Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Recruitment
2.2. Measures
2.2.1. Self-Report Questionnaires
Demographic and Clinical History
Body Mass Index
Eating Disorder Psychopathology
Presence of Depression and Severity of Depressive Symptoms
2.2.2. Metabolic Signalling Peptide Measurement
2.2.3. Statistical Analysis
Comparisons of Demographic and Clinical Characteristics Between Groups
Cross-Sectional Comparisons of Metabolic Signalling Peptides Between Groups
Exploratory Linear Regression Analysis Between Metabolic Signalling Peptides and Demographic and Clinical Characteristics
3. Results
3.1. Descriptive Statistics of the Sample
3.2. Differences in Biological Markers Between Group
3.3. Exploratory Linear Regression Analysis of the Associations Between Clinical and Demographic Characteristics and Metabolic Signalling Peptides in Anorexia Nervosa (n = 56) and in Acute and Recovered Anorexia Nervosa Combined (n = 80)
4. Discussion
4.1. Clinical Implications
4.2. Strengths and Limitations
4.3. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AN | Acute anorexia nervosa |
IGF-1 | Insulin-like growth factor-1 |
IRS-1 | Insulin receptor substrate |
RecAN | Recovered anorexia nervosa |
HC | Healthy control |
ECL | Electrochemiluminescence |
ANCOVA | Analysis of covariance |
BMI | Body mass index |
DSM-5 | Diagnostic and Statistical Manual for Mental Disorders-5 |
KCL | King’s College London |
EDE-Q | Eating Disorder Examination Questionnaire |
NIHR | National institute for health and care research |
BRC | Biomedical research centre |
SGDP | Social, genetic and developmental psychiatry centre |
SD | Standard deviation |
ANOVA | Analysis of variance |
n | Number |
d | Cohen’s d |
AN-R | Anorexia nervosa restricting type |
AN-B/P | Anorexia nervosa binge/purge type |
BDI-II | Beck Depression Inventory-II |
IQR | Interquartile range |
Pg/mL | Picograms per millilitre |
µIU/mL | Micro international units per millilitre |
β | Beta coefficient |
SLaM | South London and Maudsley |
References
- Watson, H.J.; Yilmaz, Z.; Thornton, L.M.; Hübel, C.; Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Hinney, A.; Leppä, V.M.; Mattheisen, M.; et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 2019, 51, 1207–1214. [Google Scholar] [CrossRef]
- Bulik, C.M.; Carroll, I.M.; Mehler, P. Reframing anorexia nervosa as a metabo-psychiatric disorder. Trends Endocrinol. Metab. 2021, 32, 752–761. [Google Scholar] [CrossRef]
- Barakat, S.; McLean, S.A.; Bryant, E.; Le, A.; Marks, P.; Touyz, S.; Maguire, S. Risk factors for eating disorders: Findings from a rapid review. J. Eat. Disord. 2023, 11, 8. [Google Scholar] [CrossRef]
- Støving, R.K. MECHANISMS IN ENDOCRINOLOGY: Anorexia nervosa and endocrinology: A clinical update. Eur. J. Endocrinol. 2019, 180, R9–R27. [Google Scholar] [CrossRef]
- Wu, Y.K.; Watson, H.J.; Del Re, A.C.; Finch, J.E.; Hardin, S.L.; Dumain, A.S.; Brownley, K.A.; Baker, J.H. Peripheral Biomarkers of Anorexia Nervosa: A Meta-Analysis. Nutrients 2024, 16, 2095. [Google Scholar] [CrossRef]
- Mantzoros, C.S.; Magkos, F.; Brinkoetter, M.; Sienkiewicz, E.; Dardeno, T.A.; Kim, S.Y.; Hamnvik, O.P.; Koniaris, A. Leptin in human physiology and pathophysiology. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E567–E584. [Google Scholar] [CrossRef]
- Verhagen, L.A.; Luijendijk, M.C.; Adan, R.A. Leptin reduces hyperactivity in an animal model for anorexia nervosa via the ventral tegmental area. Eur. Neuropsychopharmacol. 2011, 21, 274–281. [Google Scholar] [CrossRef]
- Montague, C.T.; Farooqi, I.S.; Whitehead, J.P.; Soos, M.A.; Rau, H.; Wareham, N.J.; Sewter, C.P.; Digby, J.E.; Mohammed, S.N.; Hurst, J.A.; et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997, 387, 903–908. [Google Scholar] [CrossRef]
- Farooqi, I.S.; Jebb, S.A.; Langmack, G.; Lawrence, E.; Cheetham, C.H.; Prentice, A.M.; Hughes, I.A.; McCamish, M.A.; O’Rahilly, S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 1999, 341, 879–884. [Google Scholar] [CrossRef]
- Meehan, C.A.; Cochran, E.; Kassai, A.; Brown, R.J.; Gorden, P. Metreleptin for injection to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy. Expert. Rev. Clin. Pharmacol. 2016, 9, 59–68. [Google Scholar] [CrossRef]
- Moon, H.S.; Dalamaga, M.; Kim, S.Y.; Polyzos, S.A.; Hamnvik, O.P.; Magkos, F.; Paruthi, J.; Mantzoros, C.S. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr. Rev. 2013, 34, 377–412. [Google Scholar] [CrossRef] [PubMed]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef]
- Rahmani, J.; Kord Varkaneh, H.; Clark, C.; Zand, H.; Bawadi, H.; Ryan, P.M.; Fatahi, S.; Zhang, Y. The influence of fasting and energy restricting diets on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing Res. Rev. 2019, 53, 100910. [Google Scholar] [CrossRef]
- Junnila, R.K.; List, E.O.; Berryman, D.E.; Murrey, J.W.; Kopchick, J.J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 2013, 9, 366–376. [Google Scholar] [CrossRef]
- Kazemi, A.; Speakman, J.R.; Soltani, S.; Djafarian, K. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 1705–1716. [Google Scholar] [CrossRef]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism 2022, 129, 155142. [Google Scholar] [CrossRef]
- Myers, M.G., Jr.; Sun, X.J.; White, M.F. The IRS-1 signaling system. Trends Biochem. Sci. 1994, 19, 289–293. [Google Scholar] [CrossRef]
- Dong, X.; Park, S.; Lin, X.; Copps, K.; Yi, X.; White, M.F. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Investig. 2006, 116, 101–114. [Google Scholar] [CrossRef]
- Yoneyama, Y.; Lanzerstorfer, P.; Niwa, H.; Umehara, T.; Shibano, T.; Yokoyama, S.; Chida, K.; Weghuber, J.; Hakuno, F.; Takahashi, S.I. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. eLife 2018, 7, e32893. [Google Scholar] [CrossRef]
- Giorgetti, S.; Ballotti, R.; Kowalski-Chauvel, A.; Tartare, S.; Van Obberghen, E. The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J. Biol. Chem. 1993, 268, 7358–7364. [Google Scholar] [CrossRef]
- Waters, S.B.; Yamauchi, K.; Pessin, J.E. Functional expression of insulin receptor substrate-1 is required for insulin-stimulated mitogenic signaling. J. Biol. Chem. 1993, 268, 22231–22234. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 298. [Google Scholar] [CrossRef]
- Picó, C.; Palou, M.; Pomar, C.A.; Rodríguez, A.M.; Palou, A. Leptin as a key regulator of the adipose organ. Rev. Endocr. Metab. Disord. 2022, 23, 13–30. [Google Scholar] [CrossRef]
- Chakrabarti, P.; Kim, J.Y.; Singh, M.; Shin, Y.K.; Kim, J.; Kumbrink, J.; Wu, Y.; Lee, M.J.; Kirsch, K.H.; Fried, S.K.; et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol. Cell Biol. 2013, 33, 3659–3666. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Miyazaki, Y.; Pettiti, M.; Matsuda, M.; Mahankali, S.; Santini, E.; DeFronzo, R.A.; Ferrannini, E. Metabolic Effects of Visceral Fat Accumulation in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2002, 87, 5098–5103. [Google Scholar] [CrossRef]
- AsghariHanjani, N.; Vafa, M. The role of IGF-1 in obesity, cardiovascular disease, and cancer. Med. J. Islam. Repub. Iran. 2019, 33, 56. [Google Scholar] [CrossRef]
- Fernandez-Twinn, D.S.; Alfaradhi, M.Z.; Martin-Gronert, M.S.; Duque-Guimaraes, D.E.; Piekarz, A.; Ferland-McCollough, D.; Bushell, M.; Ozanne, S.E. Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol. Metab. 2014, 3, 325–333. [Google Scholar] [CrossRef]
- Cassioli, E.; Lucherini Angeletti, L.; Rossi, E.; Selvi, G.; Riccardi, E.; Siviglia, S.; Buonanno, R.; Ricca, V.; Castellini, G. Leptin Levels in Acute and Recovered Eating Disorders: An Arm-Based Network Meta-Analysis. Eur. Eat. Disord. Rev. 2024, 33, 525–537. [Google Scholar] [CrossRef]
- Gianotti, L.; Lanfranco, F.; Ramunni, J.; Destefanis, S.; Ghigo, E.; Arvat, E. GH/IGF-I axis in anorexia nervosa. Eat. Weight Disord. 2002, 7, 94–105. [Google Scholar] [CrossRef]
- Misra, M.; Klibanski, A. Anorexia Nervosa and Its Associated Endocrinopathy in Young People. Horm. Res. Paediatr. 2016, 85, 147–157. [Google Scholar] [CrossRef]
- Argente, J.; Caballo, N.; Barrios, V.; Muñoz, M.T.; Pozo, J.; Chowen, J.A.; Morandé, G.; Hernández, M. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in patients with anorexia nervosa: Effect of short- and long-term weight recuperation. J. Clin. Endocrinol. Metab. 1997, 82, 2084–2092. [Google Scholar] [CrossRef]
- Støving, R.K.; Veldhuis, J.D.; Flyvbjerg, A.; Vinten, J.; Hangaard, J.; Koldkjaer, O.G.; Kristiansen, J.; Hagen, C. Jointly amplified basal and pulsatile growth hormone (GH) secretion and increased process irregularity in women with anorexia nervosa: Indirect evidence for disruption of feedback regulation within the GH-insulin-like growth factor I axis. J. Clin. Endocrinol. Metab. 1999, 84, 2056–2063. [Google Scholar] [CrossRef]
- Dalton, B.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients 2018, 10, 573. [Google Scholar] [CrossRef]
- Keeler, J.L.; Robinson, L.; Keeler-Schäffeler, R.; Dalton, B.; Treasure, J.; Himmerich, H. Growth factors in anorexia nervosa: A systematic review and meta-analysis of cross-sectional and longitudinal data. World J. Biol. Psychiatry 2022, 23, 582–600. [Google Scholar] [CrossRef]
- De Meyts, P. The Insulin Receptor and Its Signal Transduction Network. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55, 2565–2582. [Google Scholar] [CrossRef]
- Dostálová, I.; Smitka, K.; Papežová, H.; Kvasnicková, H.; Nedvídková, J. Increased insulin sensitivity in patients with anorexia nervosa: The role of adipocytokines. Physiol. Res. 2007, 56, 587–594. [Google Scholar] [CrossRef]
- Ilyas, A.; Hübel, C.; Stahl, D.; Stadler, M.; Ismail, K.; Breen, G.; Treasure, J.; Kan, C. The metabolic underpinning of eating disorders: A systematic review and meta-analysis of insulin sensitivity. Mol. Cell. Endocrinol. 2019, 497, 110307. [Google Scholar] [CrossRef]
- Keeler, J.L.; Patsalos, O.; Chung, R.; Schmidt, U.; Breen, G.; Treasure, J.; Himmerich, H.; Dalton, B. Reduced MIP-1β as a Trait Marker and Reduced IL-7 and IL-12 as State Markers of Anorexia Nervosa. J. Pers. Med. 2021, 11, 814. [Google Scholar] [CrossRef]
- Patsalos, O.; Dalton, B.; Kyprianou, C.; Firth, J.; Shivappa, N.; Hébert, J.R.; Schmidt, U.; Himmerich, H. Nutrient Intake and Dietary Inflammatory Potential in Current and Recovered Anorexia Nervosa. Nutrients 2021, 13, 4400. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Stice, E.; Telch, C.F.; Rizvi, S.L. Development and validation of the Eating Disorder Diagnostic Scale: A brief self-report measure of anorexia, bulimia, and binge-eating disorder. Psychol. Assess. 2000, 12, 123–131. [Google Scholar] [CrossRef]
- Fairburn, C.G.; Beglin, S.J. Assessment of eating disorders: Interview or self-report questionnaire? Int. J. Eat. Disord. 1994, 16, 363–370. [Google Scholar] [CrossRef]
- Beck, A. Manual for the beck depression inventory-II. Psychol. Corp. 1996, 82, 210. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, 29.0.2.0; IBM Corp: Armonk, NY, USA, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical. Available online: https://www.R-project.org/ (accessed on 24 May 2023).
- Suhaimi, M.Z.; Sanip, Z.; Jan, H.J.; Yusoff, H.M. Leptin and calorie intake among different nicotine dependent groups. Ann. Saudi Med. 2016, 36, 404–408. [Google Scholar] [CrossRef]
- Chiolero, A.; Faeh, D.; Paccaud, F.; Cornuz, J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am. J. Clin. Nutr. 2008, 87, 801–809. [Google Scholar] [CrossRef]
- Hotta, Y.; Yatsuya, H.; Toyoshima, H.; Matsushita, K.; Mitsuhashi, H.; Takefuji, S.; Oiso, Y.; Tamakoshi, K. Low leptin but high insulin resistance of smokers in Japanese men. Diabetes Res. Clin. Pract. 2008, 81, 358–364. [Google Scholar] [CrossRef]
- Erlandsson, M.C.; Doria Medina, R.; Töyrä Silfverswärd, S.; Bokarewa, M.I. Smoking Functions as a Negative Regulator of IGF1 and Impairs Adipokine Network in Patients with Rheumatoid Arthritis. Mediators Inflamm. 2016, 2016, 3082820. [Google Scholar] [CrossRef]
- Balaskó, M.; Soós, S.; Székely, M.; Pétervári, E. Leptin and aging: Review and questions with particular emphasis on its role in the central regulation of energy balance. J. Chem. Neuroanat. 2014, 61–62, 248–255. [Google Scholar] [CrossRef]
- Kolb, H.; Kempf, K.; Martin, S. Insulin and aging—A disappointing relationship. Front. Endocrinol 2023, 14, 1261298. [Google Scholar] [CrossRef]
- Tukey, J.W. Analyzing data: Sanctification or detective work? Am. Psychol. 1969, 24, 83–91. [Google Scholar] [CrossRef]
- Schorr, M.; Miller, K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017, 13, 174–186. [Google Scholar] [CrossRef]
- Hançer, N.J.; Qiu, W.; Cherella, C.; Li, Y.; Copps, K.D.; White, M.F. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J. Biol. Chem. 2014, 289, 12467–12484. [Google Scholar] [CrossRef]
- Hebebrand, J.; Plieger, M.; Milos, G.; Peters, T.; Hinney, A.; Antel, J. Does hypoleptinemia trigger entrapment in anorexia nervosa? Etiological and clinical considerations. Eur. Eat. Disord. Rev. 2024, 32, 557–574. [Google Scholar] [CrossRef]
- Cassioli, E.; Rossi, E.; Squecco, R.; Baccari, M.C.; Maggi, M.; Vignozzi, L.; Comeglio, P.; Gironi, V.; Lelli, L.; Rotella, F.; et al. Reward and psychopathological correlates of eating disorders: The explanatory role of leptin. Psychiatry Res. 2020, 290, 113071. [Google Scholar] [CrossRef]
- Fulton, S.; Woodside, B.; Shizgal, P. Modulation of brain reward circuitry by leptin. Science 2000, 287, 125–128. [Google Scholar] [CrossRef]
- Levada, O.A.; Troyan, A.S. Insulin-like growth factor-1: A possible marker for emotional and cognitive disturbances, and treatment effectiveness in major depressive disorder. Ann. Gen. Psychiatry 2017, 16, 38. [Google Scholar] [CrossRef]
- Qiao, X.; Yan, J.; Zang, Z.; Xi, L.; Zhu, W.; Zhang, E.; Wu, L. Association between IGF-1 levels and MDD: A case-control and meta-analysis. Front. Psychiatry 2024, 15, 1396938. [Google Scholar] [CrossRef]
- Sala, M.; Keshishian, A.; Song, S.; Moskowitz, R.; Bulik, C.M.; Roos, C.R.; Levinson, C.A. Predictors of relapse in eating disorders: A meta-analysis. J. Psychiatr. Res. 2023, 158, 281–299. [Google Scholar] [CrossRef]
- Seitz, J.; Bühren, K.; Biemann, R.; Timmesfeld, N.; Dempfle, A.; Winter, S.M.; Egberts, K.; Fleischhaker, C.; Wewetzer, C.; Herpertz-Dahlmann, B.; et al. Leptin levels in patients with anorexia nervosa following day/inpatient treatment do not predict weight 1 year post-referral. Eur. Child. Adolesc. Psychiatry 2016, 25, 1019–1025. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Vilariño-García, T.; Fernandez-Riejos, P.; Martín-González, J.; Segura-Egea, J.; Sánchez-Margalet, V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017, 35, 71–84. [Google Scholar] [CrossRef]
- Abella, V.; Scotece, M.; Conde, J.; Pino, J.; González-Gay, M.; Gómez-Reino, J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 2017, 13, 100–109. [Google Scholar] [CrossRef]
- Obradović, M.; Sudar-Milovanovic, E.; Soskić, S.; Essack, M.; Arya, S.; Stewart, A.; Gojobori, T.; Isenovic, E. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Wauman, J.; Zabeau, L.; Tavernier, J. The Leptin Receptor Complex: Heavier Than Expected? Front. Endocrinol. 2017, 8, 30. [Google Scholar] [CrossRef]
- Hebebrand, J.; Seitz, J.; Matthews, A. Considering Sufficient Weight Loss as a Prerequisite for Development of Anorexia Nervosa and Atypical Anorexia Nervosa. Int. J. Eat. Disord. 2024, 58, 162–167. [Google Scholar] [CrossRef]
- Levy, M.J.F.; Boulle, F.; Steinbusch, H.W.; van den Hove, D.L.A.; Kenis, G.; Lanfumey, L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018, 235, 2195–2220. [Google Scholar] [CrossRef]
- Levada, O.A.; Troyan, A.S.; Pinchuk, I.Y. Serum insulin-like growth factor-1 as a potential marker for MDD diagnosis, its clinical characteristics, and treatment efficacy validation: Data from an open-label vortioxetine study. BMC Psychiatry 2020, 20, 208. [Google Scholar] [CrossRef]
- Méquinion, M.; Langlet, F.; Zgheib, S.; Dickson, S.; Dehouck, B.; Chauveau, C.; Viltart, O. Ghrelin: Central and Peripheral Implications in Anorexia Nervosa. Front. Endocrinol. 2013, 4, 15. [Google Scholar] [CrossRef]
- Bot, M.; Milaneschi, Y.; Penninx, B.W.J.H.; Drent, M.L. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology 2016, 68, 148–155. [Google Scholar] [CrossRef]
- Sharan, P.; Vellapandian, C. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer’s Disease and Depression. Cureus 2024, 16, e67595. [Google Scholar] [CrossRef]
- Dhopatkar, N.; Keeler, J.L.; Mutwalli, H.; Whelan, K.; Treasure, J.; Himmerich, H. Gastrointestinal symptoms, gut microbiome, probiotics and prebiotics in Anorexia Nervosa: A review of mechanistic rationale and clinical evidence. Psychoneuroendocrinology 2023, 147, 105959. [Google Scholar] [CrossRef]
- Bienenstock, J.; Kunze, W.; Forsythe, P. Microbiota and the gut-brain axis. Nutr. Rev. 2015, 73 (Suppl. S1), 28–31. [Google Scholar] [CrossRef]
- Fung, T. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol. Dis. 2019, 136, 104714. [Google Scholar] [CrossRef]
- Kennedy, P.; Cryan, J.; Dinan, T.; Clarke, G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017, 112, 399–412. [Google Scholar] [CrossRef]
- Procházková, P.; Roubalova, R.; Dvorak, J.; Kreisinger, J.; Hill, M.; Tlaskalova-Hogenova, H.; Tomášová, P.; Pelantová, H.; Čermáková, M.; Kuzma, M.; et al. The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes 2021, 13, 1902771. [Google Scholar] [CrossRef]
- Roubalova, R.; Procházková, P.; Papežová, H.; Smitka, K.; Bilej, M.; Tlaskalova-Hogenova, H. Anorexia nervosa: Gut microbiota-immune-brain interactions. Clinical nutrition 2020, 39, 676–684. [Google Scholar] [CrossRef]
- Hewlings, S.J. Eating Disorders and Dietary Supplements: A Review of the Science. Nutrients 2023, 15, 2076. [Google Scholar] [CrossRef]
- Seitz, J.; Dahmen, B.; Keller, L.; Herpertz-Dahlmann, B. Gut Feelings: How Microbiota Might Impact the Development and Course of Anorexia Nervosa. Nutrients 2020, 12, 3295. [Google Scholar] [CrossRef]
- Talbot, K.; Wang, H.Y.; Kazi, H.; Han, L.Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Investig. 2012, 122, 1316–1338. [Google Scholar] [CrossRef]
- Gual, P.; Le Marchand-Brustel, Y.; Tanti, J.-F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005, 87, 99–109. [Google Scholar] [CrossRef]
- Tural, U.; Iosifescu, D. Adiponectin in anorexia nervosa and its modifiers: A meta-regression study. Int. J. Eat. Disord. 2022, 55, 1279–1290. [Google Scholar] [CrossRef]
- Tural, U.; Sparpana, A.; Sullivan, E.; Iosifescu, D. Comparison of Adiponectin Levels in Anorexia Nervosa, Bulimia Nervosa, Binge-Eating Disorder, Obesity, Constitutional Thinness, and Healthy Controls: A Network Meta-Analysis. Life 2023, 13, 1181. [Google Scholar] [CrossRef]
- Tyszkiewicz-Nwafor, M.; Dutkiewicz, A.; Paszyńska, E.; Dmitrzak-Węglarz, M.; Słopień, A. Omentin and visfatin in adolescent inpatients with anorexia nervosa; association with symptoms. Neuropeptides 2021, 86, 102133. [Google Scholar] [CrossRef] [PubMed]
AN (n = 56) | RecAN (n = 24) | HCs (n = 51) | p-Value (Cohen’s d) | ||||
---|---|---|---|---|---|---|---|
Total Model | AN vs. HC | AN vs. recAN | RecAN vs. HC | ||||
Demographic characteristics | |||||||
Age (years) (mean ± SD) | 26.59 ± 8.13 | 26.58 ± 6.14 | 23.53 ± 3.92 | 0.032 * (0.47) | 0.040 * (−0.47) | 1.000 (−0.001) | 0.137 (−0.65) |
BMI (kg/m2) (mean ± SD) | 15.94 ± 1.27 | 20.7 ± 1.94 | 21.22 ± 1.81 | <0.001 *** (3.15) | <0.001 *** (3.40) | <0.001 *** (3.17) | 0.404 (0.28) |
Body fat % (mean ± SD) | 11.73 ± 4.94 | 22.35 ± 6.15 | 24.01 ± 5.11 | <0.001 *** (2.25) | <0.001 *** (2.44) | <0.001 *** (1.90) | 0.413 (0.29) |
Clinical characteristics | |||||||
AN subtype, n (%) | |||||||
AN-R | 47 (83.93) | 24 (100) | 0 | - | - | 0.037 * (0.51) | - |
AN-B/P | 9 (16.07) | 0 | 0 | - | - | - | - |
Depression diagnosis n (%) | 18 (10.08) | 4 (16.67) | 0 | - | - | 0.114 (0.50) | - |
BDI (mean ± SD) | 30.55 ± 11.43 | 11.63 ± 9.47 | 3.98 ± 4.54 | <0.001 *** (2.97) | <0.001 *** (−3.00) | <0.001 *** (−1.74) | 0.002 ** (−1.18) |
Antidepressant use n (%) | 26 (46.4) | 6 (25) | 0 | - | - | 0.073 (0.44) | - |
Antipsychotics n (%) | 6 (10.7) | 2 (8.3) | 0 | - | - | 0.061 (0.55) | - |
Eating disorder psychopathology | |||||||
Global a (mean ± SD) | 3.9 ± 1.15 | 1.01 ± 0.84 | 0.56 ± 0.64 | <0.001 *** (3.02) | <0.001 *** (3.07) | <0.001 *** (2.18) | 0.007 ** (0.66) |
Eating a restraint (mean ± SD) | 3.76 ± 1.31 | 0.68 ± 0.96 | 0.55 ± 0.81 | <0.001 *** (2.67) | <0.001 *** (2.75) | <0.001 *** (2.1) | 0.944 (0.02) |
Eating a concern (mean ± SD) | 3.54 ± 1.31 | 0.73 ± 0.85 | 0.14 ± 0.23 | <0.001 *** (3.52) | <0.001 *** (3.33) | <0.001 *** (2.08) | <0.001 *** (1.1) |
Shape concern a (mean ± SD) | 4.46 ± 1.28 | 1.52 ± 1.1 | 0.9 ± 0.91 | <0.001 *** (2.76) | <0.001 *** (2.84) | <0.001 *** (1.95) | 0.004 ** (0.71) |
Weight concern a (mean ± SD) | 3.85 ± 1.45 | 1.1 ± 0.88 | 0.65 ± 0.84 | <0.001 *** (2.54) | <0.001 *** (2.65) | <0.001 *** (1.84) | 0.017 * (0.57) |
Metabolic Signalling Peptides | AN (n = 56) * | AN-R (n = 47) | AN-B/P (n = 9) | recAN (n = 24) | HCs (n = 51) | |
---|---|---|---|---|---|---|
Leptin (pg/mL) | Median (IQR) | 1885.9 (5922.6) | 1977.9 (5888.36) | 1470.73 (11,488.74) | 5855.11 (12,194.68) | 9302.18 (17,462.16) |
Mean ± SD | 5914.98 ± 10,441.88 | 5062.29 ± 7092.73 | 10,367.91 ± 20826.86 | 9527.08 ± 9902.68 | 15,642.09 ± 15,547.6 | |
IGF-1 (pg/mL) | Median (IQR) | 5017.19 (1605.15) | 5033.89 (1626.23) | 4550.79 (1919.65) | 5229.78 (1765.28) | 5870.89 (1813.47) |
Mean ± SD | 5164.1 ± 1379.96 | 5197.27 ± 1417.71 | 4990.88 ± 1222.61 | 5520.14 ± 1151.79 | 5954.94 ± 1588.81 | |
Insulin (µIU/mL) | Median (IQR) | 10.13 (19.04) | 11.07 (20.5) | 8.6 (12.1) | 9.88 (29.73) | 10.69 (17.62) |
Mean ± SD | 17.59 ± 18.73 | 18.94 ± 19.89 | 10.52 ± 8.46 | 21.4 ± 23.64 | 17.9 ± 18.14 | |
IRS-1 (pg/mL) | Median (IQR) | 34.68 (22.22) | 35.04 (24.79) | 30.78 (14.97) | 39.25 (38.03) | 31.49 (41.6) |
Mean ± SD | 46.58 ± 46.83 | 49.19 ± 50.49 | 32.91 ± 12.91 | 42.13 ± 24.68 | 48.23 ± 46.53 |
Metabolic Signalling Peptides | Adjusted M ± SE | p (Cohen’s d) | F | df | p (Cohen’s d) | ||||
---|---|---|---|---|---|---|---|---|---|
AN (n = 56) | recAN (n = 24) | HCs (n = 51) | Total Model | AN vs. HC | AN vs. RecAN | RecAN vs. HC | |||
Leptin a (pg/mL) | 3.28 ± 0.09 | 3.65 ± 0.13 | 3.93 ± 0.09 | <0.001 ** (0.80) | 12.39 | 2, 126 | <0.001 ** (0.74) | 0.023 * (0.35) | 0.098 (0.44) |
IGF-1 (pg/mL) | 5249.21 ± 184.58 | 5600.44 ± 280.55 | 5823.69 ± 195.19 | 0.110 (0.60) | 2.28 | 2, 126 | 0.036 * (0.53) | 0.295 (0.27) | 0.518 (0.30) |
Insulin a (µIU/mL) | 1.08 ± 0.05 | 1.11 ± 0.08 | 1.07 ± 0.06 | 0.899 (0.20) | 0.11 | 2, 126 | 0.932 (0.02) | 0.697 (0.19) | 0.655 (−0.18) |
IRS-1 ab (pg/mL) | 1.55 ± 0.04 | 1.55 ± 0.06 | 1.53 ± 0.04 | 0.363 (0.26) | 1.02 | 2, 125 | 0.82 (0.06) | 0.372 (0.21) | 0.155 (0.35) |
Metabolic Signalling Peptides | Body Mass Index | % Body Fat | EDE-Q Global Score a | Depression Diagnosis | ||||
---|---|---|---|---|---|---|---|---|
β | p (d) | β | p (d) | β | p (d) | β | p (d) | |
Acute AN (n = 56) | ||||||||
Leptin a, (pg/mL) | 0.44 | <0.001 ** (1.11) | 0.53 | <0.001 ** (1.32) | 0.09 | 0.513 (0.29) | 0.14 | 0.337 (0.38) |
IGF-1, (pg/mL) | 0.15 | 0.246 (0.40) | 0.11 | 0.380 (0.33) | −0.01 | 0.925 (−0.02) | 0.26 | 0.036 * (0.66) |
Insulin a, (µIU/mL) | 0.20 | 0.139 (0.52) | 0.00 | 0.980 (0.11) | −0.17 | 0.238 (−0.34) | −0.07 | 0.612 (−0.14) |
IRS-1 a, (pg/mL) | −0.22 | 0.090 (−0.46) | −0.14 | 0.280 (−0.29) | −0.18 | 0.187 (−0.36) | 0.03 | 0.805 (0.17) |
Acute and recovered AN (n = 80) | ||||||||
Leptin a, (pg/mL) | 0.37 | <0.001 ** (0.92) | 0.45 | <0.001 ** (1.16) | −0.24 | 0.043 * (−0.50) | 0.06 | 0.636 (0.21) |
IGF-1, (pg/mL) | 0.15 | 0.164 (0.40) | 0.18 | 0.096 (0.46) | −0.10 | 0.370 (−0.20) | 0.23 | 0.031 * (0.58) |
Insulin a, (µIU/mL) | 0.18 | 0.118 (0.50) | 0.14 | 0.213 (0.39) | −0.14 | 0.236 (−0.28) | −0.02 | 0.843 (−0.05) |
IRS-1 a, (pg/mL) | −0.08 | 0.455 (−0.17) | −0.01 | 0.958 (−0.01) | −0.08 | 0.470 (−0.17) | 0.03 | 0.811 (0.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutwalli, H.; Keeler, J.L.; Chung, R.; Dalton, B.; Patsalos, O.; Hodsoll, J.; Schmidt, U.; Breen, G.; Treasure, J.; Himmerich, H. Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa. Nutrients 2025, 17, 1341. https://doi.org/10.3390/nu17081341
Mutwalli H, Keeler JL, Chung R, Dalton B, Patsalos O, Hodsoll J, Schmidt U, Breen G, Treasure J, Himmerich H. Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa. Nutrients. 2025; 17(8):1341. https://doi.org/10.3390/nu17081341
Chicago/Turabian StyleMutwalli, Hiba, Johanna L. Keeler, Raymond Chung, Bethan Dalton, Olivia Patsalos, John Hodsoll, Ulrike Schmidt, Gerome Breen, Janet Treasure, and Hubertus Himmerich. 2025. "Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa" Nutrients 17, no. 8: 1341. https://doi.org/10.3390/nu17081341
APA StyleMutwalli, H., Keeler, J. L., Chung, R., Dalton, B., Patsalos, O., Hodsoll, J., Schmidt, U., Breen, G., Treasure, J., & Himmerich, H. (2025). Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa. Nutrients, 17(8), 1341. https://doi.org/10.3390/nu17081341