Effects of a Multimodal Lifestyle Intervention on Cardiometabolic Markers in People with Progressive Multiple Sclerosis: A Secondary Analysis of a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Inclusion and Exclusion Criteria
2.3. Study Protocol
2.4. Study Diet
2.5. Exercise, Neuromuscular Electrical Stimulation, and Stress Reduction
2.6. Biochemical Marker Assessment
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Cardiometabolic Marker Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
CIS | Clinically isolated syndrome |
CK | Creatine kinase |
CLL | Chronic lymphocytic leukemia |
CNS | Central nervous system |
CPB | Cholesterol pathway biomarkers |
DMT | Disease-modifying treatment |
EDSS | Expanded Disability Status Scale |
EGCG | Epigallocatechin gallate |
EX | Vigorous-intensity exercise |
FSS | Fatigue Severity Scale |
HDL | High-density lipoprotein |
HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
IR | Insulin resistance |
LDL | Low-density lipoprotein |
LIPA | Light-intensity physical activity |
MIND | Mediterranean–DASH Intervention for Neurodegenerative Delay |
MRI | Magnetic resonance imaging |
NMES | Neuromuscular electrical stimulation |
PP-MS | Primary progressive multiple sclerosis |
PwMS | People with multiple sclerosis |
SP-MS | Secondary progressive multiple sclerosis |
TC | Total cholesterol |
TG | Triglyceride |
References
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [PubMed]
- Hadjimichael, O.; Vollmer, T.; Oleen-Burkey, M. Fatigue characteristics in multiple sclerosis: The North American Research Committee on Multiple Sclerosis (NARCOMS) survey. Health Qual Life Outcomes 2008, 6, 100. [Google Scholar] [PubMed]
- Krupp, L.B.; Serafin, D.J.; Christodoulou, C. Multiple sclerosis-associated fatigue. Expert Rev. Neurother. 2010, 10, 1437–1447. [Google Scholar] [CrossRef]
- Marrie, R.A.; Cohen, J.; Stuve, O.; Trojano, M.; Sørensen, P.S.; Reingold, S.; Cutter, G.; Reider, N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: Overview. Mult. Scler. J. 2015, 21, 263–281. [Google Scholar]
- Marrie, R.A.; Rudick, R.; Horwitz, R.; Cutter, G.; Tyry, T.; Campagnolo, D.; Vollmer, T. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 2010, 74, 1041–1047. [Google Scholar]
- Marrie, R.A.; Elliott, L.; Marriott, J.; Cossoy, M.; Tennakoon, A.; Yu, N. Comorbidity increases the risk of hospitalizations in multiple sclerosis. Neurology 2015, 84, 350–358. [Google Scholar]
- Kowalec, K.; McKay, K.A.; Patten, S.B.; Fisk, J.D.; Evans, C.; Tremlett, H.; Marrie, R.A.; CIHR Team in Epidemiology and Impact of Comorbidity on Multiple Sclerosis (ECoMS). Comorbidity increases the risk of relapse in multiple sclerosis: A prospective study. Neurology 2017, 89, 2455–2461. [Google Scholar] [CrossRef]
- Murali, N.; Browne, R.W.; Maxwell, K.F.; Bodziak, M.L.; Jakimovski, D.; Hagemeier, J.; Bergsland, N.; Weinstock-Guttman, B.; Zivadinov, R.; Ramanathan, M. Cholesterol and neurodegeneration: Longitudinal changes in serum cholesterol biomarkers are associated with new lesions and gray matter atrophy in multiple sclerosis over 5 years of follow-up. Eur. J. Neurol. 2020, 27, 188-e4. [Google Scholar]
- Jakimovski, D.; Gandhi, S.; Paunkoski, I.; Bergsland, N.; Hagemeier, J.; Ramasamy, D.P.; Hojnacki, D.; Kolb, C.; Benedict, R.H.B.; Weinstock-Guttman, B.; et al. Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: A 5-year longitudinal study. Eur. J. Neurol. 2019, 26, 87-e8. [Google Scholar]
- Chou, I.J.; Kuo, C.F.; Tanasescu, R.; Tench, C.R.; Tiley, C.G.; Constantinescu, C.S.; Whitehouse, W.P. Comorbidity in multiple sclerosis: Its temporal relationships with disease onset and dose effect on mortality. Eur. J. Neurol. 2020, 27, 105–112. [Google Scholar] [PubMed]
- Marrie, R.A.; Elliott, L.; Marriott, J.; Cossoy, M.; Blanchard, J.; Leung, S.; Yu, N. Effect of comorbidity on mortality in multiple sclerosis. Neurology 2015, 85, 240–247. [Google Scholar] [PubMed]
- Silveira, S.L.; Richardson, E.V.; Motl, R.W. Desired Resources for Changing Diet Among Persons with Multiple Sclerosis: Qualitative Inquiry Informing Future Dietary Interventions. Int. J. MS Care 2022, 24, 175–183. [Google Scholar] [CrossRef]
- Elkhalii-Wilhelm, S.; Sippel, A.; Riemann-Lorenz, K.; Kofahl, C.; Scheiderbauer, J.; Arnade, S.; Kleiter, I.; Schmidt, S.; Heesen, C. Experiences of persons with Multiple Sclerosis with lifestyle adjustment-A qualitative interview study. PLoS ONE 2022, 17, e0268988. [Google Scholar]
- Anderson, H.D.; Leister, N.R.; Biely, S.A. The perceptions of persons with multiple sclerosis (MS) on the impact of diet and supplements on MS symptoms. J. Altern. Complement Med. 2022, 8, 221. [Google Scholar]
- Marck, C.H.; Probst, Y.; Chen, J.; Taylor, B.; van der Mei, I. Dietary patterns and associations with health outcomes in Australian people with multiple sclerosis. Eur. J. Clin. Nutr. 2021, 75, 1506–1514. [Google Scholar]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.J.; Marrie, R.A. A survey of dietary characteristics in a large population of people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 22, 12–18. [Google Scholar]
- Russell, R.D.; Lucas, R.M.; Brennan, V.; Sherriff, J.L.; Begley, A.; Investigator, G.A.; Black, L.J. Reported Changes in Dietary Behavior Following a First Clinical Diagnosis of Central Nervous System Demyelination. Front. Neurol. 2018, 9, 161. [Google Scholar]
- Fidao, A.; Jelinek, G.; Simpson-Yap, S.; Neate, S.; Nag, N. Engagement with three or more healthy lifestyle behaviours is associated with improved quality of life over 7.5 years in people with multiple sclerosis. Eur. J. Neurol. 2023, 30, 3190–3199. [Google Scholar]
- Giovannoni, G.; Ford, H.L.; Schmierer, K.; Middleton, R.; Stennett, A.M.; Pomeroy, I.; Fisniku, L.; Scalfari, A.; Bannon, C.; Stross, R.; et al. MS care: Integrating advanced therapies and holistic management. Front. Neurol. 2023, 14, 1286122. [Google Scholar] [CrossRef]
- Reece, J.; Jelinek, G.A.; Milanzi, E.; Simpson-Yap, S.; Neate, S.L.; Taylor, K.L.; Jelinek, P.L.; Davenport, R.; Bevens, W.; Yu, M. Lifestyle changes and patient-reported outcomes over five years in a sample of people with multiple sclerosis after a single multimodal intensive lifestyle education workshop. Neurol. Sci. 2024, 46, 835–844. [Google Scholar]
- Moss, B.P.; Rensel, M.R.; Hersh, C.M. Wellness and the Role of Comorbidities in Multiple Sclerosis. Neurotherapeutics 2017, 14, 999–1017. [Google Scholar] [PubMed]
- Allogmanny, S.; Probst, Y. Dietary Modification Combined with Nutrition Education and Counseling for Metabolic Comorbidities in Multiple Sclerosis: Implications for Clinical Practice and Research. Curr. Nutr. Rep. 2024, 13, 106–112. [Google Scholar]
- Marrie, R.A.; Fisk, J.D.; Fitzgerald, K.; Kowalec, K.; Maxwell, C.; Rotstein, D.; Salter, A.; Tremlett, H. Etiology, effects and management of comorbidities in multiple sclerosis: Recent advances. Front. Immunol. 2023, 14, 1197195. [Google Scholar]
- Salter, A.; Lancia, S.; Kowalec, K.; Fitzgerald, K.C.; Marrie, R.A. Comorbidity and Disease Activity in Multiple Sclerosis. JAMA Neurol. 2024, 81, 1170–1177. [Google Scholar] [PubMed]
- Tettey, P.; Simpson, S., Jr.; Taylor, B.; Blizzard, L.; Ponsonby, A.L.; Dwyer, T.; Kostner, K.; van der Mei, I. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult. Scler. J. 2014, 20, 1737–1744. [Google Scholar]
- Weinstock-Guttman, B.; Zivadinov, R.; Mahfooz, N.; Carl, E.; Drake, A.; Schneider, J.; Teter, B.; Hussein, S.; Mehta, B.; Weiskopf, M.; et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J. Neuroinflamm. 2011, 8, 127. [Google Scholar]
- Nociti, V.; Romozzi, M. The Importance of Managing Modifiable Comorbidities in People with Multiple Sclerosis: A Narrative Review. J. Pers. Med. 2023, 13, 1524. [Google Scholar] [CrossRef]
- Wahls, T.L.; Titcomb, T.J.; Bisht, B.; Eyck, P.T.; Rubenstein, L.M.; Carr, L.J.; Darling, W.G.; Hoth, K.F.; Kamholz, J.; Snetselaar, L.G. Impact of the Swank and Wahls elimination dietary interventions on fatigue and quality of life in relapsing-remitting multiple sclerosis: The WAVES randomized parallel-arm clinical trial. Mult. Scler. J. Exp. Transl. Clin. 2021, 7, 20552173211035399. [Google Scholar]
- Irish, A.K.; Erickson, C.M.; Wahls, T.L.; Snetselaar, L.G.; Darling, W.G. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 1–18. [Google Scholar]
- Lee, J.E.; Titcomb, T.J.; Bisht, B.; Rubenstein, L.M.; Louison, R.; Wahls, T.L. A Modified MCT-Based Ketogenic Diet Increases Plasma β-Hydroxybutyrate but Has Less Effect on Fatigue and Quality of Life in People with Multiple Sclerosis Compared to a Modified Paleolithic Diet: A Waitlist-Controlled, Randomized Pilot Study. J. Am. Coll. Nutr. 2021, 40, 13–25. [Google Scholar] [PubMed]
- Parks, N.E.; Jackson-Tarlton, C.S.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary interventions for multiple sclerosis-related outcomes. Cochrane Database Syst. Rev. 2020, 5, Cd004192. [Google Scholar]
- Katz Sand, I.; Benn, E.K.T.; Fabian, M.; Fitzgerald, K.C.; Digga, E.; Deshpande, R.; Miller, A.; Gallo, S.; Arab, L. Randomized-controlled trial of a modified Mediterranean dietary program for multiple sclerosis: A pilot study. Mult. Scler. Relat. Disord. 2019, 36, 101403. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Ács, P.; Baumann, P.; Borbély, G.; Áfra, G.; Reichardt-Varga, E.; Sántha, G.; Tollár, J. Comparative Effectiveness of 4 Exercise Interventions Followed by 2 Years of Exercise Maintenance in Multiple Sclerosis: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 1908–1916. [Google Scholar] [CrossRef]
- Beratto, L.; Bressy, L.; Agostino, S.; Malandrone, F.; Brichetto, G.; Ponzano, M. The effect of exercise on mental health and health-related quality of life in individuals with multiple sclerosis: A Systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2024, 83, 105473. [Google Scholar] [CrossRef]
- Morrow, S.A.; Riccio, P.; Vording, N.; Rosehart, H.; Casserly, C.; MacDougall, A. A mindfulness group intervention in newly diagnosed persons with multiple sclerosis: A pilot study. Mult. Scler. Relat. Disord. 2021, 52, 103016. [Google Scholar]
- Senders, A.; Hanes, D.; Bourdette, D.; Carson, K.; Marshall, L.M.; Shinto, L. Impact of mindfulness-based stress reduction for people with multiple sclerosis at 8 weeks and 12 months: A randomized clinical trial. Mult. Scler. J. 2018, 25, 1178–1188. [Google Scholar] [CrossRef]
- Marck, C.H.; De Livera, A.M.; Brown, C.R.; Neate, S.L.; Taylor, K.L.; Weiland, T.J.; Hadgkiss, E.J.; Jelinek, G.A. Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: Three year follow-up. PLoS ONE 2018, 13, e0197759. [Google Scholar] [CrossRef] [PubMed]
- Bisht, B.; Darling, W.G.; Shivapour, E.T.; Lutgendorf, S.K.; Snetselaar, L.G.; Chenard, C.A.; Wahls, T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015, 5, 19–35. [Google Scholar]
- Podbielska, M.; O’Keeffe, J.; Pokryszko-Dragan, A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 7319. [Google Scholar] [CrossRef]
- Gafson, A.R.; Thorne, T.; McKechnie, C.I.J.; Jimenez, B.; Nicholas, R.; Matthews, P.M. Lipoprotein markers associated with disability from multiple sclerosis. Sci. Rep. 2018, 8, 17026. [Google Scholar]
- Fellows, K.; Uher, T.; Browne, R.W.; Weinstock-Guttman, B.; Horakova, D.; Posova, H.; Vaneckova, M.; Seidl, Z.; Krasensky, J.; Tyblova, M.; et al. Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients. J. Lipid Res. 2015, 56, 2010–2018. [Google Scholar]
- McComb, M.; Parambi, R.; Browne, R.W.; Bodziak, M.L.; Jakimovski, D.; Bergsland, N.; Maceski, A.; Weinstock-Guttman, B.; Kuhle, J.; Zivadinov, R.; et al. Apolipoproteins AI and E are associated with neuroaxonal injury to gray matter in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102389. [Google Scholar]
- Pinholt, M.; Frederiksen, J.L.; Christiansen, M. The association between apolipoprotein E and multiple sclerosis. Eur. J. Neurol. 2006, 13, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Vinokurov, S.; Achiron, A.; Karussis, D.M.; Mitosek–Szewczyk, K.; Birnbaum, M.; Michaelson, D.M.; Korczyn, A.D. APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 2001, 56, 312–316. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Wu, J.; Zhu, J. The Immune-Modulatory Role of Apolipoprotein E with Emphasis on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J. Immunol. Res. 2010, 2010, 186813. [Google Scholar]
- McComb, M.; Krikheli, M.; Uher, T.; Browne, R.W.; Srpova, B.; Oechtering, J.; Maceski, A.M.; Tyblova, M.; Jakimovski, D.; Ramasamy, D.P.; et al. Neuroprotective associations of apolipoproteins A-I and A-II with neurofilament levels in early multiple sclerosis. J. Clin. Lipidol. 2020, 14, 675–684.e2. [Google Scholar] [PubMed]
- Höchsmann, C.; Dorling, J.L.; Martin, C.K.; Newton, R.L.; Apolzan, J.W.; Myers, C.A.; Denstel, K.D.; Mire, E.F.; Johnson, W.D.; Zhang, D.; et al. Effects of a 2-Year Primary Care Lifestyle Intervention on Cardiometabolic Risk Factors. Circulation 2021, 143, 1202–1214. [Google Scholar]
- Villareal, D.T.; Miller, B.V.; Banks, M.; Fontana, L.; Sinacore, D.R.; Klein, S. Effect of lifestyle intervention on metabolic coronary heart disease risk factors in obese older adults2. Am. J. Clin. Nutr. 2006, 84, 1317–1323. [Google Scholar]
- Keshani, M.; Feizi, A.; Askari, G.; Sharma, M.; Bagherniya, M. Effects of therapeutic lifestyle change diets on blood lipids, lipoproteins, glycemic parameters, and blood pressure: A systematic review and meta-analysis of clinical trials. Nutr. Rev. 2024, 82, 176–192. [Google Scholar] [CrossRef]
- Monazamnezhad, A.; Habibi, A.; Shakeriyan, S.; Majdinasab, N.; Ghalvand, A. The Effects of Aerobic Exercise on Lipid Profile and Body Composition in Women with Multiple Sclerosis. Jundishapur J. Chronic Dis. Care 2015, 4, e26619. [Google Scholar] [CrossRef]
- Fellows Maxwell, K.; Wahls, T.; Browne, R.W.; Rubenstein, L.; Bisht, B.; Chenard, C.A.; Snetselaar, L.; Weinstock-Guttman, B.; Ramanathan, M. Lipid profile is associated with decreased fatigue in individuals with progressive multiple sclerosis following a diet-based intervention: Results from a pilot study. PLoS ONE 2019, 14, e0218075. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.T.; Tu, B.H.; Titcomb, T.J.; Saxby, S.M.; Shemirani, F.; Eyck, P.T.; Rubenstein, L.M.; Snetselaar, L.G.; Wahls, T.L. Association between improved metabolic risk factors and perceived fatigue during dietary intervention trial in relapsing-remitting multiple sclerosis: A secondary analysis of the WAVES trial. Front. Neurol. 2023, 13, 1022728. [Google Scholar] [CrossRef]
- Sepidarkish, M.; Kalantari, N.; Gorgani-Firouzjaee, T.; Rostami-Mansoor, S.; Shirafkan, H. Association between insulin resistance and multiple sclerosis: A systematic review and meta-analysis. Metab. Brain Dis. 2024, 39, 1015–1026. [Google Scholar] [CrossRef]
- Browne, R.W.; Jakimovski, D.; Ziliotto, N.; Kuhle, J.; Bernardi, F.; Weinstock-Guttman, B.; Zivadinov, R.; Ramanathan, M. High-density lipoprotein cholesterol is associated with multiple sclerosis fatigue: A fatigue-metabolism nexus? J. Clin. Lipidol. 2019, 13, 654–663.e1. [Google Scholar] [CrossRef]
- Ruiz-Argüelles, A.; Méndez-Huerta, M.A.; Lozano, C.D.; Ruiz-Argüelles, G.J. Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease. Mult. Scler. Relat. Disord. 2018, 25, 316–321. [Google Scholar] [CrossRef]
- Penesova, A.; Vlcek, M.; Imrich, R.; Vernerova, L.; Marko, A.; Meskova, M.; Grunnerova, L.; Turcani, P.; Jezova, D.; Kollar, B. Hyperinsulinemia in newly diagnosed patients with multiple sclerosis. Metab. Brain Dis. 2015, 30, 895–901. [Google Scholar] [CrossRef]
- Ayromlou, H.; Hosseini, S.; Khalili, M.; Ayromlou, S.; Khamudchiyan, S.; Farajdokht, F.; Hassannezhad, S.; Moghadam, S.A. Insulin resistance is associated with cognitive dysfunction in multiple sclerosis patients: A cross-sectional study. J. Neuroendocrinol. 2023, 35, e13288. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Silveira, S.L.; Jeng, B.; Cutter, G.; Motl, R.W. Diet, Physical Activity, and Stress Among Wheelchair Users with Multiple Sclerosis: Examining Individual and Co-Occurring Behavioral Risk Factors. Arch. Phys. Med. Rehabil. 2023, 104, 590–596.e1. [Google Scholar] [CrossRef]
- Fitzgerald, K.; Tyry, T.; Salter, A.; Cofield, S.; Cutter, G.; Fox, R.; Marrie, R. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2017, 90, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- AJMC. Comorbidities Management and Lifestyle Modification in MS. Perspect. MS 2019, 10–14. [Google Scholar]
- Kappus, N.; Weinstock-Guttman, B.; Hagemeier, J.; Kennedy, C.; Melia, R.; Carl, E.; Ramasamy, D.P.; Cherneva, M.; Durfee, J.; Bergsland, N.; et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 181–187. [Google Scholar]
- Giovannoni, G.; Butzkueven, H.; Dhib-Jalbut, S.; Hobart, J.; Kobelt, G.; Pepper, G.; Sormani, M.P.; Thalheim, C.; Traboulsee, A.; Vollmer, T. Brain health: Time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 9 (Suppl. 1), S5–S48. [Google Scholar] [PubMed]
- Marck, C.H.; Neate, S.L.; Taylor, K.L.; Weiland, T.J.; Jelinek, G.A. Prevalence of Comorbidities, Overweight and Obesity in an International Sample of People with Multiple Sclerosis and Associations with Modifiable Lifestyle Factors. PLoS ONE 2016, 11, e0148573. [Google Scholar]
- Jakimovski, D.; Guan, Y.; Ramanathan, M.; Weinstock-Guttman, B.; Zivadinov, R. Lifestyle-based Modifiable Risk Factors in Multiple Sclerosis: Review of Experimental and Clinical Findings. Neurodegener. Dis. Manag. 2019, 9, 149–172. [Google Scholar]
- Lee, J.E.; Bisht, B.; Hall, M.J.; Rubenstein, L.M.; Louison, R.; Klein, D.T.; Wahls, T.L. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis. J. Am. Coll. Nutr. 2017, 36, 150–168. [Google Scholar]
- Frassetto, L.A.; Schloetter, M.; Mietus-Synder, M.; Morris, R.C.; Sebastian, A. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur. J. Clin. Nutr. 2009, 63, 947–955. [Google Scholar]
- Navarrete-Pérez, A.; Gómez-Melero, S.; Escribano, B.M.; Galvao-Carmona, A.; Conde-Gavilán, C.; Peña-Toledo, M.Á.; Villarrubia, N.; Villar, L.M.; Túnez, I.; Agüera-Morales, E.; et al. MIND Diet Impact on Multiple Sclerosis Patients: Biochemical Changes after Nutritional Intervention. Int. J. Mol. Sci. 2024, 25, 10009. [Google Scholar] [CrossRef]
- de la Rubia Ortí, J.E.; Armero, J.L.P.; Cuerda-Ballester, M.; Sanchis-Sanchis, C.E.; Navarro-Illana, E.; Lajara-Romance, J.M.; Benlloch, M.; Ceron, J.J.; Tvarijonaviciute, A.; Proaño, B. Lipid Profile in Multiple Sclerosis: Functional Capacity and Therapeutic Potential of Its Regulation after Intervention with Epigallocatechin Gallate and Coconut Oil. Foods 2023, 12, 3730. [Google Scholar] [CrossRef]
- Nieste, I.; Franssen, W.M.A.; Duvivier, B.M.F.M.; Spaas, J.; Savelberg, H.H.C.M.; Eijnde, B.O. Replacing sitting with light-intensity physical activity throughout the day versus 1 bout of vigorous-intensity exercise: Similar cardiometabolic health effects in multiple sclerosis. A randomised cross-over study. Disabil. Rehabil. 2023, 45, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Glavinovic, T.; Thanassoulis, G.; de Graaf, J.; Couture, P.; Hegele, R.A.; Sniderman, A.D. Physiological Bases for the Superiority of Apolipoprotein B Over Low-Density Lipoprotein Cholesterol and Non–High-Density Lipoprotein Cholesterol as a Marker of Cardiovascular Risk. J. Am. Heart Assoc. 2022, 11, e025858. [Google Scholar] [CrossRef] [PubMed]
- Zhornitsky, S.; McKay, K.A.; Metz, L.M.; Teunissen, C.E.; Rangachari, M. Cholesterol and markers of cholesterol turnover in multiple sclerosis: Relationship with disease outcomes. Mult. Scler. Relat. Disord. 2016, 5, 53–65. [Google Scholar] [CrossRef]
- Browne, R.W.; Weinstock-Guttman, B.; Horakova, D.; Zivadinov, R.; Bodziak, M.L.; Tamaño-Blanco, M.; Badgett, D.; Tyblova, M.; Vaneckova, M.; Seidl, Z.; et al. Apolipoproteins are associated with new MRI lesions and deep grey matter atrophy in clinically isolated syndromes. J. Neurol. Neurosurg. Psychiatry 2014, 85, 859–864. [Google Scholar] [PubMed]
- Vassilopoulos, D.; Jockers-Wretou, E. Serum Creatine Kinase B Levels in Diseases of the Central Nervous System. Eur. Neurol. 2008, 27, 78–81. [Google Scholar]
Characteristics | n | Mean ± SD or n (%) |
---|---|---|
Age, years | 19 | 51.0 ± 6.5 |
Sex, % female | 19 | 14 (73.7) |
BMI, kg/m2 | 19 | 24.4 ± 3.0 |
Race | 19 | |
Caucasian | 18 (94.7) | |
Hispanic | 1 (5.3) | |
Education | 19 | |
High school | 1 (5.3) | |
Some college | 6 (31.6) | |
Four-year degree | 4 (21.0) | |
College | 8 (42.1) | |
Diagnosis | 19 | |
SPMS | 17 (89.5) | |
PPMS | 2 (10.5) | |
Walking aid use | 19 | 14 (73.7) |
Disease duration, years | 19 | 13.6 ± 7.5 |
Disability (EDSS) | 19 | 6.2 ± 1.0 |
Fatigue (FSS) | 19 | 5.5 ± 1.3 |
DMTs | 19 | 9 (47.4) |
FSS | ||
---|---|---|
β-Coefficient (95% CI) | p-Value | |
ApoA1 | −0.00 (−0.03, 0.03) | 0.99 |
ApoB | −0.02 (−0.06, 0.03) | 0.43 |
ApoE | −0.57 (−1.42, 0.26) | 0.16 |
HOMA-IR | 0.81 (0.12, 1.5) | 0.02 |
HOMA-β | 0.002 (−0.000, 0.004) | 0.06 |
CK | −0.00 (−0.01, 0.01) | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, A.S.; Bastian, A.J.; Shemirani, F.; Titcomb, T.J.; Bisht, B.; Darling, W.G.; Ramanathan, M.; Shittu, M.; Gill, C.M.; Snetselaar, L.G.; et al. Effects of a Multimodal Lifestyle Intervention on Cardiometabolic Markers in People with Progressive Multiple Sclerosis: A Secondary Analysis of a Pilot Study. Nutrients 2025, 17, 1163. https://doi.org/10.3390/nu17071163
Martinez AS, Bastian AJ, Shemirani F, Titcomb TJ, Bisht B, Darling WG, Ramanathan M, Shittu M, Gill CM, Snetselaar LG, et al. Effects of a Multimodal Lifestyle Intervention on Cardiometabolic Markers in People with Progressive Multiple Sclerosis: A Secondary Analysis of a Pilot Study. Nutrients. 2025; 17(7):1163. https://doi.org/10.3390/nu17071163
Chicago/Turabian StyleMartinez, Arturo S., Alyanne J. Bastian, Farnoosh Shemirani, Tyler J. Titcomb, Babita Bisht, Warren G. Darling, Murali Ramanathan, Mujeeb Shittu, Christine M. Gill, Linda G. Snetselaar, and et al. 2025. "Effects of a Multimodal Lifestyle Intervention on Cardiometabolic Markers in People with Progressive Multiple Sclerosis: A Secondary Analysis of a Pilot Study" Nutrients 17, no. 7: 1163. https://doi.org/10.3390/nu17071163
APA StyleMartinez, A. S., Bastian, A. J., Shemirani, F., Titcomb, T. J., Bisht, B., Darling, W. G., Ramanathan, M., Shittu, M., Gill, C. M., Snetselaar, L. G., & Wahls, T. L. (2025). Effects of a Multimodal Lifestyle Intervention on Cardiometabolic Markers in People with Progressive Multiple Sclerosis: A Secondary Analysis of a Pilot Study. Nutrients, 17(7), 1163. https://doi.org/10.3390/nu17071163