Medical Nutrition Therapy for Women with Gestational Diabetes: Current Practice and Future Perspectives
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Nutritional Requirements in (Normal) Pregnancy
4. Gestational Weight Gain (GWG) in Women with GDM
5. Caloric Recommendation in Women with GDM
6. Carbohydrate Requirements: Amount, Type, and Distribution
Type of Carbohydrate: Low Glycaemic Index vs. High Glycaemic Index
7. Protein Requirements in Women with GDM
8. Lipid/Fat Requirements in Women with GDM
9. Micronutrient Requirements
9.1. Vitamin A
9.2. Vitamin D
9.3. Folic Acid/Vitamin B
10. Other Issues That Could Lead to Inadequate or Excess Nutrition Intake
10.1. Hyperemesis Gravidarum
10.2. Beliefs of Pregnant Women with GDM During Pregnancy
11. Future Directions
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weir, G.C.; Laybutt, D.R.; Kaneto, H.; Bonner-Weir, S.; Sharma, A. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 2001, 50, S154. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.; Vilsboll, T.; Deacon, C. The incretin system and its role in type 2 diabetes mellitus. Mol. Cell. Endocrinol. 2009, 297, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, U.; Knorr, S.; Fuglsang, J.; Ovesen, P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J. Diabetes Res. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Chen, L.-W.; Soh, S.E.; Tint, M.T.; Loy, S.L.; Yap, F.; Tan, K.H.; Lee, Y.S.; Shek, L.P.C.; Godfrey, K.M.; Gluckman, P.D.; et al. Combined analysis of gestational diabetes and maternal weight status from pre-pregnancy through post-delivery in future development of type 2 diabetes. Sci. Rep. 2021, 11, 5021. [Google Scholar] [CrossRef]
- Puri, P.; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.J.; Sanyal, A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007, 46, 1081–1090. [Google Scholar] [CrossRef]
- Briggs Early, K.; Stanley, K. Position of the Academy of Nutrition and Dietetics: The Role of Medical Nutrition Therapy and Registered Dietitian Nutritionists in the Prevention and Treatment of Prediabetes and Type 2 Diabetes. J. Acad. Nutr. Diet. 2018, 118, 343–353. [Google Scholar] [CrossRef]
- Reader, D.M. Medical Nutrition Therapy and Lifestyle Interventions. Diabetes Care 2007, 30, S188–S193. [Google Scholar] [CrossRef]
- Blumer, I.; Hadar, E.; Hadden, D.R.; Jovanovič, L.; Mestman, J.H.; Murad, M.H.; Yogev, Y. Diabetes and Pregnancy: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4227–4249. [Google Scholar]
- Brown, J.; Alwan, N.A.; West, J.; Brown, S.; McKinlay, C.J.; Farrar, D.; Crowther, C.A. Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database Syst. Rev. 2017, 2017, CD011970. [Google Scholar] [CrossRef]
- American Diabetes Association. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S137–S143. [Google Scholar] [CrossRef]
- Avery, M.D.; Walker, A.J. Acute effect of exercise on blood glucose and insulin levels in women with gestational diabetes. J. Matern. Fetal Neonatal Med. 2001, 10, 52–58. [Google Scholar] [CrossRef]
- Chatzakis, C.; Sotiriadis, A.; Fatouros, I.G.; Jamurtas, A.Z.; Deli, C.K.; Papagianni, M.; Dinas, K.; Mastorakos, G. The Effect of Physical Exercise on Oxidation Capacity and Utero-Placental Circulation in Pregnancies with Gestational Diabetes Mellitus and Uncomplicated Pregnancies, a Pilot Study. Diagnostics 2022, 12, 1732. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.; Devlieger, R.; van Assche, A.; Jans, G.; Galjaard, S.; Corcoy, R.; Adelantado, J.M.; Dunne, F.; Desoye, G.; Harreiter, J.; et al. Effect of physical activity and/or healthy eating on GDM risk: The DALI Lifestyle Study. J. Clin. Endocrinol. Metab. 2016, 102, 903–913. [Google Scholar] [CrossRef]
- Hernandez, T.L.; Brand-Miller, J.C. Nutrition Therapy in Gestational Diabetes Mellitus: Time to Move Forward. Diabetes Care 2018, 41, 1343–1345. [Google Scholar] [CrossRef]
- Butte, N.F.; King, J.C. Energy requirements during pregnancy and lactation. Public Health Nutr. 2005, 8, 1010–1027. [Google Scholar] [CrossRef]
- Catalano, P.M.; Tyzbir, E.D.; Roman, N.M.; Amini, S.B.; Sims, E.A.H. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am. J. Obstet. Gynecol. 1991, 165, 1667–1672. [Google Scholar] [CrossRef]
- Catalano, P.M.; Tyzbir, E.D.; Wolfe, R.R.; Roman, N.M.; Amini, S.B.; Sims, E.A. Longitudinal changes in basal hepatic glucose production and suppression during insulin infusion in normal pregnant women. Am. J. Obstet. Gynecol. 1992, 167, 913–919. [Google Scholar] [CrossRef]
- Butte, N.F. Carbohydrate and lipid metabolism in pregnancy: Normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 1256S–1261S. [Google Scholar] [CrossRef]
- Cousins, L.; Rigg, L.; Hollingsworth, D.; Brink, G.; Aurand, J.; Yen, S.S. The 24-hour excursion and diurnal rhythm of glucose, insulin, and C-peptide in normal pregnancy. Am. J. Obstet. Gynecol. 1980, 136, 483–488. [Google Scholar] [CrossRef]
- Kalhan, S.C.; D’Angelo, L.J.; Savin, S.M.; Adam, P.A.J. Glucose Production in Pregnant Women at Term Gestation. J. Clin. Investig. 1979, 63, 388–394. [Google Scholar] [CrossRef]
- Tkachenko, O.; Shchekochikhin, D.; Schrier, R.W. Hormones and Hemodynamics in Pregnancy. Int. J. Endocrinol. Metab. 2014, 12, e14098. [Google Scholar] [PubMed]
- Picciano, M.F. Pregnancy and Lactation: Physiological Adjustments, Nutritional Requirements and the Role of Dietary Supplements. J. Nutr. 2003, 133, 1997S–2002S. [Google Scholar] [PubMed]
- Butte, N.F.; Hopkinson, J.M.; Mehta, N.; Moon, J.K.; Smith, E.O. Adjustments in energy expenditure and substrate utilization during late pregnancy and lactation. Am. J. Clin. Nutr. 1999, 69, 299–307. [Google Scholar] [PubMed]
- Van Raaij, J.M.; Schonk, C.M.; Vermaat-Miedema, S.H.; Peek, M.E.; Hautvast, J.G. Body fat mass and basal metabolic rate in Dutch women before, during, and after pregnancy: A reappraisal of energy cost of pregnancy. Am. J. Clin. Nutr. 1989, 49, 765–772. [Google Scholar]
- Denne, S.C.; Patel, D.; Kalhan, S.C. Leucine kinetics and fuel utilization during a brief fast in human pregnancy. Metabolism 1991, 40, 1249–1256. [Google Scholar]
- Catalano, P.M.; Tyzbir, E.D.; Wolfe, R.R.; Calles, J.; Roman, N.M.; Amini, S.B.; Sims, E.A. Carbohydrate metabolism during pregnancy in control subjects and women with gestational diabetes. Am. J. Physiol.-Endocrinol. Metab. 1993, 264, E60–E67. [Google Scholar] [CrossRef]
- Heidemann, B.H.; McClure, J.H. Changes in maternal physiology during pregnancy. Br. J. Anaesth. CEPD Rev. 2003, 3, 65–68. [Google Scholar] [CrossRef]
- Salam, R.A.; Das, J.K.; Ali, A.; Lassi, Z.S.; Bhutta, Z.A. Maternal undernutrition and intrauterine growth restriction. Expert Rev. Obstet. Gynecol. 2013, 8, 559–567. [Google Scholar]
- Thorn, S.; Rozance, P.; Brown, L.; Hay, W. The Intrauterine Growth Restriction Phenotype: Fetal Adaptations and Potential Implications for Later Life Insulin Resistance and Diabetes. Semin. Reprod. Med. 2011, 29, 225–236. [Google Scholar] [CrossRef]
- Thorn, S.R.; Brown, L.D.; Rozance, P.J.; Hay, W.W.; Friedman, J.E. Increased Hepatic Glucose Production in Fetal Sheep with Intrauterine Growth Restriction Is Not Suppressed by Insulin. Diabetes 2013, 62, 65–73. [Google Scholar]
- Gluckman, P.D.; Hanson, M.A.; Buklijas, T.; Low, F.M.; Beedle, A.S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 2009, 5, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Heude, B.; Thiébaugeorges, O.; Goua, V.; Forhan, A.; Kaminski, M.; Foliguet, B.; Schweitzer, M.; Magnin, G.; Charles, M.A.; EDEN Mother-Child Cohort Study Group. Pre-Pregnancy Body Mass Index and Weight Gain During Pregnancy: Relations with Gestational Diabetes and Hypertension, and Birth Outcomes. Matern. Child Health J. 2012, 16, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Dalfra’, M.G.; Burlina, S.; Lapolla, A. Weight gain during pregnancy: A narrative review on the recent evidences. Diabetes Res. Clin. Pract. 2022, 188, 109913. [Google Scholar] [CrossRef]
- Rasmussen, K.M.; Yaktine, A.L.; Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines (Eds.) Weight Gain During Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.L.; Boyle, J.A.; Harrison, C.L.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; et al. Gestational weight gain across continents and ethnicity: Systematic review and meta-analysis of maternal and infant outcomes in more than one million women. BMC Med. 2018, 16, 153. [Google Scholar] [CrossRef]
- Gibson, K.S.; Waters, T.P.; Catalano, P.M. Maternal weight gain in women who develop gestational diabetes mellitus. Obstet. Gynecol. 2012, 119, 560–565. [Google Scholar] [CrossRef]
- Harper, L.; Tita, A.; Biggio, J. The Institute of Medicine Guidelines for Gestational Weight Gain after a Diagnosis of Gestational Diabetes and Pregnancy Outcomes. Am. J. Perinatol. 2014, 32, 239–246. [Google Scholar]
- Hedderson, M.M.; Gunderson, E.P.; Ferrara, A. Gestational Weight Gain and Risk of Gestational Diabetes Mellitus. Obstet. Gynecol. 2010, 115, 597–604. [Google Scholar] [CrossRef]
- Catalano, P.M.; Roman-Drago, N.M.; Amini, S.B.; Sims, E.A.H. Longitudinal changes in body composition and energy balance in lean women with normal and abnormal glucose tolerance during pregnancy. Am. J. Obstet. Gynecol. 1998, 179, 156–165. [Google Scholar] [CrossRef]
- Schenk, S.; Ravussin, Y.; Lacroix, A.; Quansah, D.Y.; Puder, J.J. Weight Categories, Trajectories, Eating Behavior, and Metabolic Consequences during Pregnancy and Postpartum in Women with GDM. Nutrients 2024, 16, 560. [Google Scholar] [CrossRef]
- Barnes, R.A.; Wong, T.; Ross, G.P.; Griffiths, M.M.; Smart, C.E.; Collins, C.E.; MacDonald-Wicks, L.; Flack, J.R. Excessive Weight Gain Before and During Gestational Diabetes Mellitus Management: What Is the Impact? Diabetes Care 2020, 43, 74–81. [Google Scholar] [CrossRef]
- Scifres, C.; Feghali, M.; Althouse, A.D.; Caritis, S.; Catov, J. Adverse Outcomes and Potential Targets for Intervention in Gestational Diabetes and Obesity. Obstet. Gynecol. 2015, 126, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Viecceli, C.; Remonti, L.R.; Hirakata, V.N.; Mastella, L.S.; Gnielka, V.; Oppermann, M.L.; Silveiro, S.P.; Reichelt, A.J. Weight gain adequacy and pregnancy outcomes in gestational diabetes: A meta-analysis. Obes. Rev. 2017, 18, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Gou, B.-H.; Guan, H.-M.; Bi, Y.-X.; Ding, B.-J. Gestational diabetes: Weight gain during pregnancy and its relationship to pregnancy outcomes. Chin. Med. J. 2019, 132, 154–160. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Ma, H.; Zhou, T.; Hu, Y.; Liang, Z.; Chen, D. The heterogeneous associations between gestational weight gain and adverse pregnancy outcomes in gestational diabetes mellitus according to abnormal glucose metabolism. Nutr. Diabetes 2023, 13, 10. [Google Scholar] [CrossRef]
- Artal, R.; Lockwood, C.J.; Brown, H.L. Weight Gain Recommendations in Pregnancy and the Obesity Epidemic. Obstet. Gynecol. 2010, 115, 152–155. [Google Scholar] [CrossRef]
- Wong, T.; Barnes, R.A.; Ross, G.P.; Cheung, N.W.; Flack, J.R. Are the Institute of Medicine weight gain targets applicable in women with gestational diabetes mellitus? Diabetologia 2017, 60, 416–423. [Google Scholar] [CrossRef]
- Luo, X.; Gao, J.; He, Z.; Ji, J.; Zhang, W.; Wu, P.; Guo, X.; Cao, D.; Xu, Z.; Li, C.; et al. What is an appropriate gestational weight gain for women with gestational diabetes mellitus: Based on the adverse pregnancy outcomes of over 12 thousand participants? Diabetol. Metab. Syndr. 2022, 14, 166. [Google Scholar] [CrossRef]
- Xie, X.; Liu, J.; Pujol, I.; López, A.; Martínez, M.J.; García-Patterson, A.; Adelantado, J.M.; Ginovart, G.; Corcoy, R. Inadequate Weight Gain According to the Institute of Medicine 2009 Guidelines in Women with Gestational Diabetes: Frequency, Clinical Predictors, and the Association with Pregnancy Outcomes. J. Clin. Med. 2020, 9, 3343. [Google Scholar] [CrossRef]
- Macdonald-Wallis, C.; Tilling, K.; Fraser, A.; Nelson, S.M.; Lawlor, D.A. Gestational weight gain as a risk factor for hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 2013, 209, 327.e1. [Google Scholar] [CrossRef]
- Fortner, R.T.; Pekow, P.; Solomon, C.G.; Markenson, G.; Chasan-Taber, L. Prepregnancy body mass index, gestational weight gain, and risk of hypertensive pregnancy among Latina women. Am. J. Obstet. Gynecol. 2009, 200, 167.e1–167.e7. [Google Scholar] [CrossRef]
- Barquiel, B.; Herranz, L.; Meneses, D.; Moreno, Ó.; Hillman, N.; Burgos, M.Á.; Bartha, J.L. Optimal Gestational Weight Gain for Women with Gestational Diabetes and Morbid Obesity. Matern. Child Health J. 2018, 22, 1297–1305. [Google Scholar] [PubMed]
- Freinkel, N. Banting Lecture 1980: Of Pregnancy and Progeny. Diabetes 1980, 29, 1023–1035. [Google Scholar] [PubMed]
- Silverman, B.L.; Rizzo, T.; Green, O.C.; Cho, N.H.; Winter, R.J.; Ogata, E.S.; Richards, G.E.; Metzger, B.E. Long-Term Prospective Evaluation of Offspring of Diabetic Mothers. Diabetes 1991, 40, 121–125. [Google Scholar] [PubMed]
- Gilmore, L.A.; Butte, N.F.; Ravussin, E.; Han, H.; Burton, J.H.; Redman, L.M. Energy Intake and Energy Expenditure for Determining Excess Weight Gain in Pregnant Women. Obstet. Gynecol. 2016, 127, 884–892. [Google Scholar]
- Butte, N.F.; Wong, W.W.; Treuth, M.S.; Ellis, K.J.; O’Brian Smith, E. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am. J. Clin. Nutr. 2004, 79, 1078–1087. [Google Scholar]
- Mahajan, A.; Donovan, L.E.; Vallee, R.; Yamamoto, J.M. Evidenced-Based Nutrition for Gestational Diabetes Mellitus. Curr. Diabetes Rep. 2019, 19, 94. [Google Scholar] [CrossRef]
- Feig, D.S.; Berger, H.; Donovan, L.; Godbout, A.; Kader, T.; Keely, E.; Sanghera, R. Diabetes and Pregnancy. Can. J. Diabetes 2018, 42, S255–S282. [Google Scholar]
- Kleinwechter, H.; Schäfer-Graf, U.; Bührer, C.; Hoesli, I.; Kainer, F.; Kautzky-Willer, A.; Pawlowski, B.; Schunck, K.; Somville, T.; Sorger, M.; et al. Gestational Diabetes Mellitus (GDM) Diagnosis, Therapy and Follow-Up Care. Exp. Clin. Endocrinol. Diabetes 2014, 122, 395–405. [Google Scholar]
- Vandraas, K.F.; Vikanes, A.V.; Vangen, S.; Magnus, P.; Støer, N.C.; Grjibovski, A.M. Hyperemesis gravidarum and birth outcomes—A population-based cohort study of 2.2 million births in the Norwegian Birth Registry. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 1654–1660. [Google Scholar]
- Catalano, P.M.; Mele, L.; Landon, M.B.; Ramin, S.M.; Reddy, U.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M.; et al. Inadequate weight gain in overweight and obese pregnant women: What is the effect on fetal growth? Am. J. Obstet. Gynecol. 2014, 211, 137.e1–137.e7. [Google Scholar] [CrossRef]
- Yee, L.M.; Cheng, Y.W.; Inturrisi, M.; Caughey, A.B. Gestational weight loss and perinatal outcomes in overweight and obese women subsequent to diagnosis of gestational diabetes mellitus. Obesity 2013, 21, E770–E774. [Google Scholar] [CrossRef] [PubMed]
- Hodson, K.; Dalla Man, C.; Smith, F.E.; Barnes, A.; McParlin, C.; Cobelli, C.; Robson, S.C.; Araújo-Soares, V.; Taylor, R. Liver triacylglycerol content and gestational diabetes: Effects of moderate energy restriction. Diabetologia 2017, 60, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Kusinski, L.C.; Jones, D.; Atta, N.; Turner, E.; Smith, S.; Oude Griep, L.M.; Rennie, K.; De Lucia Rolfe, E.; Sharp, S.J.; Farewell, V.; et al. Reduced-energy diet in women with gestational diabetes: The dietary intervention in gestational diabetes DiGest randomized clinical trial. Nat. Med. 2025, 31, 514–523. [Google Scholar] [PubMed]
- Combs, C.A.; Gunderson, E.; Kitzmiller, J.L.; Gavin, L.A.; Main, E.K. Relationship of Fetal Macrosomia to Maternal Postprandial Glucose Control During Pregnancy. Diabetes Care 1992, 15, 1251–1257. [Google Scholar]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M.; Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; 10490; National Academies Press: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Major, C. The Effects of Carbohydrate Restriction in Patients with Diet-Controlled Gestational Diabetes. Obstet. Gynecol. 1998, 91, 600–604. [Google Scholar]
- Dhanasekaran, M.; Mohan, S.; Erickson, D.; Shah, P.; Szymanski, L.; Adrian, V.; Egan, A.M. Diabetic Ketoacidosis in Pregnancy: Clinical Risk Factors, Presentation, and Outcomes. J. Clin. Endocrinol. Metab. 2022, 107, 3137–3143. [Google Scholar]
- Tanner, H.L.; Dekker Nitert, M.; Callaway, L.K.; Barrett, H.L. Ketones in Pregnancy: Why Is It Considered Necessary to Avoid Them and What Is the Evidence Behind Their Perceived Risk? Diabetes Care 2021, 44, 280–289. [Google Scholar]
- Riskin-Mashiah, S.; Damti, A.; Younes, G.; Auslander, R. Normal fasting plasma glucose levels during pregnancy: A hospital-based study. J. Perinat. Med. 2011, 39, 209–211. [Google Scholar]
- Adam-Perrot, A.; Clifton, P.; Brouns, F. Low-carbohydrate diets: Nutritional and physiological aspects. Obes. Rev. 2006, 7, 49–58. [Google Scholar]
- Knopp, R.H.; Magee, M.S.; Raisys, V.; Benedetti, T. Metabolic Effects of Hypocaloric Diets in Management of Gestational Diabetes. Diabetes 1991, 40, 165–171. [Google Scholar]
- Harreiter, J.; Simmons, D.; Desoye, G.; Corcoy, R.; Adelantado, J.M.; Devlieger, R.; Galjaard, S.; Damm, P.; Mathiesen, E.R.; Jensen, D.M.; et al. Nutritional Lifestyle Intervention in Obese Pregnant Women, Including Lower Carbohydrate Intake, Is Associated with Increased Maternal Free Fatty Acids, 3-β-Hydroxybutyrate, and Fasting Glucose Concentrations: A Secondary Factorial Analysis of the European Multicenter, Randomized Controlled DALI Lifestyle Intervention Trial. Diabetes Care 2019, 42, 1380–1389. [Google Scholar] [PubMed]
- Mijatovic, J.; Louie, J.C.Y.; Buso, M.E.C.; Atkinson, F.S.; Ross, G.P.; Markovic, T.P.; Brand-Miller, J.C. Effects of a modestly lower carbohydrate diet in gestational diabetes: A randomized controlled trial. Am. J. Clin. Nutr. 2020, 112, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Castilla, C.; Hernandez, M.; Bergua, M.; Alvarez, M.C.; Arce, M.A.; Rodriguez, K.; Martinez-Alonso, M.; Iglesias, M.; Mateu, M.; Santos, M.D.; et al. Low-Carbohydrate Diet for the Treatment of Gestational Diabetes Mellitus. Diabetes Care 2013, 36, 2233–2238. [Google Scholar]
- Wong, M.M.H.; Yuen-Man Chan, M.; Ng, T.P.; Louie, J.C.Y. Impact of carbohydrate quantity and quality on maternal and pregnancy outcomes in gestational diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 102941. [Google Scholar]
- Hernandez, T.L.; Van Pelt, R.E.; Anderson, M.A.; Reece, M.S.; Reynolds, R.M.; de la Houssaye, B.A.; Heerwagen, M.; Donahoo, W.T.; Daniels, L.J.; Chartier-Logan, C.; et al. Women With Gestational Diabetes Mellitus Randomized to a Higher–Complex Carbohydrate/Low-Fat Diet Manifest Lower Adipose Tissue Insulin Resistance, Inflammation, Glucose, and Free Fatty Acids: A Pilot Study. Diabetes Care 2016, 39, 39–42. [Google Scholar] [CrossRef]
- Roden, M.; Price, T.B.; Perseghin, G.; Petersen, K.F.; Rothman, D.L.; Cline, G.W.; Shulman, G.I. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Investig. 1996, 97, 2859–2865. [Google Scholar] [CrossRef]
- Yamamoto, J.M.; Kellett, J.E.; Balsells, M.; García-Patterson, A.; Hadar, E.; Solà, I.; Gich, I.; van der Beek, E.M.; Castañeda-Gutiérrez, E.; Heinonen, S.; et al. Gestational Diabetes Mellitus and Diet: A Systematic Review and Meta-analysis of Randomized Controlled Trials Examining the Impact of Modified Dietary Interventions on Maternal Glucose Control and Neonatal Birth Weight. Diabetes Care 2018, 41, 1346–1361. [Google Scholar] [CrossRef]
- Wan, C.S.; Nankervis, A.; Teede, H.; Aroni, R. Dietary intervention strategies for ethnic Chinese women with gestational diabetes mellitus: A systematic review and meta-analysis. Nutr. Diet. 2019, 76, 211–232. [Google Scholar]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar]
- Clapp Iii, J.F. Maternal carbohydrate intake and pregnancy outcome. Proc. Nutr. Soc. 2002, 61, 45–50. [Google Scholar]
- Fraser, R.B.; Ford, F.A.; Lawrence, G.F. Insulin sensitivity in third trimester pregnancy. A randomized study of dietary effects. BJOG Int. J. Obstet. Gynaecol. 1988, 95, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.G.; Luebcke, M.; Davis, W.S.; Coleman, K.J.; Tapsell, L.C.; Petocz, P.; Brand-Miller, J.C. Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes. Am. J. Clin. Nutr. 2006, 84, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Markovic, T.P.; Muirhead, R.; Overs, S.; Ross, G.P.; Louie, J.C.; Kizirian, N.; Denyer, G.; Petocz, P.; Hyett, J.; Brand-Miller, J.C. Randomized Controlled Trial Investigating the Effects of a Low–Glycemic Index Diet on Pregnancy Outcomes in Women at High Risk of Gestational Diabetes Mellitus: The GI Baby 3 Study. Diabetes Care 2016, 39, 31–38. [Google Scholar] [CrossRef]
- Walsh, J.M.; McGowan, C.A.; Mahony, R.; Foley, M.E.; McAuliffe, F.M. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): Randomised control trial. BMJ 2012, 345, e5605. [Google Scholar] [CrossRef]
- Walsh, J.M.; Mahony, R.M.; Culliton, M.; Foley, M.E.; McAuliffe, F.M. Impact of a low glycemic index diet in pregnancy on markers of maternal and fetal metabolism and inflammation. Reprod. Sci. 2014, 21, 1378–1381. [Google Scholar] [CrossRef]
- Horan, M.K.; McGowan, C.A.; Gibney, E.R.; Donnelly, J.M.; McAuliffe, F.M. Maternal low glycaemic index diet, fat intake and postprandial glucose influences neonatal adiposity—Secondary analysis from the ROLO study. Nutr. J. 2014, 13, 78. [Google Scholar] [CrossRef]
- Zhang, R.; Han, S.; Chen, G.C.; Li, Z.N.; Silva-Zolezzi, I.; Parés, G.V.; Wang, Y.; Qin, L.Q. Effects of low-glycemic-index diets in pregnancy on maternal and newborn outcomes in pregnant women: A meta-analysis of randomized controlled trials. Eur. J. Nutr. 2018, 57, 167–177. [Google Scholar] [CrossRef]
- Schoenaker, D.A.J.M.; Mishra, G.D.; Callaway, L.K.; Soedamah-Muthu, S.S. The Role of Energy, Nutrients, Foods, and Dietary Patterns in the Development of Gestational Diabetes Mellitus: A Systematic Review of Observational Studies. Diabetes Care 2016, 39, 16–23. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, R.; Zhong, C.; Wu, J.; Li, X.; Li, Q.; Cui, W.; Yi, N.; Xiao, M.; Yin, H.; et al. Maternal dietary pattern characterised by high protein and low carbohydrate intake in pregnancy is associated with a higher risk of gestational diabetes mellitus in Chinese women: A prospective cohort study. Br. J. Nutr. 2018, 120, 1045–1055. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of Tree Nuts on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Dietary Trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef]
- Looman, M.; Schoenaker, D.A.J.M.; Soedamah-Muthu, S.S.; Geelen, A.; Feskens, E.J.M.; Mishra, G.D. Pre-pregnancy dietary carbohydrate quantity and quality, and risk of developing gestational diabetes: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2018, 120, 435–444. [Google Scholar] [PubMed]
- Bao, W.; Bowers, K.; Tobias, D.K.; Hu, F.B.; Zhang, C. Prepregnancy Dietary Protein Intake, Major Dietary Protein Sources, and the Risk of Gestational Diabetes Mellitus. Diabetes Care 2013, 36, 2001–2008. [Google Scholar] [PubMed]
- Jamilian, M.; Asemi, Z. The Effect of Soy Intake on Metabolic Profiles of Women with Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2015, 100, 4654–4661. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.W.; Colega, M.; Cai, S.; Chan, Y.H.; Padmapriya, N.; Chen, L.W.; Soh, S.E.; Han, W.M.; Tan, K.H.; Lee, Y.S.; et al. Higher Maternal Dietary Protein Intake Is Associated with a Higher Risk of Gestational Diabetes Mellitus in a Multiethnic Asian Cohort. J. Nutr. 2017, 147, 653–660. [Google Scholar]
- Maslova, E.; Hansen, S.; Grunnet, L.G.; Strøm, M.; Bjerregaard, A.A.; Hjort, L.; Kampmann, F.B.; Madsen, C.M.; Baun Thuesen, A.C.; Bech, B.H.; et al. Maternal protein intake in pregnancy and offspring metabolic health at age 9-16 y: Results from a Danish cohort of gestational diabetes mellitus pregnancies and controls. Am. J. Clin. Nutr. 2017, 106, 623–636. [Google Scholar]
- Alvarez, J.J.; Montelongo, A.; Iglesias, A.; Lasunción, M.A.; Herrera, E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J. Lipid Res. 1996, 37, 299–308. [Google Scholar]
- Roux, J.F.; Grigorian, A.; Takeda, Y. In vitro “Lipid” Metabolism in the Developing Human Foetus. Nature 1967, 216, 819–820. [Google Scholar]
- Kuipers, R.S.; Luxwolda, M.F.; Offringa, P.J.; Boersma, E.R.; Dijck-Brouwer, D.A.; Muskiet, F.A. Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. Prostaglandins Leukot. Essent. Fatty Acids 2012, 86, 13–20. [Google Scholar] [CrossRef]
- Schaefer-Graf, U.M.; Graf, K.; Kulbacka, I.; Kjos, S.L.; Dudenhausen, J.; Vetter, K.; Herrera, E. Maternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies with Gestational Diabetes Mellitus. Diabetes Care 2008, 31, 1858–1863. [Google Scholar]
- Ortega-Senovilla, H.; Alvino, G.; Taricco, E.; Cetin, I.; Herrera, E. Gestational diabetes mellitus upsets the proportion of fatty acids in umbilical arterial but not venous plasma. Diabetes Care 2009, 32, 120–122. [Google Scholar]
- Herrera, E.; Ortega-Senovilla, H. Implications of Lipids in Neonatal Body Weight and Fat Mass in Gestational Diabetic Mothers and Non-Diabetic Controls. Curr. Diabetes Rep. 2018, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Scholl, T.O.; Leskiw, M.; Savaille, J.; Stein, T.P. Differences in Maternal Circulating Fatty Acid Composition and Dietary Fat Intake in Women With Gestational Diabetes Mellitus or Mild Gestational Hyperglycemia. Diabetes Care 2010, 33, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Ghebremeskel, K.; Lowy, C.; Thomas, B.; Crawford, M.A. Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia 2004, 47, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Ghebremeskel, K.; Lowy, C.; Min, Y.; Crawford, M.A. Plasma AA and DHA levels are not compromised in newly diagnosed gestational diabetic women. Eur. J. Clin. Nutr. 2004, 58, 1492–1497. [Google Scholar] [CrossRef]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; et al. Dynamics of fat cell turnover in humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef]
- Rojas-Rodriguez, R.; Lifshitz, L.M.; Bellve, K.D.; Min, S.Y.; Pires, J.; Leung, K.; Boeras, C.; Sert, A.; Draper, J.T.; Corvera, S.; et al. Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia 2015, 58, 2106–2114. [Google Scholar] [CrossRef]
- Isakson, P.; Hammarstedt, A.; Gustafson, B.; Smith, U. Impaired Preadipocyte Differentiation in Human Abdominal Obesity. Diabetes 2009, 58, 1550–1557. [Google Scholar] [CrossRef]
- Krotkiewski, M.; Björntorp, P.; Sjöström, L.; Smith, U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Investig. 1983, 72, 1150–1162. [Google Scholar]
- McElwain, C.J.; Manna, S.; Musumeci, A.; Sylvester, I.; Rouchon, C.; O’Callaghan, A.M.; Ebad, M.A.B.; McCarthy, F.P.; McCarthy, C.M. Defective Visceral Adipose Tissue Adaptation in Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2024, 109, 1275–1284. [Google Scholar] [CrossRef]
- Gonzalez-Campoy, J.M.; St Jeor, S.T.; Castorino, K.; Ebrahim, A.; Hurley, D.; Jovanovic, L.; Mechanick, J.I.; Petak, S.M.; Yu, Y.H.; Harris, K.A.; et al. Clinical Practice Guidelines for Healthy Eating for the Prevention and Treatment of Metabolic and Endocrine Diseases in Adults: Cosponsored by the American Association of Clinical Endocrinologists/The American College of Endocrinology and the Obesity Society. Endocr. Pract. 2013, 19, 1–82. [Google Scholar] [PubMed]
- Barbieiri, P.; Nunes, J.C.; Torres, A.G.; Nishimura, R.Y.; Zuccolotto, D.C.; Crivellenti, L.C.; Franco, L.J.; Sartorelli, D.S. Indices of dietary fat quality during midpregnancy is associated with gestational diabetes. Nutrition 2016, 32, 656–661. [Google Scholar] [PubMed]
- Jiang, L.; Gao, C.; Yan, P.; Chen, P.; Jiang, C.; Xu, Y.; Chen, M. Omega-3 fatty acids plus vitamin for women with gestational diabetes or prediabetes: A meta-analysis of randomized controlled studies. J. Matern. Fetal Neonatal Med. 2022, 35, 3135–3142. [Google Scholar] [PubMed]
- Pan, X.F.; Huang, Y.; Li, X.; Wang, Y.; Ye, Y.; Chen, H.; Marklund, M.; Wen, Y.; Liu, Y.; Zeng, H.; et al. Circulating fatty acids and risk of gestational diabetes mellitus: Prospective analyses in China. Eur. J. Endocrinol. 2021, 185, 87–97. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Rahman, M.L.; Hinkle, S.N.; Wu, J.; Weir, N.L.; Lin, Y.; Yang, H.; Tsai, M.Y.; Ferrara, A.; et al. Plasma phospholipid n-3 and n-6 polyunsaturated fatty acids in relation to cardiometabolic markers and gestational diabetes: A longitudinal study within the prospective NICHD Fetal Growth Studies. PLoS Med. 2019, 16, e1002910. [Google Scholar] [CrossRef]
- Liu, W.; Gao, M.; Yang, S.; Sun, C.; Bi, Y.; Li, Y.; Wang, J.; Yuan, X. Effects of omega-3 supplementation on glucose and lipid metabolism in patients with gestational diabetes: A meta-analysis of randomized controlled trials. J. Diabetes Complicat. 2023, 37, 108451. [Google Scholar]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; 10026; National Academies Press: Washington, DC, USA, 2001. [CrossRef]
- Stipanuk, M.H.; Caudill, M.A. Biochemical, Physiological, and Molecular Aspects of Human Nutrition; Elsevier: St. Louis, MO, USA, 2013. [Google Scholar]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar]
- McCauley, M.E.; Van Den Broek, N.; Dou, L.; Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst. Rev. 2015, 2016, CD008666. [Google Scholar]
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef]
- Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436, 356–362. [Google Scholar]
- Fruscalzo, A.; Londero, A.P.; Driul, L.; Henze, A.; Tonutti, L.; Ceraudo, M.; Zanotti, G.; Berni, R.; Schweigert, F.J.; Raila, J. First trimester concentrations of the TTR-RBP4-retinol complex components as early markers of insulin-treated gestational diabetes mellitus. Clin. Chem. Lab. Med. CCLM 2015, 53, 1643–1651. [Google Scholar] [PubMed]
- Yu, J.; Liu, Y.; Xu, L. Associations Between Serum Vitamin A Levels in Early Pregnancy and the Risk of Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2024, 17, 2895–2901. [Google Scholar] [PubMed]
- Tepper, B.J.; Kim, Y.-K.; Shete, V.; Shabrova, E.; Quadro, L. Serum Retinol-Binding Protein 4 (RBP4) and retinol in a cohort of borderline obese women with and without gestational diabetes. Clin. Biochem. 2010, 43, 320–323. [Google Scholar] [PubMed]
- Gao, F.; Guo, F.; Zhang, Y.; Yuan, Y.; Chen, D.; Bai, G. Vitamin A, D, and E Levels and Reference Ranges for Pregnant Women: A Cross-Sectional Study 2017–2019. Front. Nutr. 2021, 8, 628902. [Google Scholar]
- Leca, B.M.; Kite, C.; Lagojda, L.; Davasgaium, A.; Dallaway, A.; Chatha, K.K.; Randeva, H.S.; Kyrou, I. Retinol-binding protein 4 (RBP4) circulating levels and gestational diabetes mellitus: A systematic review and meta-analysis. Front. Public Health 2024, 12, 1348970. [Google Scholar]
- Specker, B. Do North American women need supplemental vitamin D during pregnancy or lactation? Am. J. Clin. Nutr. 1994, 59, 484S–491S. [Google Scholar]
- Siega-Riz, A.; Mehta, U. Clincial Updates in Women’s Health Care. In Nutrition; American College of Obstetricians and Gynecologists: Washington, DC, USA, 2014; Volume 13. [Google Scholar]
- ACOG Committee on Obstetric Practice. Committee Opinion No. 495: Vitamin D: Screening and Supplementation During Pregnancy. Obstet. Gynecol. 2011, 118, 197–198. [Google Scholar]
- Mansur, J.L.; Oliveri, B.; Giacoia, E.; Fusaro, D.; Costanzo, P.R. Vitamin D: Before, during and after Pregnancy: Effect on Neonates and Children. Nutrients 2022, 14, 1900. [Google Scholar] [CrossRef]
- Milajerdi, A.; Abbasi, F.; Mousavi, S.M.; Esmaillzadeh, A. Maternal vitamin D status and risk of gestational diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2021, 40, 2576–2586. [Google Scholar]
- Boyle, V.T.; Thorstensen, E.B.; Mourath, D.; Jones, M.B.; McCowan, L.M.; Kenny, L.C.; Baker, P.N. The relationship between 25-hydroxyvitamin D concentration in early pregnancy and pregnancy outcomes in a large, prospective cohort. Br. J. Nutr. 2016, 116, 1409–1415. [Google Scholar]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 2019, CD008873. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Z.; Hu, Y.; Wang, Y.; Wu, Y.; Lian, F.; Li, H.; Yang, J.; Xu, X. The effects of vitamin D supplementation on glycemic control and maternal-neonatal outcomes in women with established gestational diabetes mellitus: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.A.; Ashraf, A. Role of Vitamin D in Insulin Secretion and Insulin Sensitivity for Glucose Homeostasis. Int. J. Endocrinol. 2010, 2010, 351385. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2015, 2015, CD007950. [Google Scholar] [CrossRef]
- Pitkin, R.M. Folate and neural tube defects. Am. J. Clin. Nutr. 2007, 85, 285S–288S. [Google Scholar] [CrossRef]
- Williamson, J.M.; Arthurs, A.L.; Smith, M.D.; Roberts, C.T.; Jankovic-Karasoulos, T. High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022, 14, 3930. [Google Scholar] [CrossRef]
- Zhu, B.; Ge, X.; Huang, K.; Mao, L.; Yan, S.; Xu, Y.; Huang, S.; Hao, J.; Zhu, P.; Niu, Y.; et al. Folic Acid Supplement Intake in Early Pregnancy Increases Risk of Gestational Diabetes Mellitus: Evidence from a Prospective Cohort Study. Diabetes Care 2016, 39, e36–e37. [Google Scholar] [CrossRef]
- Soh, S.E.; Tint, M.T.; Gluckman, P.D.; Godfrey, K.M.; Rifkin-Graboi, A.; Chan, Y.H.; Stünkel, W.; Holbrook, J.D.; Kwek, K.; Chong, Y.S.; et al. Cohort Profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int. J. Epidemiol. 2014, 43, 1401–1409. [Google Scholar] [CrossRef]
- Lai, J.S.; Pang, W.W.; Cai, S.; Lee, Y.S.; Chan, J.K.Y.; Shek, L.P.C.; Yap, F.K.P.; Tan, K.H.; Godfrey, K.M.; van Dam, R.M.; et al. High folate and low vitamin B12 status during pregnancy is associated with gestational diabetes mellitus. Clin. Nutr. 2018, 37, 940–947. [Google Scholar]
- Chen, X.; Zhang, Y.; Chen, H.; Jiang, Y.; Wang, Y.; Wang, D.; Li, M.; Dou, Y.; Sun, X.; Huang, G.; et al. Association of Maternal Folate and Vitamin B12 in Early Pregnancy with Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2021, 44, 217–223. [Google Scholar]
- Krishnaveni, G.V.; Hill, J.C.; Veena, S.R.; Bhat, D.S.; Wills, A.K.; Karat, C.L.; Yajnik, C.S.; Fall, C.H. Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia 2009, 52, 2350–2358. [Google Scholar] [PubMed]
- Tarim, E.; Bagis, T.; Kilicdag, E.; Erkanli, S.; Aslan, E.; Sezgin, N.; Kuscu, E. Elevated plasma homocysteine levels in gestational diabetes mellitus. Acta Obstet. Gynecol. Scand. 2004, 83, 543–547. [Google Scholar] [PubMed]
- Fejzo, M.S.; Trovik, J.; Grooten, I.J.; Sridharan, K.; Roseboom, T.J.; Vikanes, Å.; Painter, R.C.; Mullin, P.M. Nausea and vomiting of pregnancy and hyperemesis gravidarum. Nat. Rev. Dis. Primer 2019, 5, 62. [Google Scholar]
- The ASPEN Adult Nutrition Support Core Curriculum; American Society for Parenteral and Enteral Nutrition: Silver Spring, MD, USA, 2017.
- Freinkel, N. The Metabolic Basis for Birth Defects in Pregnancies Complicated by Diabetes Mellitus. In Carbohydrate Metabolism in Pregnancy and the Newborn · IV; Sutherland, H.W., Stowers, J.M., Pearson, D.W.M., Eds.; Springer: London, UK, 1989; pp. 39–49. [Google Scholar] [CrossRef]
- Lindower, J.B. Water balance in the fetus and neonate. Semin. Fetal Neonatal Med. 2017, 22, 71–75. [Google Scholar]
- Oudman, E.; Wijnia, J.W.; Oey, M.; van Dam, M.; Painter, R.C.; Postma, A. Wernicke’s encephalopathy in hyperemesis gravidarum: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 84–93. [Google Scholar] [CrossRef]
- Elkins, J.R.; Oxentenko, A.S.; Nguyen, L.A.B. Hyperemesis Gravidarum and Nutritional Support. Am. J. Gastroenterol. 2022, 117, 2–9. [Google Scholar] [CrossRef]
- Tzotzis, L.; Hooper, M.E.; Douglas, A.; Kurz, E.; Atchan, M.; Spiller, S.; Davis, D. The needs and experiences of women with gestational diabetes mellitus from minority ethnic backgrounds in high-income nations: A systematic integrative review. Women Birth 2023, 36, 205–216. [Google Scholar]
- Hammersley, R.; Reid, M.; Atkin, S.L. How to measure mood in nutrition research. Nutr. Res. Rev. 2014, 27, 284–294. [Google Scholar]
- Phelan, J.M.; Rosenkranz, R.R.; Phelan, C.J.; Rosenkranz, S.K. Holistic Framework to Contextualize Dietary Quality Assessment: A Critical Review. Int. J. Environ. Res. Public Health 2023, 20, 3986. [Google Scholar] [CrossRef]
- Carolan, M.; Gill, G.K.; Steele, C. Women’s experiences of factors that facilitate or inhibit gestational diabetes self-management. BMC Pregnancy Childbirth 2012, 12, 99. [Google Scholar]
- Thornton, P.L.; Kieffer, E.C.; Salabarría-Peña, Y.; Odoms-Young, A.; Willis, S.K.; Kim, H.; Salinas, M.A. Weight, Diet, and Physical Activity-Related Beliefs and Practices Among Pregnant and Postpartum Latino Women: The Role of Social Support. Matern. Child Health J. 2006, 10, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, M. Gestational diabetes mellitus: A qualitative study of lived experiences of South Asian immigrant women and perspectives of their health care providers in Melbourne, Australia. BMC Pregnancy Childbirth 2021, 21, 500. [Google Scholar] [CrossRef] [PubMed]
- Chana, R.; Haith-Cooper, M. Diet and physical activity in pregnancy: A study exploring women’s beliefs and behaviours. Br. J. Midwifery 2019, 27, 297–304. [Google Scholar]
- Persynaki, A.; Karras, S.; Pichard, C. Unraveling the metabolic health benefits of fasting related to religious beliefs: A narrative review. Nutrition 2017, 35, 14–20. [Google Scholar] [CrossRef]
- Bouis, H.E.; Eozenou, P.; Rahman, A. Food Prices, Household Income, and Resource Allocation: Socioeconomic Perspectives on Their Effects on Dietary Quality and Nutritional Status. Food Nutr. Bull. 2011, 32, S14–S23. [Google Scholar]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar]
- Abere, M.; Azene, A.G. Food Taboo and associated factors among pregnant women attending antenatal clinics at Bahir Dar City, North West Ethiopia, 2021: Cross-sectional study. Sci. Rep. 2023, 13, 7790. [Google Scholar]
- Asim, M.; Ahmed, Z.H.; Nichols, A.R.; Rickman, R.; Neiterman, E.; Mahmood, A.; Widen, E.M. What stops us from eating: A qualitative investigation of dietary barriers during pregnancy in Punjab, Pakistan. Public Health Nutr. 2022, 25, 760–769. [Google Scholar]
- Rhoads-Baeza, M.E.; Reis, J. An exploratory mixed method assessment of low income, pregnant Hispanic women’s understanding of gestational diabetes and dietary change. Health Educ. J. 2012, 71, 80–89. [Google Scholar] [CrossRef]
- Yuen, L. Gestational diabetes mellitus: Challenges for different ethnic groups. World J. Diabetes 2015, 6, 1024. [Google Scholar]
- North, S.; Crofts, C.; Zinn, C. Health professionals’ views and experiences around the dietary and lifestyle management of gestational diabetes in New Zealand. Nutr. Diet. 2022, 79, 255–264. [Google Scholar] [PubMed]
- Cámara, M.; Giner, R.M.; González-Fandos, E.; López-García, E.; Mañes, J.; Portillo, M.P.; Rafecas, M.; Domínguez, L.; Martínez, J.A. Food-Based Dietary Guidelines around the World: A Comparative Analysis to Update AESAN Scientific Committee Dietary Recommendations. Nutrients 2021, 13, 3131. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Updates Guidelines on Fats and Carbohydrates; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- WHO; OMS; World Health Organization. Closing the Gap in a Generation: Health Equity Through Action on the Social Determinants of Health; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Kobayashi, M.; Thielecke, F. Editorial: Dietary diversity indicators: Cultural preferences and health outcomes. Front. Nutr. 2024, 11, 1433735. [Google Scholar] [CrossRef]
- Mora, N.; Golden, S.H. Understanding Cultural Influences on Dietary Habits in Asian, Middle Eastern, and Latino Patients with Type 2 Diabetes: A Review of Current Literature and Future Directions. Curr. Diabetes Rep. 2017, 17, 126. [Google Scholar]
- Guerrero, M.L.P.; Pérez-Rodríguez, F. Diet Quality Indices for Nutrition Assessment: Types and Applications. In Functional Food—Improve Health Through Adequate Food; Hueda, M.C., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Zeb, F.; Osaili, T.; Obaid, R.S.; Naja, F.; Radwan, H.; Cheikh Ismail, L.; Hasan, H.; Hashim, M.; Alam, I.; Sehar, B.; et al. Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023, 15, 259. [Google Scholar] [CrossRef]
- Cuparencu, C.; Bulmuş-Tüccar, T.; Stanstrup, J.; La Barbera, G.; Roager, H.M.; Dragsted, L.O. Towards nutrition with precision: Unlocking biomarkers as dietary assessment tools. Nat. Metab. 2024, 6, 1438–1453. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar]
- Koelman, L.; Egea Rodrigues, C.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 101–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, L.; Law, L.S.-C.; Tan, L.Y.L.; Amal, A.A.-A.; Khoo, C.M.; Eng, P.C. Medical Nutrition Therapy for Women with Gestational Diabetes: Current Practice and Future Perspectives. Nutrients 2025, 17, 1210. https://doi.org/10.3390/nu17071210
Cheong L, Law LS-C, Tan LYL, Amal AA-A, Khoo CM, Eng PC. Medical Nutrition Therapy for Women with Gestational Diabetes: Current Practice and Future Perspectives. Nutrients. 2025; 17(7):1210. https://doi.org/10.3390/nu17071210
Chicago/Turabian StyleCheong, Louisa, Lawrence Siu-Chun Law, Li Ying Lyeann Tan, Amal Al-Amri Amal, Chin Meng Khoo, and Pei Chia Eng. 2025. "Medical Nutrition Therapy for Women with Gestational Diabetes: Current Practice and Future Perspectives" Nutrients 17, no. 7: 1210. https://doi.org/10.3390/nu17071210
APA StyleCheong, L., Law, L. S.-C., Tan, L. Y. L., Amal, A. A.-A., Khoo, C. M., & Eng, P. C. (2025). Medical Nutrition Therapy for Women with Gestational Diabetes: Current Practice and Future Perspectives. Nutrients, 17(7), 1210. https://doi.org/10.3390/nu17071210