Influence of Dietary Intake on Carotid Maximum Intima–Media Thickness in Children Conceived Through Assisted Reproductive Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Population
2.2. Assessment of Dietary Intake
2.3. Vascular Evaluation
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Evaluation of Child’s Nutritional Characteristics
3.3. Association Between Child’s Dietary Intake and Carotid Maximum Intima–Media Thickness
3.4. Characterization of Nutritional Phenotypes Among ART Participants
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3DFR | 3-day food record |
ANCOVA | Analysis of covariance |
ANOVA | Analysis of variance |
ART | Assisted reproductive technologies |
BMI | Body mass index |
cIMT | Carotid intima–media thickness |
CVD | Cardiovascular disease |
max-cIMT | Carotid maximum intima–media thickness |
MUFA | Monounsaturated fatty acids |
PUFA | Polyunsaturated fatty acids |
RDA | Recommended Dietary Allowances |
SFA | Saturated fatty acids |
SD | Standard deviations |
References
- Heino, A.; Gissler, M.; Hindori-Mohangoo, A.D.; Blondel, B.; Klungsøyr, K.; Verdenik, I.; Mierzejewska, E.; Velebil, P.; Ólafsdóttir, H.S.; Macfarlane, A.; et al. Variations in Multiple Birth Rates and Impact on Perinatal Outcomes in Europe. PLoS ONE 2016, 11, e0149252. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention; American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. 2016 Assisted Reproductive Technology National Summary Report; US Department of Health and Human Services: Atlanta, GA, USA, 2018. [Google Scholar]
- Cui, L.; Zhao, M.; Zhang, Z.; Zhou, W.; Lv, J.; Hu, J.; Ma, J.; Fang, M.; Yang, L.; Magnussen, C.G.; et al. Assessment of Cardiovascular Health of Children Ages 6 to 10 Years Conceived by Assisted Reproductive Technology. JAMA Netw. Open. 2021, 4, e2132602. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Zhou, W.; Xi, B.; Ma, J.; Hu, J.; Fang, M.; Hu, K.; Qin, Y.; You, L.; Cao, Y.; et al. Increased Risk of Metabolic Dysfunction in Children Conceived by Assisted Reproductive Technology. Diabetologia 2020, 63, 2150–2157. [Google Scholar] [CrossRef]
- Belva, F.; Painter, R.; Bonduelle, M.; Roelants, M.; Devroey, P.; De Schepper, J. Are ICSI Adolescents at Risk for Increased Adiposity? Hum. Reprod. 2012, 27, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, U.; Rimoldi, S.F.; Rexhaj, E.; Stuber, T.; Duplain, H.; Garcin, S.; De Marchi, S.F.; Nicod, P.; Germond, M.; Allemann, Y.; et al. Systemic and Pulmonary Vascular Dysfunction in Children Conceived by Assisted Reproductive Technologies. Circulation 2012, 125, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Ceelen, M.; Van Weissenbruch, M.M.; Vermeiden, J.P.W.; Van Leeuwen, F.E.; Delemarre-Van De Waal, H.A. Cardiometabolic Differences in Children Born after in Vitro Fertilization: Follow-up Study. J. Clin. Endocrinol. Metab. 2008, 93, 1682–1688. [Google Scholar] [CrossRef]
- Valenzuela-Alcaraz, B.; Serafini, A.; Sepulveda-Martinez, A.; Casals, G.; Rodriguez-Lopez, M.; Garcia-Otero, L.; Cruz-Lemini, M.; Bijnens, B.; Sitges, M.; Balasch, J.; et al. Postnatal Persistence of Fetal Cardiovascular Remodelling Associated with Assisted Reproductive Technologies: A Cohort Study. BJOG 2019, 126, 291–298. [Google Scholar] [CrossRef]
- Valenzuela-Alcaraz, B.; Crispi, F.; Bijnens, B.; Cruz-Lemini, M.; Creus, M.; Sitges, M.; Bartrons, J.; Civico, S.; Balasch, J.; Gratacós, E. Assisted Reproductive Technologies Are Associated with Cardiovascular Remodeling in Utero That Persists Postnatally. Circulation 2013, 128, 1442–1450. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of Clinical Cardiovascular Events with Carotid Intima-Media Thickness: A Systematic Review and Meta-Analysis. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef]
- Ling, Y.; Wan, Y.; Barinas-Mitchell, E.; Fujiyoshi, A.; Cui, H.; Maimaiti, A.; Xu, R.; Li, J.; Suo, C.; Zaid, M. Varying Definitions of Carotid Intima-Media Thickness and Future Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2023, 12, e031217. [Google Scholar] [CrossRef]
- Kaikkonen, J.E.; Mikkilä, V.; Magnussen, C.G.; Juonala, M.; Viikari, J.S.A.; Raitakari, O.T. Does Childhood Nutrition Influence Adult Cardiovascular Disease Risk?-Insights from the Young Finns Study. Ann. Med. 2013, 45, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, M.; Osorio, L.; Acosta-Rojas, R.; Figueras, J.; Cruz-Lemini, M.; Figueras, F.; Bijnens, B.; Gratacós, E.; Crispi, F. Influence of Breastfeeding and Postnatal Nutrition on Cardiovascular Remodeling Induced by Fetal Growth Restriction. Pediatr. Res. 2016, 79, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Rios-Hernandez, A.; Alda, J.A.; Farran-Codina, A.; Ferreira-Garcia, E.; Izquierdo-Pulido, M. The Mediterranean Diet and ADHD in Children and Adolescents. Pediatrics 2017, 139, e20162027. [Google Scholar] [CrossRef]
- National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances, 10th ed.; National Academies Press (US): Washington, DC, USA, 1989; ISBN 0309046335. [Google Scholar]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of Carotid Ultrasound to Identify Subclinical Vascular Disease and Evaluate Cardiovascular Disease Risk: A Consensus Statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111. [Google Scholar] [PubMed]
- Villar, J.; Giuliani, F.; Fenton, T.R.; Ohuma, E.O.; Ismail, L.C.; Kennedy, S.H.; INTERGROWTH-21st Consortium. INTERGROWTH-21st Very Preterm Size at Birth Reference Charts. Lancet 2016, 387, 844–845. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishidaa, C.; Siekmanna, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav Res. Methods 2009, 41, 1149–1160. [Google Scholar]
- Urpi-Sarda, M.; Almanza-Aguilera, E.; Llorach, R.; Vázquez-Fresno, R.; Estruch, R.; Corella, D.; Sorli, J.V.; Carmona, F.; Sanchez-Pla, A.; Salas-Salvadó, J.; et al. Non-Targeted Metabolomic Biomarkers and Metabotypes of Type 2 Diabetes: A Cross-Sectional Study of PREDIMED Trial Participants. Diabetes Metab. 2019, 45, 167–174. [Google Scholar] [CrossRef]
- Merchant, A.T.; Kelemen, L.E.; De Koning, L.; Lonn, E.; Vuksan, V.; Jacobs, R.; Davis, B.; Teo, K.K.; Yusuf, S.; Anand, S.S. Interrelation of Saturated Fat, Trans Fat, Alcohol Intake, and Subclinical Atherosclerosis. Am. J. Clin. Nutr. 2008, 87, 168–174. [Google Scholar] [CrossRef]
- Masquio, D.C.L.; De Piano, A.; Campos, R.M.S.; Sanches, P.L.; Carnier, J.; Corgosinho, F.C.; Netto, B.D.M.; Carvalho-Ferreira, J.P.; Oyama, L.M.; Oller Do Nascimento, C.M.; et al. Reduction in Saturated Fat Intake Improves Cardiovascular Risks in Obese Adolescents during Interdisciplinary Therapy. Int. J. Clin. Pract. 2014, 69, 560–570. [Google Scholar] [CrossRef]
- Bemelmans, W.; Lefrandt, J.D.; Feskens, E.J.; Broer, J.; Tervaert, J.W.; May, J.F.; Smit, A.J. Change in Saturated Fat Intake Is Associated with Progression of Carotid and Femoral Intima-Media Thickness, and with Levels of Soluble Intercellular Adhesion Molecule-1. Atherosclerosis 2002, 163, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Folsom, A.R.; Lewis, L.; Eckfeldt, J.H. Relation of Plasma Phospholipid and Cholesterol Ester Fatty Acid Composition to Carotid Artery Intima-Media Thickness: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 1997, 65, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Ayer, J.G.; Harmer, J.A.; Xuan, W.; Toelle, B.; Webb, K.; Almqvist, C.; Marks, G.B.; Celermajer, D.S. Dietary Supplementation with N-3 Polyunsaturated Fatty Acids in Early Childhood: Effects on Blood Pressure and Arterial Structure and Function at Age 8 y. Am. J. Clin. Nutr. 2009, 90, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, C.; Soto-Méndez, M.J.; Hernández-Ruiz, Á.; Valero, T.; Ávila, J.M.; Ruiz, E.; Villoslada, F.L.; Leis, R.; de Victoria, E.M.; Moreno, J.M.; et al. Energy Intake, Macronutrient Profile and Food Sources of Spanish Children Aged One to <10 Years—Results from the Esnupi Study. Nutrients 2020, 12, 893. [Google Scholar] [CrossRef]
- Akbari-Sedigh, A.; Asghari, G.; Yuzbashian, E.; Dehghan, P.; Imani, H.; Mirmiran, P. Association of Dietary Pattern with Carotid Intima Media Thickness among Children with Overweight or Obesity. Diabetol. Metab. Syndr. 2019, 11, 77. [Google Scholar] [CrossRef]
- Giannini, C.; Diesse, L.; D’Adamo, E.; Chiavaroli, V.; de Giorgis, T.; Di Iorio, C.; Chiarelli, F.; Mohn, A. Influence of the Mediterranean Diet on Carotid Intima-Media Thickness in Hypercholesterolaemic Children: A 12-Month Intervention Study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 75–82. [Google Scholar] [CrossRef]
- Buscemi, S.; Nicolucci, A.; Mattina, A.; Rosafio, G.; Massenti, F.M.; Lucisano, G.; Galvano, F.; Amodio, E.; Pellegrini, F.; Barile, A.M.; et al. Association of Dietary Patterns with Insulin Resistance and Clinically Silent Carotid Atherosclerosis in Apparently Healthy People. Eur. J. Clin. Nutr. 2013, 67, 1284–1290. [Google Scholar] [CrossRef]
- Bhat, S.; Mocciaro, G.; Ray, S. The Association of Dietary Patterns and Carotid Intima-Media Thickness: A Synthesis of Current Evidence. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1273–1287. [Google Scholar] [CrossRef]
- McClintock, T.R.; Parvez, F.; Wu, F.; Islam, T.; Ahmed, A.; Rani Paul, R.; Shaheen, I.; Sarwar, G.; Rundek, T.; Demmer, R.T.; et al. Major Dietary Patterns and Carotid Intima-Media Thickness in Bangladesh. Public Health Nutr. 2015, 19, 218–229. [Google Scholar] [CrossRef]
- Gruszfeld, D.; Weber, M.; Nowakowska-Rysz, M.; Janas, R.; Kozlik-Feldmann, R.; Xhonneux, A.; Carlier, C.; Riva, E.; Verduci, E.; Closa-Monasterolo, R.; et al. Protein Intake in Infancy and Carotid Intima Media Thickness at 5 Years—A Secondary Analysis from a Randomized Trial for the European Childhood Obesity Study Group. Ann. Nutr. Metab. 2015, 66, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Pontesilli, M.; Painter, R.C.; Grooten, I.J.; Van Der Post, J.A.; Mol, B.W.; Vrijkotte, T.G.M.; Repping, S.; Roseboom, T.J. Subfertility and Assisted Reproduction Techniques Are Associated with Poorer Cardiometabolic Profiles in Childhood. Reprod. Biomed. Online 2015, 30, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Halliday, J.; Lewis, S.; Kennedy, J.; Burgner, D.P.; Juonala, M.; Hammarberg, K.; Amor, D.J.; Doyle, L.W.; Saffery, R.; Ranganathan, S.; et al. Health of Adults Aged 22 to 35 Years Conceived by Assisted Reproductive Technology. Fertil. Steril. 2019, 112, 130–139. [Google Scholar] [CrossRef]
- Oberhoffer, F.S.; Langer, M.; Li, P.; Vilsmaier, T.; Sciuk, F.; Kramer, M.; Kolbinger, B.; Jakob, A.; Rogenhofer, N.; Dalla-Pozza, R.; et al. Vascular Function in a Cohort of Children, Adolescents and Young Adults Conceived through Assisted Reproductive Technologies—Results from the Munich HeARTerY-Study. Transl. Pediatr. 2023, 12, 1619–1633. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Pinal, C. The Developmental Origins of Adult Disease. Matern. Child Nutr. 2005, 1, 130–141. [Google Scholar] [CrossRef]
- Yang, H.; Kuhn, C.; Kolben, T.; Ma, Z.; Lin, P.; Mahner, S.; Jeschke, U.; Schönfeldt, V. von Early Life Oxidative Stress and Long-Lasting Cardiovascular Effects on Offspring Conceived by Assisted Reproductive Technologies: A Review. Int. J. Mol. Sci. 2020, 21, 5175. [Google Scholar] [CrossRef]
Characteristics | Spontaneously Conceived (n = 42) | ART (n = 41) | p-Value |
---|---|---|---|
Perinatal data | |||
Females | 24 (57.1) | 19 (46.3) | 0.33 |
Gestational age at delivery, weeks | 40.1 ± 1.3 | 38.9 ± 1.5 | <0.001 |
Birth weight, g | 3338 ± 429 | 3136 ± 518 | 0.05 |
Birth weight percentile | 54 ± 26 | 48 ± 32 | 0.17 |
Birth length, cm | 50 ± 1 | 49 ± 2 | 0.010 |
Birth length percentile | 52 ± 21 | 43 ± 31 | 0.036 |
Breastfeeding, % | 24 (77.4) | 26 (81.3) | 0.71 |
Breastfeeding, months a | 4.5 ± 2.3 | 4.7 ± 1.6 | 0.37 |
Characteristics at 3 years of age | |||
Age at evaluation, years | 3.2 ± 0.6 | 3.0 ± 0.5 | 0.13 |
Child’s anthropometric data | |||
Weight, kg | 15.8 ± 1.9 | 15.1 ± 2.0 | 0.09 |
Weight percentile | 59 ± 25 | 52 ± 30 | 0.10 |
Height, cm | 98.4 ± 5.3 | 96.6 ± 5.2 | 0.14 |
Height percentile | 59 ± 25 | 53 ± 29 | 0.22 |
BMI, kg/m2 | 16.4 ± 1.3 | 16.2 ± 1.7 | 0.55 |
BMI percentile | 56 ± 27 | 48 ± 28 | 0.13 |
Child’s vascular assessment | |||
max-cIMT, mm | 0.53 ± 0.04 | 0.62 ± 0.05 | <0.001 |
Systolic blood pressure, mmHg | 94.2 ± 10.5 | 94.6 ± 8.5 | 0.79 |
Diastolic blood pressure, mmHg | 66.4 ± 10.6 | 65.4 ± 8.6 | 0.71 |
Energy and Nutrient Intakes | Spontaneously Conceived (n = 42) | ART (n = 41) | p-Value | Adjusted p-Value a |
---|---|---|---|---|
Energy, kcal/kg/day | 82 ± 17 | 91 ± 21 | 0.044 | 0.10 |
Total carbohydrates, g/kg/day | 9.1 ± 2.3 | 9.7 ± 2.7 | 0.24 | 0.51 |
Digestible polysaccharides, g/kg/day | 4.8 ± 1.5 | 4.8 ± 1.7 | 0.95 | 0.68 |
Sugars, g/kg/day | 4.3 ± 1.3 | 4.9 ± 1.5 | 0.022 | 0.07 |
Total proteins, g/kg/day | 3.6 ± 0.9 | 4.1 ± 1.1 | 0.009 | 0.042 |
Animal proteins, g/kg/day | 2.6 ± 0.9 | 3.1 ± 1.0 | 0.007 | 0.041 |
Vegetable proteins, g/kg/day | 0.9 ± 0.3 | 1.0 ± 0.3 | 0.78 | 0.91 |
Total lipids, g/kg/day | 3.5 ± 0.8 | 3.9 ± 1.0 | 0.06 | 0.07 |
SFA, g/kg/day | 1.2 ± 0.3 | 1.4 ± 0.4 | 0.025 | 0.031 |
MUFA, g/kg/day | 1.5 ± 0.4 | 1.6 ± 0.5 | 0.13 | 0.13 |
PUFA, g/kg/day | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.22 | 0.14 |
Cholesterol, mg/kg/day | 13.0 ± 4.5 | 15.1 ± 5.7 | 0.07 | 0.19 |
Fiber, g/kg/day | 0.7 ± 0.2 | 0.7 ± 0.3 | 0.89 | 0.92 |
Sodium, mg/kg/day | 554 ± 160 | 645 ± 260 | 0.049 | 0.14 |
Energy and Nutrient Intakes | Spontaneously Conceived (n = 42) | ART Cluster 1 (n = 11) | ART Cluster 2 (n = 19) | ART Cluster 3 (n = 11) | Adjusted p-Value |
---|---|---|---|---|---|
Energy, kcal/kg/day | 82 ± 17 b | 119 ± 16 a | 85 ± 7 b | 73 ± 11 b | <0.001 |
Total carbohydrates, g/kg/day | 9.1 ± 2.3 b | 12.6 ± 2.9 a | 9.1 ± 1.4 ab | 8.0 ± 2.1 b | 0.004 |
Digestible polysaccharides, g/kg/day | 4.8 ± 1.5 a | 6.4 ± 1.8 a | 4.7 ± 1.0 ab | 3.3 ± 0.9 b | <0.001 |
Sugars, g/kg/day | 4.3 ± 1.3 | 6.1 ± 1.5 | 4.4 ± 1.1 | 4.7 ± 1.3 | 0.078 |
Total proteins, g/kg/day | 3.6 ± 0.9 b | 5.3 ± 1.3 a | 3.8 ± 0.5 ab | 3.4 ± 0.7 b | 0.006 |
Animal proteins, g/kg/day | 2.6 ± 0.9 | 4.1 ± 1.4 | 2.8 ± 0.6 | 2.8 ± 0.6 | 0.17 |
Vegetable proteins, g/kg/day | 0.9 ± 0.3 b | 1.2 ± 0.2 a | 1.0 ± 0.2 ab | 0.7 ± 0.1 c | <0.001 |
Total lipids, g/kg/day | 3.5 ± 0.8 b | 5.2 ± 0.7 a | 3.7 ± 0.5 b | 3.0 ± 0.5 b | <0.001 |
SFA, g/kg/day | 1.2 ± 0.3 b | 1.9 ± 0.3 a | 1.3 ± 0.3 b | 1.2 ± 0.3 b | <0.001 |
MUFA, g/kg/day | 1.5 ± 0.4 b | 2.2 ± 0.4 a | 1.5 ± 0.2 b | 1.2 ± 0.2 c | <0.001 |
PUFA, g/kg/day | 0.5 ± 0.2 bc | 0.7 ± 0.2 a | 0.5 ± 0.1 ab | 0.4 ± 0.1 c | <0.001 |
Cholesterol, mg/kg/day | 13.0 ± 4.5 b | 21.1 ± 6.1 a | 13.6 ± 3.7 ab | 11.8 ± 3.3 b | 0.020 |
Fiber, g/kg/day | 0.7 ± 0.2 a | 0.9 ± 0.2 a | 0.8 ± 0.3 a | 0.5 ± 0.1 b | <0.001 |
Sodium, mg/kg/day | 554 ± 160 b | 820 ± 402 a | 603 ± 139 ab | 543 ± 157 b | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrau-Martinez, B.; Termes-Escalé, M.; Valenzuela-Alcaraz, B.; Llorach, R.; Farran-Codina, A.; Tor-Roca, A.; Gratacós, E.; Crispi, F.; Urpi-Sarda, M. Influence of Dietary Intake on Carotid Maximum Intima–Media Thickness in Children Conceived Through Assisted Reproductive Techniques. Nutrients 2025, 17, 1189. https://doi.org/10.3390/nu17071189
Barrau-Martinez B, Termes-Escalé M, Valenzuela-Alcaraz B, Llorach R, Farran-Codina A, Tor-Roca A, Gratacós E, Crispi F, Urpi-Sarda M. Influence of Dietary Intake on Carotid Maximum Intima–Media Thickness in Children Conceived Through Assisted Reproductive Techniques. Nutrients. 2025; 17(7):1189. https://doi.org/10.3390/nu17071189
Chicago/Turabian StyleBarrau-Martinez, Blanca, Mireia Termes-Escalé, Brenda Valenzuela-Alcaraz, Rafael Llorach, Andreu Farran-Codina, Alba Tor-Roca, Eduard Gratacós, Fatima Crispi, and Mireia Urpi-Sarda. 2025. "Influence of Dietary Intake on Carotid Maximum Intima–Media Thickness in Children Conceived Through Assisted Reproductive Techniques" Nutrients 17, no. 7: 1189. https://doi.org/10.3390/nu17071189
APA StyleBarrau-Martinez, B., Termes-Escalé, M., Valenzuela-Alcaraz, B., Llorach, R., Farran-Codina, A., Tor-Roca, A., Gratacós, E., Crispi, F., & Urpi-Sarda, M. (2025). Influence of Dietary Intake on Carotid Maximum Intima–Media Thickness in Children Conceived Through Assisted Reproductive Techniques. Nutrients, 17(7), 1189. https://doi.org/10.3390/nu17071189