Relationship Between Fermented Food Consumption Patterns, hs-CRP, and Chronic Diseases Among Middle-Aged Koreans: Data from the 2015–2018 Korea National Health and Nutrition Examination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Classification of Fermented Foods
2.3. hs-CRP and Disease Classification
2.4. General Characteristics
2.5. Statistical Analysis
3. Results
3.1. Latent Profile Analysis (LPA)
3.2. Fermented Food Consumption Patterns
- (1)
- Cluster I (low fermented-food pattern, LFP): Middle-aged adults in this group consumed very little fermented food overall.
- (2)
- Cluster II (fermented alcohol- and beverage-centered Pattern, FABP): This group primarily consumed fermented alcoholic beverages, such as beer, wine, and makgeolli.
- (3)
- Cluster III (fermented dairy-centered pattern, FDP): This group predominantly consumed fermented dairy products, such as fermented milk and cheese.
- (4)
- Cluster IV (fermented grain-centered pattern, FGP): This group mainly consumed fermented grain-based foods, such as bread and traditional Korean rice cakes, as well as fermented dairy products.
3.3. General Characteristics by Fermented Food Consumption Patterns
3.4. Relationship Between Fermented Food Consumption Patterns and hs-CRP
3.5. Analysis of Odds Ratios for Diseases by Fermented Food Consumption Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
hs-CRP | High-sensitivity C-reactive protein |
KNHANES | Korea National Health and Nutrition Examination Survey |
LPA | Latent profile analysis |
ADA | American Diabetes Association |
KSH | Korean Society of Hypertension |
NCEP | National Cholesterol Education Program |
ATP III | Adult Treatment Panel III |
OR | Odds ratio |
CI | Confidence interval |
LFP | Low fermented-food pattern |
FABP | Fermented alcohol-and beverage-centered pattern |
FDP | Fermented dairy-centered pattern |
FGP | Fermented grain centered pattern |
TG | Triglyceride |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
HbA1c | Glycated hemoglobin |
FBG | Fasting blood glucose |
BMI | Body mass index |
ZIP | Zero-inflated Poisson |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
aBIC | Adjusted Bayesian information criterion |
LMR | Lo–Mendell–Rubin |
BLRT | Bootstrap likelihood ratio test |
LMR-LRT | Lo–Mendell–Rubin likelihood ratio test |
References
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, G.; Cui, L.; Cai, R.; Yuan, Y.; Gao, Z.; Yue, T.; Wang, Z. The health benefits of fermented fruits and vegetables and their underlying mechanisms. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70072. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-Y. Increased health functionality of fermented foods. Food Ind. Nutr. 2012, 17, 1–8. [Google Scholar]
- Hasan, M.N.; Sultan, M.Z.; Mar-E-Um, M. Significance of fermented food in nutrition and food science. J. Sci. Res. 2014, 6, 373–386. [Google Scholar] [CrossRef]
- Noh, H.; Jang, H.H.; Kim, G.; Zouiouich, S.; Cho, S.Y.; Kim, H.J.; Kim, J.; Choe, J.S.; Gunter, M.J.; Ferrari, P.; et al. Taxonomic composition and diversity of the gut microbiota in relation to habitual dietary intake in Korean adults. Nutrients 2021, 13, 366. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Baruah, R.; Ray, M.; Halami, P.M. Preventive and therapeutic aspects of fermented foods. J. Appl. Microbiol. 2022, 132, 3476–3489. [Google Scholar] [CrossRef]
- Afshari, P.; Barzin, P.; Najar, S.; Haghighizade, M. Prevalence of chronic diseases in middle-aged women. Jundishapur J. Chronic Dis. Care 2014, 3, 23347. [Google Scholar] [CrossRef]
- Ge, L.; Ong, R.; Yap, C.W.; Heng, B.H. Effects of chronic diseases on health-related quality of life and self-rated health among three adult age groups. Nurs. Health Sci. 2019, 21, 214–222. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Korea National Health and Nutrition Examination Survey. 2022. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_11702_N103&conn_path=I2 (accessed on 5 February 2025).
- Korea Disease Control and Prevention Agency. Korea National Health and Nutrition Examination Survey. Trends in Prevalence of Diabetes (Based on Fasting Blood Glucose or Glycated Hemoglobin Criteria). 2022. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_11702_N102&conn_path=I2 (accessed on 5 February 2025).
- Korea Disease Control and Prevention Agency. Korea National Health and Nutrition Examination Survey. Trends in Prevalence of Hypertension. 2022. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_11702_N105&conn_path=I2 (accessed on 5 February 2025).
- Daliri, E.B.; Ofosu, F.K.; Chelliah, R.; Lee, B.H.; An, H.; Elahi, F.; Barathikannan, K.; Kim, J.H.; Oh, D.H. Influence of fermented soy protein consumption on hypertension and gut microbial modulation in spontaneous hypertensive rats. Biosci. Microbiota Food Health 2020, 39, 199–208. [Google Scholar] [CrossRef]
- Cheik, N.C.; Rossi, E.A.; Guerra, R.L.; Tenório, N.M.; Oller do Nascimento, C.M.; Viana, F.P.; Manzoni, M.S.; Carlos, I.Z.; Leão da Silva, P.; Vendramini, R.C.; et al. Effects of a ferment soy product on the adipocyte area reduction and dyslipidemia control in hypercholesterolemic adult male rats. Lipids Health Dis. 2008, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.H.; Noh, J.S.; Han, J.S.; Kim, H.J.; Han, E.S.; Song, Y.O. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: Randomized clinical trial. J. Med. Food 2013, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Su, H.K.; Tsai, M.H.; Chao, H.R.; Wu, M.L.; Lu, J.H. Data on effect of Tempeh Fermentation on patients with type II diabetes. Data Brief 2021, 38, 107310. [Google Scholar] [CrossRef] [PubMed]
- Banait, T.; Wanjari, A.; Danade, V.; Banait, S.; Jain, J. Role of high-sensitivity C-reactive protein (hs-CRP) in non-communicable diseases: A Review. Cureus 2022, 14, e30225. [Google Scholar] [CrossRef]
- Kim, J.H.; Jia, Y.; Lee, J.G.; Nam, B.; Lee, J.H.; Shin, K.S.; Hurh, B.S.; Choi, Y.H.; Lee, S.J. Hypolipidemic and antiinflammation activities of fermented soybean fibers from meju in C57BL/6 J mice. Phytother. Res. 2014, 28, 1335–1341. [Google Scholar] [CrossRef]
- Byun, M.S.; Yu, O.K.; Cha, Y.S.; Park, T.S. Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: A double-blind, randomized, crossover, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016, 70, 1116–1122. [Google Scholar] [CrossRef]
- Gu, Q.; Wu, Y.; Feng, Z.; Chai, Y.; Hou, S.; Yu, Z.; Shen, X. Dietary pattern and precocious puberty risk in Chinese girls: A case-control study. Nutr. J. 2024, 23, 14. [Google Scholar] [CrossRef]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Giovannucci, E.L. Dietary patterns and risk of colorectal cancer: A comparative analysis. Int. J. Epidemiol. 2023, 52, 96–106. [Google Scholar] [CrossRef]
- Gianfredi, V.; Dinu, M.; Nucci, D.; Eussen, S.; Amerio, A.; Schram, M.T.; Schaper, N.; Odone, A. Association between dietary patterns and depression: An umbrella review of meta-analyses of observational studies and intervention trials. Nutr. Rev. 2023, 81, 346–359. [Google Scholar] [CrossRef]
- Li, K.J.; Brouwer-Brolsma, E.M.; Burton-Pimentel, K.J.; Vergères, G.; Feskens, E.J.M. A systematic review to identify biomarkers of intake for fermented food products. Genes Nutr. 2021, 16, 5. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented foods, health and the gut microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Ahn, J.; Son, H.-S. Ethnic fermented foods of the world: An overview. J. Ethn. Foods 2024, 11, 39. [Google Scholar] [CrossRef]
- Pfützner, A.; Forst, T. High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol. Ther. 2006, 8, 28–36. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of care in diabetes—2023. Diabetes Care 2023, 46 (Suppl. S1), S1–S267. [Google Scholar] [CrossRef]
- Kim, H.L.; Lee, E.M.; Ahn, S.Y.; Kim, K.I.; Kim, H.C.; Kim, J.H.; Lee, H.Y.; Lee, J.H.; Park, J.M.; Cho, E.J.; et al. The 2022 focused update of the 2018 Korean hypertension society guidelines for the management of hypertension. Clin. Hypertens. 2023, 29, 11. [Google Scholar] [CrossRef]
- Lipsy, R.J. The National Cholesterol Education Program Adult Treatment Panel III guidelines. J. Manag. Care Pharm. 2003, 9, 2–5. [Google Scholar] [CrossRef]
- O’Rourke, H. Considering the distributional form of zeroes when calculating mediation effects with zero-inflated count outcomes. J. Behav. Data Sci. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Lambert, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 1992, 34, 1–14. [Google Scholar] [CrossRef]
- Paul, A.K.; Lim, C.L.; Apu, M.A.I.; Dolma, K.G.; Gupta, M.; de Lourdes Pereira, M.; Wilairatana, P.; Rahmatullah, M.; Wiart, C.; Nissapatorn, V. Are fermented foods effective against inflammatory diseases? Int. J. Environ. Res. Public Health 2023, 20, 2481. [Google Scholar] [CrossRef] [PubMed]
- Dębińska, A.; Sozańska, B. Fermented food in asthma and respiratory allergies-chance or failure? Nutrients 2022, 14, 1420. [Google Scholar] [CrossRef] [PubMed]
- Illikoud, N.; Mantel, M.; Rolli-Derkinderen, M.; Gagnaire, V.; Jan, G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol. Lett. 2022, 251–252, 91–102. [Google Scholar] [CrossRef]
- Le Roy, C.I.; Štšepetova, J.; Sepp, E.; Songisepp, E.; Claus, S.P.; Mikelsaar, M. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay. Oncotarget 2015, 6, 30545–30556. [Google Scholar] [CrossRef]
- Ngo-Nkondjock, R.V.; Yuntao, Z.; Adnan, H.; Adnan, S.M.; Cheteu, T.M.W.; Li, Y. The chronotype conjecture in the association between dietary carbohydrate intake and high-sensitivity C-reactive protein (hs-CRP): A cross-sectional study from NHANES 2015 data. Sleep Sci. 2021, 14, 3–10. [Google Scholar]
- Han, E.; Fritzer-Szekeres, M.; Szekeres, T.; Gehrig, T.; Gyöngyösi, M.; Bergler-Klein, J. Comparison of high-sensitivity C-Reactive protein vs C-reactive protein for cardiovascular risk prediction in chronic cardiac disease. J. Appl. Lab. Med. 2022, 7, 1259–1271. [Google Scholar] [CrossRef]
- Wilburn, J.R.; Ryan, E.P. Fermented foods in health promotion and disease prevention: An overview. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–19. [Google Scholar] [CrossRef]
- Gherasim, A.; Arhire, L.I.; Niță, O.; Popa, A.D.; Graur, M.; Mihalache, L. The relationship between lifestyle components and dietary patterns. Proc. Nutr. Soc. 2020, 79, 311–323. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
Number of Clusters | AIC | BIC | aBIC | Entropy | Loglike-Lihood | P for LMR | P for BLRT |
---|---|---|---|---|---|---|---|
1 | 157,404.489 | 157,473.183 | 157,441.405 | - | −78,692.245 | - | - |
2 | 138,978.722 | 139,122.979 | 139,056.246 | 0.965 | −69,468.361 | 0.0000 | 0.0000 |
3 | 127,363.480 | 127,583.301 | 127,481.612 | 0.972 | −63,649.740 | 0.0000 | 0.0000 |
4 | 122,312.456 | 122,607.840 | 122,471.196 | 0.973 | −61,113.228 | 0.0000 | 0.0000 |
5 | 119,808.401 | 120,179.349 | 120,007.749 | 0.969 | −59,850.201 | 0.0000 | 0.0000 |
Variables | Fermented Food Consumption Patterns | |||
---|---|---|---|---|
Cluster I (n = 3857, 54.2%) | Cluster II (n = 1105, 15.5%) | Cluster III (n = 998, 14.0%) | Cluster IV (n = 1151, 16.2%) | |
LFP (1) | FABP (2) | FDP (3) | FGP (4) | |
Grains | 0.000 | 0.778 | 0.001 | 4.097 |
Fermented soybean products | 2.638 | 2.884 | 2.538 | 2.445 |
Vinegar | 0.258 | 0.381 | 0.294 | 0.295 |
Vegetables | 4.422 | 4.338 | 4.284 | 4.131 |
Fish and seafood | 0.401 | 0.544 | 0.375 | 0.365 |
Fruits | 0.009 | 0.033 | 0.139 | 0.040 |
Dairy products | 0.000 | 0.733 | 4.100 | 1.091 |
Alcoholic beverages | 0.024 | 5.557 | 0.038 | 0.023 |
Sauces | 0.009 | 0.022 | 0.017 | 0.023 |
Leaf teas and beverages | 0.000 | 0.244 | 0.000 | 0.000 |
Variables | Fermented Food Consumption Patterns | p | |||||||
---|---|---|---|---|---|---|---|---|---|
FGP (1) (n = 1151, 16.2%) | FDP (2) (n = 998, 14.0%) | FABP (3) (n = 1105, 15.5%) | LFP (4) (n = 3857, 54.2%) | ||||||
Sex | <0.001 | ||||||||
Men (n = 2765) | 355 | (30.8) | 297 | (29.8) | 565 | (51.1) | 1548 | (40.1) | |
Women (n = 4346) | 796 | (69.2) | 701 | (70.2) | 540 | (48.9) | 2309 | (59.9) | |
Age (year) | 51.4 | ±7.1 a | 52.7 | ±7.2 b | 50.7 | ±7.1 a | 52.7 | ±7.1 b | <0.001 |
BMI (kg/m2) | 23.0 | ±2.9 a | 23.1 | ±2.9 a | 23.4 | ±2.9 ab | 23.5 | ±3.0 b | <0.001 |
Household income | <0.001 | ||||||||
Lowest | 80 | (7.0) | 82 | (8.2) | 84 | (7.6) | 487 | (12.6) | |
Lowest middle | 235 | (20.4) | 202 | (20.2) | 246 | (22.3) | 932 | (24.2) | |
Upper middle | 347 | (30.1) | 292 | (29.3) | 310 | (28.1) | 1101 | (28.5) | |
Highest | 489 | (42.5) | 422 | (42.3) | 465 | (42.1) | 1337 | (34.7) | |
Marital status | <0.001 | ||||||||
Yes | 1113 | (96.7) | 967 | (96.9) | 1066 | (96.5) | 3650 | (94.6) | |
No | 38 | (3.3) | 31 | (3.1) | 39 | (3.5) | 207 | (5.4) | |
Alcohol consumption | <0.001 | ||||||||
Yes | 519 | (45.1) | 432 | (43.3) | 938 | (84.9) | 1978 | (51.3) | |
No | 632 | (54.9) | 566 | (56.7) | 167 | (15.1) | 1879 | (48.7) | |
Smoking | <0.001 | ||||||||
Yes | 136 | (11.8) | 106 | (10.6) | 288 | (20.6) | 763 | (19.8) | |
No | 1015 | (88.2) | 892 | (89.4) | 877 | (79.4) | 3094 | (80.2) | |
Aerobic activity | 0.033 | ||||||||
Yes | 95 | (8.3) | 64 | (6.4) | 89 | (8.1) | 240 | (6.2) | |
No | 1056 | (91.7) | 934 | (93.6) | 1016 | (91.9) | 3617 | (93.8) | |
WC (cm) | 79.4 | ±8.9 a | 79.3 | ±8.6 a | 81.3 | ±8.6 b | 81.2 | ±8.9 b | <0.001 |
SBP (mmHg) | 116.2 | ±15.9 a | 116.5 | ±15.3 a | 118.4 | ±15.8 b | 118.4 | ±16.1 b | <0.001 |
DBP (mmHg) | 76.3 | ±9.6 a | 76.5 | ±9.5 a | 78.5 | ±10.0 b | 77.2 | ±9.8 a | <0.001 |
FBG (mg/dL) | 98.7 | ±22.7 a | 98.4 | ±19.5 a | 102.0 | ±26.3 b | 102.3 | ±26.2 b | <0.001 |
HbA1c (%) | 5.7 | ±0.7 ab | 5.6 | ±0.6 a | 5.6 | ±0.8 a | 5.7 | ±0.8 b | <0.001 |
HDL-cholesterol (mg/dL) | 53.4 | ±12.9 b | 52.6 | ±12.6 b | 53.8 | ±13.6 b | 51.1 | ±12.9 a | <0.001 |
LDL-cholesterol (mg/dL) | 120.8 | ±33.0 b | 120.2 | ±34.2 b | 114.9 | ±35.1 a | 117.4 | ±36.0 ab | <0.001 |
TG (mg/dL) | 130.4 | ±106.6 a | 124.3 | ±94.2 a | 143.2 | ±118.7 b | 144.7 | ±123.1 b | <0.001 |
Total cholesterol | 200.3 | ±35.9 a | 197.7 | ±36.9 a | 197.3 | ±36.7 a | 197.4 | ±36.6 a | 0.111 |
hs-CRP (mg/L) | 0.9 | ±1.2 ab | 0.9 | ±1.2 ab | 0.8 | ±1.1 a | 1.0 | ±1.2 b | <0.001 |
Variables | Fermented Food Consumption Patterns | p | |||||||
---|---|---|---|---|---|---|---|---|---|
FGP (1) (n = 1151, 16.2%) | FDP (2) (n = 998, 14.0%) | FABP (3) (n = 1105, 15.5%) | LFP (4) (n = 3857, 54.2%) | ||||||
Energy (kcal/day) | 2032.1 | ±759.2 c | 1947.1 | ±704.6 b | 2407.8 | ±905.9 d | 1846.7 | ±732.6 a | <0.001 |
Carbohydrate (g) | 323.6 | ±123.9 b | 311.7 | 116.4 b | 314.6 | 124.4 b | 297.1 | ±118.7 a | <0.001 |
Protein (g) | 70.8 | ±33.5 b | 70.3 | ±31.5 b | 86.1 | ±38.1 c | 64.4 | ±31.5 a | <0.001 |
Fat (g) | 47.0 | ±28.1 c | 43.5 | ±27.3 b | 50.7 | ±30.5 d | 35.9 | ±25.6 a | <0.001 |
CHO/PRO/FAT (%) | 73.2:16.1:10.7 | 73.2:16.6:10.2 | 69.5:19.2:11.2 | 74.7:16.3:9.0 | - | ||||
Dietary fiber (g) | 29.2 | ±15.5 b | 29.2 | ±13.3 b | 27.8 | ±14.5 ab | 26.7 | ±14.5 a | <0.001 |
Vitamin A (µg RAE) | 678.8 | ±657.9 ab | 747.6 | ±841.9 bc | 790.8 | ±995.3 c | 647.7 | ±727.8 a | <0.001 |
Vitamin C (mg) | 85.9 | ±98.4 a | 90.2 | ±91.3 a | 85.0 | ±162.8 a | 79.4 | ±91.6 a | 0.018 |
Sodium (mg) | 3403.5 | ±1914.9 a | 3354.4 | ±1916.2 a | 4156.3 | ±2493.6 b | 3482.3 | ±2102.5 a | <0.001 |
Potassium (mg) | 3093.8 | ±1437.0 a | 3299.6 | ±1544.2 b | 3387.7 | ±1422.0 b | 3482.3 | ±2102.5 a | <0.001 |
Cholesterol (mg) | 256.2 | ±225.6 c | 242.2 | ±222.6 b | 306.4 | ±236.1 b | 202.1 | ±195.3 a | <0.001 |
Variables | Fermented Food Consumption Patterns | p | |||||||
---|---|---|---|---|---|---|---|---|---|
FGP (1) (n = 1151, 16.2%) | FDP (2) (n = 998, 14.0%) | FABP (3) (n = 1105, 15.5%) | LFP (4) (n = 3857, 54.2%) | ||||||
hs-CRP | 0.003 | ||||||||
1 mg/L | 884 | (76.8) | 788 | (79.0) | 867 | (78.5) | 2844 | (73.7) | |
1–3 mg/L | 199 | (17.3) | 161 | (16.1) | 183 | (16.6) | 761 | (19.7) | |
3 mg/L | 68 | (5.9) | 49 | (4.9) | 55 | (5.0) | 252 | (6.5) |
Variables | Fermented Food Consumption Patterns | p | |||
---|---|---|---|---|---|
Cluster IV (1) | Cluster III (2) | Cluster II (3) | Cluster I (4) | ||
hs-CRP 1–3 mg/L (5) (n = 6687) | |||||
Crude ORs (95% CIs) | 0.841 (0.707–1.001) | 0.764 (0.633–0.921) | 0.789 (0.660–0.943) | 1.0 (ref) | <0.001 |
Model I (7) ORs (95% CIs) | 0.902 (0.757–1.075) | 0.804 (0.665–0.971) | 0.837 (0.696–1.008) | 1.0 (ref) | <0.001 |
Model II (8) ORs (95% CIs) | 0.975 (0.849–1.120) | 0.852 (0.736–0.986) | 0.807 (0.700–0.931) | 1.0 (ref) | <0.001 |
Model III (9) ORs (95% CIs) | 0.805 (0.668–0.971) | 0.822 (0.679–0.994) | 0.918 (0.769–1.096) | 1.0 (ref) | <0.001 |
hs-CRP ≥ 3 mg/L (6) (n = 5807) | |||||
Crude ORs (95% CIs) | 0.868 (0.657–1.147) | 0.702 (0.512–0.963) | 0.716 (0.530–0.968) | 1.0 (ref) | <0.001 |
Model I (7) ORs (95% CIs) | 0.967 (0.730–1.281) | 0.762 (0.526–1.048) | 0.718 (0.526–0.980) | 1.0 (ref) | <0.001 |
Model II (8) ORs (95% CIs) | 0.975 (0.736–1.293) | 0.769 (0.559–1.058) | 0.735 (0.541–0.999) | 1.0 (ref) | <0.001 |
Model III (9) ORs (95% CIs) | 0.952 (0.717–1.265) | 0.758 (0.551–1.044) | 0.708 (0.517–0.970) | 1.0 (ref) | <0.001 |
Variables | Fermented Food Consumption Patterns | p | |||
---|---|---|---|---|---|
Cluster IV (1) | Cluster III (2) | Cluster II (3) | Cluster I (4) | ||
Hypertension | |||||
Crude ORs (95% CIs) | 0.697 (0.598–0.813) | 0.813 (0.694–0.951) | 0.941 (0.812–1.091) | 1.0 (ref) | <0.001 |
Model I (5) ORs (95% CIs) | 0.810 (0.690–0.950) | 0.863 (0.732–1.017) | 0.971 (0.829–1.139) | 1.0 (ref) | <0.001 |
Model II (6) ORs (95% CIs) | 0.826 (0.704–0.970) | 0.881 (0.747–1.038) | 1.070 (0.915–1.252) | 1.0 (ref) | <0.001 |
Model III (7) ORs (95% CIs) | 0.831 (0.707–0.976) | 0.885 (0.750–1.044) | 1.088 (0.926–1.278) | 1.0 (ref) | <0.001 |
Diabetes | |||||
Crude ORs (95% CIs) | 0.506 (0.399–0.642) | 0.583 (0.459–0.742) | 0.728 (0.588–0.901) | 1.0 (ref) | <0.001 |
Model I (5) ORs (95% CIs) | 0.586 (0.459–0.747) | 0.621 (0.486–0.794) | 0.760 (0.606–0.951) | 1.0 (ref) | <0.001 |
Model II (6) ORs (95% CIs) | 0.608 (0.476–0.775) | 0.646 (0.505–0.827) | 0.795 (0.636–0.993) | 1.0 (ref) | <0.001 |
Model III (7) ORs (95% CIs) | 0.607 (0.475–0.776) | 0.647 (0.506–0.829) | 0.799 (0.636–1.005) | 1.0 (ref) | <0.001 |
Dyslipidemia | |||||
Crude ORs (95% CIs) | 0.826 (0.724–0.943) | 0.778 (0.676–0.896) | 0.751 (0.656–0.860) | 1.0 (ref) | <0.001 |
Adjusted I (5) ORs (95% CIs) | 0.950 (0.827–1.090) | 0.832 (0.719–0.962) | 0.832 (0.720–0.962) | 1.0 (ref) | <0.001 |
Adjusted II (6) ORs (95% CIs) | 0.975 (0.849–1.120) | 0.852 (0.736–0.986) | 0.807 (0.700–0.931) | 1.0 (ref) | <0.001 |
Adjusted III (7) ORs (95% CIs) | 0.988 (0.859–1.135) | 0.858 (0.741–0.994) | 0.826 (0.714–0.957) | 1.0 (ref) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
On, S.; Na, W.; Sohn, C. Relationship Between Fermented Food Consumption Patterns, hs-CRP, and Chronic Diseases Among Middle-Aged Koreans: Data from the 2015–2018 Korea National Health and Nutrition Examination. Nutrients 2025, 17, 1343. https://doi.org/10.3390/nu17081343
On S, Na W, Sohn C. Relationship Between Fermented Food Consumption Patterns, hs-CRP, and Chronic Diseases Among Middle-Aged Koreans: Data from the 2015–2018 Korea National Health and Nutrition Examination. Nutrients. 2025; 17(8):1343. https://doi.org/10.3390/nu17081343
Chicago/Turabian StyleOn, Sori, Woori Na, and Cheongmin Sohn. 2025. "Relationship Between Fermented Food Consumption Patterns, hs-CRP, and Chronic Diseases Among Middle-Aged Koreans: Data from the 2015–2018 Korea National Health and Nutrition Examination" Nutrients 17, no. 8: 1343. https://doi.org/10.3390/nu17081343
APA StyleOn, S., Na, W., & Sohn, C. (2025). Relationship Between Fermented Food Consumption Patterns, hs-CRP, and Chronic Diseases Among Middle-Aged Koreans: Data from the 2015–2018 Korea National Health and Nutrition Examination. Nutrients, 17(8), 1343. https://doi.org/10.3390/nu17081343