Unique Microbial Characterisation of Oesophageal Squamous Cell Carcinoma Patients with Different Dietary Habits Based on Light Gradient Boosting Machine Learning Classifier
Highlights
- Our study recruits a large sample to examine the impact of dietary factors on the intermediate processes of esophageal squamous cell carcinoma (ESCC).
- We concentrate on the association between the two most ESCC-risk-related dietary factors in the Chinese population and on ESCC microbiota. Currently, there is limited research on the relationship among diet, microbiota, and ESCC.
- Our study considers the combined effects of multiple dietary factors, an approach that is more reflective of real-world conditions.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studying Population
2.2. Specimens Collection
2.3. DNA Extraction and 16S rRNA Sequencing
2.4. Microbial DNA Extraction and Sequencing
2.5. Diversity Analysis
2.6. Differential Bacteria and Machine Learning Classifiers
2.7. Functional Analysis and Microbial Symbiotic Networks
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Results of the Diversity Analysis
3.3. Relative Abundance of Species
3.4. Microbial Differences Among FF, FP, PF, and PP Groups
3.5. Unique Bacterial Characteristics of ESCC Patients with Different Diets
3.6. Unique Bacterial Functional Characteristics in ESCC Patients with Different Dietary Habits
3.7. Coexistence Networks of Oesophageal Microbiota with Different Diets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 6 April 2025).
- Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current Status and Future Prospects for Esophageal Cancer. Cancers 2023, 15, 765. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, L.; Wang, T.; Zhang, W.; Liu, J.; Huang, Y.; Li, J.; Qi, H.; Wu, Z.; Wang, Y.; et al. Nur77-IRF1 axis inhibits esophageal squamous cell carcinoma growth and improves anti-PD-1 treatment efficacy. Cell Death Discov. 2024, 10, 254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simba, H.; Kuivaniemi, H.; Abnet, C.C.; Tromp, G.; Sewram, V. Environmental and Life-Style Risk Factors for Esophageal Squamous Cell Carcinoma in Africa: A Systematic Review and Meta-Analysis. BMC Public Health 2023, 23, 1782. [Google Scholar] [CrossRef]
- Fackelmann, G.; Manghi, P.; Carlino, N.; Heidrich, V.; Piccinno, G.; Ricci, L.; Piperni, E.; Arrè, A.; Bakker, E.; Creedon, A.C.; et al. Gut Microbiome Signatures of Vegan, Vegetarian and Omnivore Diets and Associated Health Outcomes across 21,561 Individuals. Nat. Microbiol. 2025, 10, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Tarazi, M.; Chidambaram, S.; Markar, S.R. Risk Factors of Esophageal Squamous Cell Carcinoma beyond Alcohol and Smoking. Cancers 2021, 13, 1009. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Liu, J.; Liu, M.; Yang, Z.; Zhang, Y.; Zhao, X.; Song, X.; Zhang, Q.; Cui, Y.; et al. Meta-analysis of major risk factors for esophageal cancer in Chinese population. J. Clin. Psychosom. Dis. 2024, 30, 115–122. [Google Scholar]
- Masukume, G.; Mmbaga, B.T.; Dzamalala, C.P.; Mlombe, Y.B.; Finch, P.; Nyakunga-Maro, G.; Mremi, A.; Middleton, D.R.S.; Narh, C.T.; Chasimpha, S.J.D.; et al. A Very-Hot Food and Beverage Thermal Exposure Index and Esophageal Cancer Risk in Malawi and Tanzania: Findings from the ESCCAPE Case-Control Studies. Br. J. Cancer 2022, 127, 1106–1115. [Google Scholar] [CrossRef]
- Song, W.; Wang, Y.; Xie, J.; Lai, Y.; Li, J.; Hu, Y. Correlation between dietary factors and esophageal cancer in Chinese people. Chin. J. Clin. Opathology 2019, 41, 1915–1924. [Google Scholar]
- Ran, J.; Han, L.; Yang, X.; Qi, H.; Yang, F.; Liao, X.; Liu, Q. Meta-analysis of dietary risk factors for esophageal cancer. China Chronic Dis. Prev. Control 2014, 22, 644–647. [Google Scholar]
- Valles-Colomer, M.; Menni, C.; Berry, S.E.; Valdes, A.M.; Spector, T.D.; Segata, N. Cardiometabolic Health, Diet and the Gut Microbiome: A Meta-Omics Perspective. Nat. Med. 2023, 29, 551–561. [Google Scholar] [CrossRef]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, T.A.F.; Rogero, M.M.; Hassimotto, N.M.A.; Lajolo, F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019, 6, 188. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Hua, Z.; Kang, X.; Lu, B.; Li, M.; Wu, J.; Dong, W.; Zhang, J.; Cheng, C. Influence of Oral Intaking Habit on Tongue Coating Microbiota in Patients with Esophageal Precancerous Lesions. J. Cancer 2022, 13, 1168–1180. [Google Scholar] [CrossRef]
- Nobel, Y.R.; Snider, E.J.; Compres, G.; Freedberg, D.E.; Khiabanian, H.; Lightdale, C.J.; Toussaint, N.C.; Abrams, J.A. Increasing Dietary Fiber Intake Is Associated with a Distinct Esophageal Microbiome. Clin. Transl. Gastroenterol. 2018, 9, 199. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Alm, E.J. Inferring Correlation Networks from Genomic Survey Data. PLoS Comput. Biol. 2012, 8, e1002687. [Google Scholar] [CrossRef]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Ideker, T. Cytoscape 2.8: New Features for Data Integration and Network Visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef]
- Kelly, R.J. Emerging Multimodality Approaches to Treat Localized Esophageal Cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 1009–1014. [Google Scholar] [CrossRef]
- Lin, Y.T.; Zhou, Y.; Ma, J.Y.; Jiang, H.J.; Xiang, Z.S. Incidence and death of malignant tumors in tumor registration areas of Fujian Province from 2015 to 2017. Chin. Oncol. 2021, 30, 487–494. [Google Scholar]
- Abnet, C.C.; Arnold, M.; Wei, W.-Q. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology 2018, 154, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Karaoz, U.; Yang, L.; Yachimski, P.S.; Tseng, W.; Nossa, C.W.; Ye, W.; Tseng, M.; Poles, M.; Francois, F.; et al. Progressive Dysbiosis of Human Orodigestive Microbiota along the Sequence of Gastroesophageal Reflux, Barrett’s Esophagus and Esophageal Adenocarcinoma. Int. J. Cancer 2022, 151, 1703–1716. [Google Scholar] [CrossRef]
- Yeo, K.; Li, R.; Wu, F.; Bouras, G.; Mai, L.T.H.; Smith, E.; Wormald, P.J.; Valentine, R.; Psaltis, A.J.; Vreugde, S.; et al. Identification of consensus head and neck cancer-associated microbiota signatures: A systematic review and meta-analysis of 16S rRNA and The Cancer Microbiome Atlas datasets. J. Med Microbiol. 2024, 73, 001799. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, M.; Crawford, N.; Stott, K.; Bullman, S.; Longley, D.B.; Prehn, J.H.M. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut 2022, 71, 1600–1612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.Z. Oral Microflora Difference Between Healthy People and Patients with Esophageal Cancer. Master’s Thesis, Chongqing Medical University, Chongqing, China, 2023. [Google Scholar]
- Prakash, P.; RajaKumari, P.; Aishwarya, V.; Thanuja, P.; Archana, P.V.; Thirumurugan, A. The influence of potassium humate on Stevia Rebaudiana. Int. J. Agric. Food Sci. 2012, 2, 30–31. [Google Scholar]
- Zheng, S.; Vuitton, L.; Sheyhidin, I.; Vuitton, D.A.; Zhang, Y.; Lu, X. Northwestern China: A Place to Learn More on Oesophageal Cancer. Part One: Behavioural and Environmental Risk Factors. Eur. J. Gastroenterol. Hepatol. 2010, 22, 917–925. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, J.-K.; Hu, X.-S.; Wang, P.-H.; Qin, Y.; Lu, Y.-C.; Yang, J.; Liu, A.-M.; Wu, D.-L.; Zhang, Z.-F.; et al. Association of Smoking, Alcohol Drinking and Dietary Factors with Esophageal Cancer in High- and Low-Risk Areas of Jiangsu Province, China. World J. Gastroenterol. 2006, 12, 1686–1693. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut Microbes from the Phylogenetically Diverse Genus Eubacterium and Their Various Contributions to Gut Health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yu, J.; Gong, J.; Wu, J.; Zong, X.; Luo, Z.; He, X.; Cheng, W.M.; Liu, Y.; Liu, C.; et al. Campylobacter Jejuni-Derived Cytolethal Distending Toxin Promotes Colorectal Cancer Metastasis. Cell Host Microbe 2024, 32, 2080–2091.e6. [Google Scholar] [CrossRef]
- Chen, K.; Ding, Y.-p.; Wang, J.-l.; Shao, B.-p. Research Progress on p53-involved Metabolic Regulation. Biotechnol. Bull. 2016, 32, 52–58. [Google Scholar]
- Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Lei, H.; Wang, J.; Xie, X.; Cheng, B.; et al. Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 2022, 13, 974. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, H.; Peng, D.; Cao, L.L.; Ballout, F.; Srirmajayam, K.; Chen, Z.; Bhat, A.; Wang, T.C.; Capobianco, A.; et al. Activation of NOTCH Signaling via DLL1 Is Mediated by APE1-Redox-Dependent NF-κB Activation in Oesophageal Adenocarcinoma. Gut 2023, 72, 421–432. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients n (%) | FF n (%) | FP n (%) | PF n (%) | PP n (%) | χ2 | p Value |
---|---|---|---|---|---|---|---|
Gender | |||||||
Female | 39 (22.5) | 11 (35.5) | 17 (30.9) | 2 (5.9) | 9 (17.0) | 11.522 | 0.009 |
Male | 134 (77.5) | 20 (64.5) | 38 (69.1) | 32 (94.1) | 44 (83.0) | ||
Age | |||||||
>60 | 92 (53.2) | 19 (61.3) | 27 (49.1) | 17 (50.0) | 29 (54.7) | 1.377 | 0.711 |
≤60 | 81 (46.8) | 12 (6.9) | 28 (50.9) | 17 (50.0) | 24 (45.7) | ||
T stage | |||||||
I/II | 60 (34.7) | 8 (25.8) | 23 (41.8) | 12 (35.3) | 17 (32.1) | 2.479 | 0.479 |
III/IV | 113 (65.3) | 23 (74.2) | 32 (58.2) | 22 (64.7) | 36 (67.9) | ||
Lymph node metastasis | |||||||
No | 66 (38.2) | 9 (29.0) | 26 (47.3) | 11 (32.4) | 20 (37.7) | 3.520 | 0.318 |
Yes | 107 (61.8) | 22 (71.0) | 29 (52.7) | 23 (67.6) | 33 (62.3) | ||
Tumor location | |||||||
Lower | 71 (41.0) | 11 (35.5) | 23 (41.8) | 12 (35.3) | 25 (47.2) | 1.696 | 0.638 |
Middle/Upper | 102 (41.0) | 20 (64.5) | 32 (58.2) | 22 (64.7) | 28 (52.8) | ||
Tea consumption | |||||||
No | 49 (28.3) | 12 (38.7) | 20 (36.4) | 7 (20.6) | 10 (18.9) | 6.735 | 0.081 |
Yes | 124 (71.7) | 19 (61.3) | 35 (63.6) | 27 (79.4) | 43 (81.1) | ||
Alcohol consumption | |||||||
No | 76 (43.9) | 15 (48.4) | 25 (45.5) | 15 (44.1) | 21 (39.6) | 0.702 | 0.873 |
Yes | 97 (56.1) | 16 (51.6) | 30 (54.5) | 19 (55.9) | 32 (60.4) | ||
Smoke | |||||||
No | 53 (30.6) | 13 (41.9) | 21 (38.2) | 5 (14.7) | 14 (26.4) | 7.841 | 0.049 |
Yes | 120 (69.4) | 18 (58.1) | 34 (61.8) | 29 (85.3) | 39 (73.6) | ||
Region | |||||||
Minnan | 110 (63.6) | 17 (54.8) | 34 (61.8) | 20 (58.8) | 39 (73.6) | 3.720 | 0.293 |
Others | 63 (36.4) | 14 (45.2) | 21 (38.2) | 14 (41.2) | 14 (26.4) | ||
Sampling season | |||||||
Winter/spring | 91 (52.6) | 15 (48.4) | 25 (45.5) | 20 (58.8) | 31 (58.5) | 2.613 | 0.455 |
Summer/autumn | 82 (47.4) | 16 (51.6) | 30 (54.5) | 14 (41.2) | 22 (41.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Lin, Z.; Huang, Z.; Yu, M.; Lin, Z.; Hu, Z. Unique Microbial Characterisation of Oesophageal Squamous Cell Carcinoma Patients with Different Dietary Habits Based on Light Gradient Boosting Machine Learning Classifier. Nutrients 2025, 17, 1340. https://doi.org/10.3390/nu17081340
Liu S, Lin Z, Huang Z, Yu M, Lin Z, Hu Z. Unique Microbial Characterisation of Oesophageal Squamous Cell Carcinoma Patients with Different Dietary Habits Based on Light Gradient Boosting Machine Learning Classifier. Nutrients. 2025; 17(8):1340. https://doi.org/10.3390/nu17081340
Chicago/Turabian StyleLiu, Shun, Zhifeng Lin, Zhimin Huang, Menglin Yu, Zheng Lin, and Zhijian Hu. 2025. "Unique Microbial Characterisation of Oesophageal Squamous Cell Carcinoma Patients with Different Dietary Habits Based on Light Gradient Boosting Machine Learning Classifier" Nutrients 17, no. 8: 1340. https://doi.org/10.3390/nu17081340
APA StyleLiu, S., Lin, Z., Huang, Z., Yu, M., Lin, Z., & Hu, Z. (2025). Unique Microbial Characterisation of Oesophageal Squamous Cell Carcinoma Patients with Different Dietary Habits Based on Light Gradient Boosting Machine Learning Classifier. Nutrients, 17(8), 1340. https://doi.org/10.3390/nu17081340