment efficacy by doctor and patient were largely equivocal; 45.7% of patients under Mg reported mild adverse events (soft stools and diarrhea) vs. 23.5% under placebo. |
Wang et al., USA, 2003 [102] | RCT | 86 (42 intervention–44 placebo) | 3–17 (Mg 41 ± 12; placebo 40 ± 13) | 9 mg/kg/day oral Mg oxide divided t.i.d. or placebo for 16 weeks | Questionnaires completed by parents/guardians caring for younger children and by older participants themselves. Daily notes on a 16-week HA calendar: severity (6-point Wong–Baker FPRS), duration, and other symptoms (anorexia, photophobia, or phonophobia). | Significant decrease in HA frequency in the Mg group (p = 0.0037) vs. placebo group (p = 0.086), although the slopes were not significantly different. Mg-treated group had significantly lower headache severity (p = 0.0029) vs. placebo group. Conclusion: This study did not unequivocally determine whether oral Mg oxide was superior to placebo in preventing migraine headache in children but showed that it did lead to a significant reduction in headache days. Larger trials involving this safe, appealing complementary therapy are needed. |
Köseoglu et al., Turkey, 2008 [87] | RCT | 40 migraine patients without aura (30 intervention–10 placebo); 20 healthy persons as controls for VEP | 20–55 (Mg 37 ± 9; placebo median 44; controls 35 ± 11) | 600 mg/day oral Mg citrate or placebo daily for 3 months | VAS, VEP, brain SPECT imaging | HA frequency, severity, and P1 amplitude in VEP decreased after Mg vs. baseline (p < 0.001). Post/pretreatment ratios of HA frequency, severity, and P1 amplitude were significantly lower in Mg-treated group vs. placebo group. Cortical blood flow in inferolateral frontal, inferolateral temporal, and insular regions increased significantly after Mg treatment, while no significant changes with placebo. Conclusion: Mg is a beneficial agent in the prophylaxis of migraine without aura and might work with both vascular and neurogenic mechanisms. |
Tarighat Esfanjani et al., Iran, 2012 [99] | RCT | 133 (33 Mg; 35 L-carnitine; 30 Mg plus L-carnitine; 35 controls) | 18–55 (Mg 37 ± 9; placebo median 44; controls 35 ± 11) | 500 mg/day Mg oxide, or 500 mg/day L-carnitine, or Mg plus L-carnitine, or healthy controls for 12 weeks | checklist of HA/month, migraine days/month, and HA severity (0 = none; 1 = mild; 2 = moderate—activity impaired; 3 = severe—unable to function). MI calculated by multiplying the n of migraine days/month by migraine severity | Significant reduction in all migraine indicators in the 3 groups after 12 weeks. Conclusion: oral Mg oxide supplementation, L-carnitine, and their combination, besides routine treatments, could be effective in migraine prophylaxis; however, larger trials are needed to confirm these preliminary findings. |
Karimi et al., Iran, 2021 [100] | RCT | 63 (31 Mg; 32 NaV) | 18–65 (Mg to NaV 36 ± 8; NaV to Mg 37 ± 9) | 500 mg/day Mg oxide or 400 mg NaV b.i.d. for 8 weeks; 4-week washout period and crossover trial for 8 weeks | MIDAS scale; HIT-6 scores at baseline and at the end of each treatment phase | Significant decrease in the n of HA days/month, HA duration, and intensity after both treatments; no significant difference between Mg oxide and NaV. Conclusion: 500 mg Mg oxide appears to be as effective in migraine prophylaxis as NaV, without significant adverse effect. |
Khani et al., Iran, 2021 [101] | RCT | Group A: n = 82 Group B: n = 70 Group C: n = 70 | Group A: 35 ± 8 Group B: 37 ± 7 Group C: 34 ± 6 | Group A: 200 mg NaV b.i.d. and placebo b.i.d. Group B: 200 mg NaV b.i.d. and 250 mg Mg oxide b.i.d. Group C: 250 mg Mg oxide b.i.d. and placebo b.i.d. All for 12 weeks. | MIDAS scale; HIT-6 scores at baseline and after 3 months treatment | Significant reduction in MIDAS and HIT-6 in all groups vs. baseline (p < 0.001). No statistically significant difference in HA frequency between groups A and B in the third month; three other parameters showed a significant reduction in group B vs. group A in the third month (p < 0.05). Group C was not different from groups A and B after 3 months (p < 0.001). Conclusion: Mg could enhance the antimigraine properties of NaV in combination therapy and reduce the NaV dose required for migraine prophylaxis. |
5. Bioavailability of Different Magnesium Salts
6. Mechanisms to Explain the Effect of Magnesium on Migraine
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Charles, A. The pathophysiology of migraine: Implications for clinical management. Lancet Neurol. 2018, 17, 174–182. [Google Scholar] [CrossRef]
- Ashina, M. Migraine. N. Engl. J. Med. 2020, 383, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Ashina, M.; Hansen, J.M.; Do, T.P.; Melo-Carrillo, A.; Burstein, R.; Moskowitz, M.A. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019, 18, 795–804. [Google Scholar] [CrossRef]
- Gross, E.C.; Lisicki, M.; Fischer, D.; Sandor, P.S.; Schoenen, J. The metabolic face of migraine—From pathophysiology to treatment. Nat. Rev. Neurol. 2019, 15, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.B.D.N.S.D. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Singh, P.; Ponnada, R.K.; Sharma, R.; Sumadhura, B.; Kumar, A.; Datusalia, A.K. Safety and Efficacy of Calcitonin Gene-related Peptide Receptor Antagonists and Selective Serotonin Receptor Agonist in the Management of Migraine: A Systematic Review and Meta-analysis. CNS Neurol. Disord. Drug Targets 2024, 23, 1474–1487. [Google Scholar] [CrossRef]
- Caspi, R.; Altman, T.; Dreher, K.; Fulcher, C.A.; Subhraveti, P.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012, 40, D742–D753. [Google Scholar] [CrossRef]
- Saris, N.E.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium. An update on physiological, clinical and analytical aspects. Clin. Chim. Acta 2000, 294, 1–26. [Google Scholar] [CrossRef]
- Barbagallo, M.; Gupta, R.K.; Dominguez, L.J.; Resnick, L.M. Cellular ionic alterations with age: Relation to hypertension and diabetes. J. Am. Geriatr. Soc. 2000, 48, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Veronese, N.; Barbagallo, M. Magnesium and the Hallmarks of Aging. Nutrients 2024, 16, 496. [Google Scholar] [CrossRef]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Demurtas, J.; Pesolillo, G.; Celotto, S.; Barnini, T.; Calusi, G.; Caruso, M.G.; Notarnicola, M.; Reddavide, R.; Stubbs, B.; et al. Magnesium and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational and intervention studies. Eur. J. Nutr. 2020, 59, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Koehler, P.J.; Boes, C.J. History of migraine. Handb. Clin. Neurol. 2023, 198, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J.; Holland, P.R.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev. 2017, 97, 553–622. [Google Scholar] [CrossRef] [PubMed]
- Karsan, N.; Goadsby, P.J. Biological insights from the premonitory symptoms of migraine. Nat. Rev. Neurol. 2018, 14, 699–710. [Google Scholar] [CrossRef]
- Kleczkowski, L.A.; Igamberdiev, A.U. Magnesium and cell energetics: At the junction of metabolism of adenylate and non-adenylate nucleotides. J. Plant Physiol. 2023, 280, 153901. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Dominguez, L.J.; Galioto, A.; Ferlisi, A.; Cani, C.; Malfa, L.; Pineo, A.; Busardo, A.; Paolisso, G. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol. Aspects Med. 2003, 24, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Type 2 Diabetes Mellitus, Obesity, and Metabolic Syndrome. Nutrients 2022, 14, 714. [Google Scholar] [CrossRef]
- Feeney, K.A.; Hansen, L.L.; Putker, M.; Olivares-Yanez, C.; Day, J.; Eades, L.J.; Larrondo, L.F.; Hoyle, N.P.; O’Neill, J.S.; van Ooijen, G. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 2016, 532, 375–379. [Google Scholar] [CrossRef]
- Veronese, N.; Dominguez, L.J.; Pizzol, D.; Demurtas, J.; Smith, L.; Barbagallo, M. Oral Magnesium Supplementation for Treating Glucose Metabolism Parameters in People with or at Risk of Diabetes: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Nutrients 2021, 13, 4074. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Wang, L.; Fu, T.; Papasergi, M.; Yule, D.I.; Xia, H. Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons. Mol. Neurobiol. 2020, 57, 2539–2550. [Google Scholar] [CrossRef] [PubMed]
- Pochwat, B.; Szewczyk, B.; Sowa-Kucma, M.; Siwek, A.; Doboszewska, U.; Piekoszewski, W.; Gruca, P.; Papp, M.; Nowak, G. Antidepressant-like activity of magnesium in the chronic mild stress model in rats: Alterations in the NMDA receptor subunits. Int. J. Neuropsychopharmacol. 2014, 17, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lin, H.; He, G.; Lin, W.; Yang, J. Magnesium sulphate attenuate remifentanil-induced postoperative hyperalgesia via regulating tyrosine phosphorylation of the NR(2)B subunit of the NMDA receptor in the spinal cord. BMC Anesthesiol. 2017, 17, 30. [Google Scholar] [CrossRef]
- Li, F.Y.; Chaigne-Delalande, B.; Kanellopoulou, C.; Davis, J.C.; Matthews, H.F.; Douek, D.C.; Cohen, J.I.; Uzel, G.; Su, H.C.; Lenardo, M.J. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 2011, 475, 471–476. [Google Scholar] [CrossRef]
- Li, F.Y.; Chaigne-Delalande, B.; Su, H.; Uzel, G.; Matthews, H.; Lenardo, M.J. XMEN disease: A new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood 2014, 123, 2148–2152. [Google Scholar] [CrossRef] [PubMed]
- Chaigne-Delalande, B.; Li, F.Y.; O’Connor, G.M.; Lukacs, M.J.; Jiang, P.; Zheng, L.; Shatzer, A.; Biancalana, M.; Pittaluga, S.; Matthews, H.F.; et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 2013, 341, 186–191. [Google Scholar] [CrossRef]
- Tur, J.; Chapalamadagu, K.C.; Manickam, R.; Cheng, F.; Tipparaju, S.M. Deletion of Kvbeta2 (AKR6) Attenuates Isoproterenol Induced Cardiac Injury with Links to Solute Carrier Transporter SLC41a3 and Circadian Clock Genes. Metabolites 2021, 11, 201. [Google Scholar] [CrossRef]
- Ford, E.S.; Mokdad, A.H. Dietary magnesium intake in a national sample of US adults. J. Nutr. 2003, 133, 2879–2882. [Google Scholar] [CrossRef]
- Rosanoff, A.; Weaver, C.M.; Rude, R.K. Suboptimal magnesium status in the United States: Are the health consequences underestimated? Nutr. Rev. 2012, 70, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Ehrenpreis, E.D.; Jarrouj, G.; Meader, R.; Wagner, C.; Ellis, M. A comprehensive review of hypomagnesemia. Dis. Mon. 2022, 68, 101285. [Google Scholar] [CrossRef]
- Salinas, M.; Lopez-Garrigos, M.; Flores, E.; Leiva-Salinas, C. Improving diagnosis and treatment of hypomagnesemia. Clin. Chem. Lab. Med. 2024, 62, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H.; Johnson, L.A. Data from Controlled Metabolic Ward Studies Provide Guidance for the Determination of Status Indicators and Dietary Requirements for Magnesium. Biol. Trace Elem. Res. 2017, 177, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Hubert, J.; Mazur, A. Methods of assessment of magnesium status in humans: A systematic review. Magnes. Res. 2011, 24, 163–180. [Google Scholar] [CrossRef]
- Rob, P.M.; Dick, K.; Bley, N.; Seyfert, T.; Brinckmann, C.; Hollriegel, V.; Friedrich, H.J.; Dibbelt, L.; Seelig, M.S. Can one really measure magnesium deficiency using the short-term magnesium loading test? J. Intern. Med. 1999, 246, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, M.J. Update on the assessment of magnesium status. Br. J. Nutr. 2008, 99 (Suppl. S3), S24–S36. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.G.; Fourman, P. An experimental study of magnesium deficiency in man. Clin. Sci. 1956, 15, 635–647. [Google Scholar]
- Thoren, L. Magnesium Deficiency in Gastrointestinal Fluid Loss. Acta Chir. Scand. Suppl. 1963, Suppl. 306, 301–365. [Google Scholar]
- Viering, D.; de Baaij, J.H.F.; Walsh, S.B.; Kleta, R.; Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 2017, 32, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Posul, E.; Can, G.; Tekelioglu, V.; Yilmaz, B.; Korkmaz, U.; Ozyalvacli, G.; Kilitci, A.; Kurt, M. Tetany with Hypomagnesemia, Hypokalemia, and Hypocalcemia as Initial Presentation of Celiac Disease. Gastroenterol. Nurs. 2018, 41, 66–67. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Roman, J.; Escobedo-Monge, M.A.; Marcos-Temprano, M.; Marugan-Miguelsanz, J.M. Magnesium Status and Calcium/Magnesium Ratios in a Series of Cystic Fibrosis Patients. Nutrients 2022, 14, 1793. [Google Scholar] [CrossRef] [PubMed]
- Papazachariou, I.M.; Martinez-Isla, A.; Efthimiou, E.; Williamson, R.C.; Girgis, S.I. Magnesium deficiency in patients with chronic pancreatitis identified by an intravenous loading test. Clin. Chim. Acta 2000, 302, 145–154. [Google Scholar] [CrossRef]
- Pergolini, I.; Schorn, S.; Friess, H.; Demir, I.E. The Role of Magnesium in Acute Pancreatitis and Pancreatic Injury: A Systematic Review. Visc. Med. 2024, 40, 264–275. [Google Scholar] [CrossRef]
- William, J.H.; Danziger, J. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms. World J. Nephrol. 2016, 5, 152–157. [Google Scholar] [CrossRef]
- Grober, U. Magnesium and Drugs. Int. J. Mol. Sci. 2019, 20, 2094. [Google Scholar] [CrossRef]
- Silva, M.M.; Borges-Canha, M.; Fonseca, M.J.; Neves, J.S.; Mendonca, F.; Ferreira, M.J.; Salazar, D.; Pedro, J.; Guerreiro, V.; Viana, S.; et al. Magnesium Supplementation Is Associated with a Lower Cardio-Metabolic Risk in Patients Submitted to Bariatric Surgery. Obes. Surg. 2022, 32, 3056–3063. [Google Scholar] [CrossRef]
- Novodvorsky, P.; Lowry, A.F.; Lim, C.B.B.; Balasubramanian, S.P. Serum Magnesium Measurements After Parathyroidectomy for Primary Hyperparathyroidism: Should It be Routine? World J. Surg. 2020, 44, 1898–1904. [Google Scholar] [CrossRef]
- Barbagallo, M.; Di Bella, G.; Brucato, V.; D’Angelo, D.; Damiani, P.; Monteverde, A.; Belvedere, M.; Dominguez, L.J. Serum ionized magnesium in diabetic older persons. Metabolism 2014, 63, 502–509. [Google Scholar] [CrossRef]
- Resnick, L.M.; Gupta, R.K.; Laragh, J.H. Intracellular free magnesium in erythrocytes of essential hypertension: Relation to blood pressure and serum divalent cations. Proc. Natl. Acad. Sci. USA 1984, 81, 6511–6515. [Google Scholar] [CrossRef]
- Resnick, L.M.; Altura, B.T.; Gupta, R.K.; Laragh, J.H.; Alderman, M.H.; Altura, B.M. Intracellular and extracellular magnesium depletion in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993, 36, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Belvedere, M.; Dominguez, L.J. Magnesium homeostasis and aging. Magnes. Res. 2009, 22, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Resnick, L.M.; Barbagallo, M.; Dominguez, L.J.; Veniero, J.M.; Nicholson, J.P.; Gupta, R.K. Relation of cellular potassium to other mineral ions in hypertension and diabetes. Hypertension 2001, 38, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Mohammed, A. Magnesium: The Forgotten Electrolyte-A Review on Hypomagnesemia. Med. Sci. 2019, 7, 56. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.A.; Panonnummal, R. A Mini Review on the Various Facets Effecting Brain Delivery of Magnesium and Its Role in Neurological Disorders. Biol. Trace Elem. Res. 2023, 201, 4238–4253. [Google Scholar] [CrossRef]
- Stroebel, D.; Casado, M.; Paoletti, P. Triheteromeric NMDA receptors: From structure to synaptic physiology. Curr. Opin. Physiol. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Maier, J.A.M.; Locatelli, L.; Fedele, G.; Cazzaniga, A.; Mazur, A. Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2022, 24, 223. [Google Scholar] [CrossRef]
- Olloquequi, J.; Cornejo-Cordova, E.; Verdaguer, E.; Soriano, F.X.; Binvignat, O.; Auladell, C.; Camins, A. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. J. Psychopharmacol. 2018, 32, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Clerc, P.; Young, C.A.; Bordt, E.A.; Grigore, A.M.; Fiskum, G.; Polster, B.M. Magnesium sulfate protects against the bioenergetic consequences of chronic glutamate receptor stimulation. PLoS ONE 2013, 8, e79982. [Google Scholar] [CrossRef]
- Patel, V.; Akimbekov, N.S.; Grant, W.B.; Dean, C.; Fang, X.; Razzaque, M.S. Neuroprotective effects of magnesium: Implications for neuroinflammation and cognitive decline. Front. Endocrinol. 2024, 15, 1406455. [Google Scholar] [CrossRef]
- Evans, E.W.; Lipton, R.B.; Peterlin, B.L.; Raynor, H.A.; Thomas, J.G.; O’Leary, K.C.; Pavlovic, J.; Wing, R.R.; Bond, D.S. Dietary intake patterns and diet quality in a nationally representative sample of women with and without severe headache or migraine. Headache 2015, 55, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Hajjarzadeh, S.; Nikniaz, Z.; Shalilahmadi, D.; Mahdavi, R.; Behrouz, M. Comparison of Diet Quality Between Women with Chronic and Episodic Migraine. Headache 2019, 59, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Slavin, M.; Li, H.; Khatri, M.; Frankenfeld, C. Dietary magnesium and migraine in adults: A cross-sectional analysis of the National Health and Nutrition Examination Survey 2001–2004. Headache 2021, 61, 276–286. [Google Scholar] [CrossRef]
- Gazerani, P.; Papetti, L.; Dalkara, T.; Cook, C.L.; Webster, C.; Bai, J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024, 16, 2222. [Google Scholar] [CrossRef]
- Arab, A.; Khorvash, F.; Karimi, E.; Hadi, A.; Askari, G. Associations between adherence to Mediterranean dietary pattern and frequency, duration, and severity of migraine headache: A cross-sectional study. Nutr. Neurosci. 2023, 26, 1–10. [Google Scholar] [CrossRef]
- Bakirhan, H.; Yildiran, H.; Uyar Cankay, T. Associations between diet quality, DASH and Mediterranean dietary patterns and migraine characteristics. Nutr. Neurosci. 2022, 25, 2324–2334. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; Savadi-Oskouei, D.; Farhoudi, M.; Mohammadzade, S.; Ghaemmaghamihezaveh, S.; Hasani, A.; Hamdi, A. Relation between serum magnesium level and migraine attacks. Neurosciences 2011, 16, 320–323. [Google Scholar]
- Sarchielli, P.; Coata, G.; Firenze, C.; Morucci, P.; Abbritti, G.; Gallai, V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia 1992, 12, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Millot, J.M.; Sebille, S.; Delabroise, A.M.; Thomas, E.; Manfait, M.; Arnaud, M.J. Free and total magnesium in lymphocytes of migraine patients—Effect of magnesium-rich mineral water intake. Clin. Chim. Acta 2000, 295, 63–75. [Google Scholar] [CrossRef]
- Ramadan, N.M.; Halvorson, H.; Vande-Linde, A.; Levine, S.R.; Helpern, J.A.; Welch, K.M. Low brain magnesium in migraine. Headache 1989, 29, 590–593. [Google Scholar] [CrossRef]
- Trauninger, A.; Pfund, Z.; Koszegi, T.; Czopf, J. Oral magnesium load test in patients with migraine. Headache 2002, 42, 114–119. [Google Scholar] [CrossRef]
- Samaie, A.; Asghari, N.; Ghorbani, R.; Arda, J. Blood Magnesium levels in migraineurs within and between the headache attacks: A case control study. Pan Afr. Med. J. 2012, 11, 46. [Google Scholar]
- Assarzadegan, F.; Asgarzadeh, S.; Hatamabadi, H.R.; Shahrami, A.; Tabatabaey, A.; Asgarzadeh, M. Serum concentration of magnesium as an independent risk factor in migraine attacks: A matched case-control study and review of the literature. Int. Clin. Psychopharmacol. 2016, 31, 287–292. [Google Scholar] [CrossRef]
- Mauskop, A.; Altura, B.T.; Cracco, R.Q.; Altura, B.M. Intravenous magnesium sulphate relieves migraine attacks in patients with low serum ionized magnesium levels: A pilot study. Clin. Sci. 1995, 89, 633–636. [Google Scholar] [CrossRef]
- Cegielska, J.; Szmidt-Salkowska, E.; Domitrz, W.; Gawel, M.; Radziwon-Zaleska, M.; Domitrz, I. Migraine and Its Association with Hyperactivity of Cell Membranes in the Course of Latent Magnesium Deficiency-Preliminary Study of the Importance of the Latent Tetany Presence in the Migraine Pathogenesis. Nutrients 2021, 13, 2701. [Google Scholar] [CrossRef]
- Schoenen, J.; Sianard-Gainko, J.; Lenaerts, M. Blood magnesium levels in migraine. Cephalalgia 1991, 11, 97–99. [Google Scholar] [CrossRef]
- Teigen, L.; Boes, C.J. An evidence-based review of oral magnesium supplementation in the preventive treatment of migraine. Cephalalgia 2015, 35, 912–922. [Google Scholar] [CrossRef]
- von Luckner, A.; Riederer, F. Magnesium in Migraine Prophylaxis-Is There an Evidence-Based Rationale? A Systematic Review. Headache 2018, 58, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.C.; Pfeffer, B.K.; Lawson, M.R.; Sewell, K.A.; King, A.R.; Zehtabchi, S. Intravenous Magnesium Sulfate to Treat Acute Headaches in the Emergency Department: A Systematic Review. Headache 2019, 59, 1674–1686. [Google Scholar] [CrossRef] [PubMed]
- Park, R.; Ho, A.M.; Pickering, G.; Arendt-Nielsen, L.; Mohiuddin, M.; Gilron, I. Efficacy and Safety of Magnesium for the Management of Chronic Pain in Adults: A Systematic Review. Anesth. Analg. 2020, 131, 764–775. [Google Scholar] [CrossRef]
- Okoli, G.N.; Rabbani, R.; Kashani, H.H.; Wierzbowski, A.K.; Neilson, C.; Mansouri, B.; Zarychanski, R.; Abou-Setta, A.M. Vitamins and Minerals for Migraine Prophylaxis: A Systematic Review and Meta-analysis. Can. J. Neurol. Sci. 2019, 46, 224–233. [Google Scholar] [CrossRef]
- Talandashti, M.K.; Shahinfar, H.; Delgarm, P.; Jazayeri, S. Effects of selected dietary supplements on migraine prophylaxis: A systematic review and dose-response meta-analysis of randomized controlled trials. Neurol. Sci. 2024, 46, 651–670. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.Y.; Yeh, T.H.; Huang, Y.C.; Chen, P.Y. Effects of Intravenous and Oral Magnesium on Reducing Migraine: A Meta-analysis of Randomized Controlled Trials. Pain. Physician 2016, 19, E97–E112. [Google Scholar]
- Facchinetti, F.; Sances, G.; Borella, P.; Genazzani, A.R.; Nappi, G. Magnesium prophylaxis of menstrual migraine: Effects on intracellular magnesium. Headache 1991, 31, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Peikert, A.; Wilimzig, C.; Kohne-Volland, R. Prophylaxis of migraine with oral magnesium: Results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia 1996, 16, 257–263. [Google Scholar] [CrossRef]
- Pfaffenrath, V.; Wessely, P.; Meyer, C.; Isler, H.R.; Evers, S.; Grotemeyer, K.H.; Taneri, Z.; Soyka, D.; Gobel, H.; Fischer, M. Magnesium in the prophylaxis of migraine—A double-blind placebo-controlled study. Cephalalgia 1996, 16, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, E.; Talaslioglu, A.; Gonul, A.S.; Kula, M. The effects of magnesium prophylaxis in migraine without aura. Magnes. Res. 2008, 21, 101–108. [Google Scholar]
- Demirkaya, S.; Vural, O.; Dora, B.; Topcuoglu, M.A. Efficacy of intravenous magnesium sulfate in the treatment of acute migraine attacks. Headache 2001, 41, 171–177. [Google Scholar] [CrossRef]
- Bigal, M.E.; Bordini, C.A.; Tepper, S.J.; Speciali, J.G. Intravenous magnesium sulphate in the acute treatment of migraine without aura and migraine with aura. A randomized, double-blind, placebo-controlled study. Cephalalgia 2002, 22, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bigal, M.E.; Bordini, C.A.; Speciali, J.G. Efficacy of three drugs in the treatment of migrainous aura: A randomized placebo-controlled study. Arq. Neuropsiquiatr. 2002, 60, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Rahimdel, A.; Eslami, M.H.; Zeinali, A. A Randomized Controlled Study of Magnesium Sulfate versus Dihydroergotamine in the Management of Acute Migraine Attacks. Pak. J. Neurol. Sci. (PJNS) 2007, 2, 4. [Google Scholar]
- Zadeh, A.A. Efficacy of intravenous magnesium sulfate in acute attacks of migraine. J. Headache Pain. 2010, 11, 2. [Google Scholar]
- Shahrami, A.; Assarzadegan, F.; Hatamabadi, H.R.; Asgarzadeh, M.; Sarehbandi, B.; Asgarzadeh, S. Comparison of therapeutic effects of magnesium sulfate vs. dexamethasone/metoclopramide on alleviating acute migraine headache. J. Emerg. Med. 2015, 48, 69–76. [Google Scholar] [CrossRef]
- Baratloo, A.; Mirbaha, S.; Delavar Kasmaei, H.; Payandemehr, P.; Elmaraezy, A.; Negida, A. Intravenous caffeine citrate vs. magnesium sulfate for reducing pain in patients with acute migraine headache; a prospective quasi-experimental study. Korean J. Pain. 2017, 30, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Motamed, H. Magnesium sulfate and acute migraine: A randomized clinical trial. Ann. Clin. Anal. Med. 2020, 11, 5. [Google Scholar] [CrossRef]
- Kandil, M.; Jaber, S.; Desai, D.; Nunez Cruz, S.; Lomotan, N.; Ahmad, U.; Cirone, M.; Burkins, J.; McDowell, M. MAGraine: Magnesium compared to conventional therapy for treatment of migraines. Am. J. Emerg. Med. 2021, 39, 28–33. [Google Scholar] [CrossRef]
- Corbo, J.; Esses, D.; Bijur, P.E.; Iannaccone, R.; Gallagher, E.J. Randomized clinical trial of intravenous magnesium sulfate as an adjunctive medication for emergency department treatment of migraine headache. Ann. Emerg. Med. 2001, 38, 621–627. [Google Scholar] [CrossRef]
- Cete, Y.; Dora, B.; Ertan, C.; Ozdemir, C.; Oktay, C. A randomized prospective placebo-controlled study of intravenous magnesium sulphate vs. metoclopramide in the management of acute migraine attacks in the Emergency Department. Cephalalgia 2005, 25, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Tarighat Esfanjani, A.; Mahdavi, R.; Ebrahimi Mameghani, M.; Talebi, M.; Nikniaz, Z.; Safaiyan, A. The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol. Trace Elem. Res. 2012, 150, 42–48. [Google Scholar] [CrossRef]
- Karimi, N.; Razian, A.; Heidari, M. The efficacy of magnesium oxide and sodium valproate in prevention of migraine headache: A randomized, controlled, double-blind, crossover study. Acta Neurol. Belg. 2021, 121, 167–173. [Google Scholar] [CrossRef]
- Khani, S.; Hejazi, S.A.; Yaghoubi, M.; Sharifipour, E. Comparative study of magnesium, sodium valproate, and concurrent magnesium-sodium valproate therapy in the prevention of migraine headaches: A randomized controlled double-blind trial. J. Headache Pain. 2021, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Van Den Eeden, S.K.; Ackerson, L.M.; Salk, S.E.; Reince, R.H.; Elin, R.J. Oral magnesium oxide prophylaxis of frequent migrainous headache in children: A randomized, double-blind, placebo-controlled trial. Headache 2003, 43, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Rylander, R. Bioavailability of Magnesium Salts—A Review. J. Pharm. Nutr. Sci. 2014, 4, 3. [Google Scholar] [CrossRef]
- Blancquaert, L.; Vervaet, C.; Derave, W. Predicting and Testing Bioavailability of Magnesium Supplements. Nutrients 2019, 11, 1663. [Google Scholar] [CrossRef] [PubMed]
- Pardo, M.R.; Garicano Vilar, E.; San Mauro Martin, I.; Camina Martin, M.A. Bioavailability of magnesium food supplements: A systematic review. Nutrition 2021, 89, 111294. [Google Scholar] [CrossRef]
- Ates, M.; Kizildag, S.; Yuksel, O.; Hosgorler, F.; Yuce, Z.; Guvendi, G.; Kandis, S.; Karakilic, A.; Koc, B.; Uysal, N. Dose-Dependent Absorption Profile of Different Magnesium Compounds. Biol. Trace Elem. Res. 2019, 192, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Schuette, S.A.; Lashner, B.A.; Janghorbani, M. Bioavailability of magnesium diglycinate vs magnesium oxide in patients with ileal resection. JPEN J. Parenter. Enteral Nutr. 1994, 18, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Fine, K.D.; Santa Ana, C.A.; Porter, J.L.; Fordtran, J.S. Intestinal absorption of magnesium from food and supplements. J. Clin. Investig. 1991, 88, 396–402. [Google Scholar] [CrossRef]
- Reed, B.N.; Zhang, S.; Marron, J.S.; Montague, D. Comparison of intravenous and oral magnesium replacement in hospitalized patients with cardiovascular disease. Am. J. Health Syst. Pharm. 2012, 69, 1212–1217. [Google Scholar] [CrossRef]
- Dominguez, L.; Veronese, N.; Barbagallo, M. Magnesium and Hypertension in Old Age. Nutrients 2020, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Charles, A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. Neurotherapeutics 2018, 15, 361–370. [Google Scholar] [CrossRef]
- Kolisek, M.; Touyz, R.M.; Romani, A.; Barbagallo, M. Magnesium and Other Biometals in Oxidative Medicine and Redox Biology. Oxid. Med. Cell Longev. 2017, 2017, 7428796. [Google Scholar] [CrossRef]
- Welch, K.M.; Ramadan, N.M. Mitochondria, magnesium and migraine. J. Neurol. Sci. 1995, 134, 9–14. [Google Scholar] [CrossRef]
- Dolati, S.; Rikhtegar, R.; Mehdizadeh, A.; Yousefi, M. The Role of Magnesium in Pathophysiology and Migraine Treatment. Biol. Trace Elem. Res. 2020, 196, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Sun-Edelstein, C.; Mauskop, A. Role of magnesium in the pathogenesis and treatment of migraine. Expert. Rev. Neurother. 2009, 9, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, L.V. Initiation of spreading depression by synaptic and network hyperactivity: Insights into trigger mechanisms of migraine aura. Cephalalgia 2018, 38, 1177–1187. [Google Scholar] [CrossRef]
- Weglicki, W.B.; Mak, I.T.; Kramer, J.H.; Dickens, B.F.; Cassidy, M.M.; Stafford, R.E.; Philips, T.M. Role of free radicals and substance P in magnesium deficiency. Cardiovasc. Res. 1996, 31, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Bayraktutan, U. Substance P reversibly compromises the integrity and function of blood-brain barrier. Peptides 2023, 167, 171048. [Google Scholar] [CrossRef] [PubMed]
- Myrdal, U.; Leppert, J.; Edvinsson, L.; Ekman, R.; Hedner, T.; Nilsson, H.; Ringqvist, I. Magnesium sulphate infusion decreases circulating calcitonin gene-related peptide (CGRP) in women with primary Raynaud’s phenomenon. Clin. Physiol. 1994, 14, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.C.; Fagg, G.E. Neurobiology. Taking apart NMDA receptors. Nature 1987, 329, 395–396. [Google Scholar] [CrossRef]
- Huang, Q.F.; Gebrewold, A.; Zhang, A.; Altura, B.T.; Altura, B.M. Role of excitatory amino acids in regulation of rat pial microvasculature. Am. J. Physiol. 1994, 266, R158–R163. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Dietrich, H.H.; Horiuchi, T.; Hongo, K.; Dacey, R.G., Jr. Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci. Res. 2016, 107, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Chiarello, D.I.; Marin, R.; Proverbio, F.; Coronado, P.; Toledo, F.; Salsoso, R.; Gutierrez, J.; Sobrevia, L. Mechanisms of the effect of magnesium salts in preeclampsia. Placenta 2018, 69, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Izzati-Zade, K.F. The role of serotonin in the pathogenesis and clinical presentations of migraine attacks. Neurosci. Behav. Physiol. 2008, 38, 501–505. [Google Scholar] [CrossRef]
- Botturi, A.; Ciappolino, V.; Delvecchio, G.; Boscutti, A.; Viscardi, B.; Brambilla, P. The Role and the Effect of Magnesium in Mental Disorders: A Systematic Review. Nutrients 2020, 12, 1661. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, L.J.; Veronese, N.; Sabico, S.; Al-Daghri, N.M.; Barbagallo, M. Magnesium and Migraine. Nutrients 2025, 17, 725. https://doi.org/10.3390/nu17040725
Dominguez LJ, Veronese N, Sabico S, Al-Daghri NM, Barbagallo M. Magnesium and Migraine. Nutrients. 2025; 17(4):725. https://doi.org/10.3390/nu17040725
Chicago/Turabian StyleDominguez, Ligia J., Nicola Veronese, Shaun Sabico, Nasser M. Al-Daghri, and Mario Barbagallo. 2025. "Magnesium and Migraine" Nutrients 17, no. 4: 725. https://doi.org/10.3390/nu17040725
APA StyleDominguez, L. J., Veronese, N., Sabico, S., Al-Daghri, N. M., & Barbagallo, M. (2025). Magnesium and Migraine. Nutrients, 17(4), 725. https://doi.org/10.3390/nu17040725