Impact of Unfortified Human Milk, Fortified Human Milk, and Preterm Formula Intake on Body Composition at Term in Very Preterm Infants: Secondary Analysis of the PREMFOOD Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Outcomes
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Milk and Macronutrient Intake
3.3. Term Body Composition
3.4. Anthropometry
3.5. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, J.; Lin, L.; Embleton, N.; Harding, J.; McGuire, W. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst. Rev. 2020, 6, CD000343. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.; Embleton, N.D.; Meader, N.; McGuire, W. Donor human milk for preventing necrotizing enterocolitis in very preterm or very low-birthweight infants. Cochrane Database Syst. Rev. 1996, 2024, CD002971. [Google Scholar]
- Colaizy, T.; Poindexter, B.; McDonald, S.A.; Bell, E.F.; Carlo, W.A.; Carlson, S.J.; DeMauro, S.B.; Kennedy, K.A.; Nelin, L.D.; Sánchez, P.J.; et al. Neurodevelopmental Outcomes of Extremely Preterm Infants Fed Donor Milk or Preterm Infant Formula: A Randomized Clinical Trial. JAMA 2024, 331, 582–591. [Google Scholar] [CrossRef]
- Kajantie, E.; Osmond, C.; Barker, D.; Eriksson, J. Preterm birth—A risk factor for type 2 diabetes? The Helsinki birth cohort study. Diabetes Care 2010, 33, 2623–2625. [Google Scholar] [CrossRef] [PubMed]
- Crump, C. An overview of adult health outcomes after preterm birth. Early Hum. Dev. 2020, 150, 105187. [Google Scholar] [CrossRef]
- Markopoulou, P.; Papanikolaou, E.; Analytis, A.; Zoumakis, E.; Siahanidou, T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019, 210, 69–80. [Google Scholar] [CrossRef]
- de Mendonça, E.L.S.S.; de Lima Macêna, M.; Bueno, N.B.; de Oliveira, A.C.M.; Mello, C.S. Premature birth, low birth weight, small for gestational age and chronic non-communicable diseases in adult life: A systematic review with meta-analysis. Early Hum. Dev. 2020, 149, 105154. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Amissah, E.; Gamble, G.; Crowther, C.; Harding, J. Impact of macronutrient supplements on later growth of children born preterm or small for gestational age: A systematic review and meta-analysis of randomised and quasirandomised controlled trials. PLoS Med. 2020, 17, e1003122. [Google Scholar] [CrossRef]
- Kelly, A.; Dengel, D.; Hodges, J.; Zhang, L.; Morgan, A.; Chow, L.; Sinaiko, A.R.; Steinberger, J. The relative contributions of the abdominal visceral and subcutaneous fat depots to cardiometabolic risk in youth. Clin. Obes. 2014, 4, 101–107. [Google Scholar] [CrossRef]
- Pickhardt, P.; Graffy, P.; Zea, R.; Lee, S.; Liu, J.; Sandfort, V.; Summers, R.M. Utilizing Fully Automated Abdominal CT–Based Biomarkers for Opportunistic Screening for Metabolic Syndrome in Adults Without Symptoms. Am. J. Roentgenol. 2021, 16, 85–92. [Google Scholar] [CrossRef]
- Uthaya, S.; Thomas, E.; Hamilton, G.; Dore, C.; Bell, J.; Modi, N. Altered adiposity after extremely preterm birth. Pediatr. Res. 2005, 57, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Parkinson, J.; Hyde, M.; Yap, I.; Holmes, E.; Dore, C.; Bell, J.D.; Modi, N. Aberrant adiposity and ectopic lipid deposition characterize the adult phenotype of the preterm infant. Pediatr. Res. 2011, 70, 507–512. [Google Scholar] [CrossRef]
- Bua, J.; Risso, F.M.; Bin, M.; Vallon, F.; Travan, L.; Paviotti, G. Association between body composition at term equivalent age and Bayley scores at 2 years in preterm infants. J. Perinatol. 2021, 41, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Piemontese, P.; Liotto, N.; Mallardi, D.; Roggero, P.; Puricelli, V.; Giannì, M.L.; Morniroli, D.; Tabasso, C.; Perrone, M.; Menis, C.; et al. The Effect of Human Milk on Modulating the Quality of Growth in Preterm Infants. Front. Pediatr. 2018, 6, 291. [Google Scholar] [CrossRef]
- Morlacchi, L.; Roggero, P.; Giannì, M.; Bracco, B.; Porri, D.; Battiato, E.; Menis, C.; Liotto, N.; Mallardi, D.; Mosca, F. Protein use and weight-Gain quality in very-Low-Birth-Weight preterm infants fed human milk or formula. Am. J. Clin. Nutr. 2018, 107, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Modi, N.; Uthaya, S. Impact of breast milk intake on body composition at term in very preterm babies: Secondary analysis of the Nutritional Evaluation and Optimisation in Neonates randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F306–F312. [Google Scholar] [CrossRef]
- Mills, L.; Chappell, K.E.; Emsley, R.; Alavi, A.; Andrzejewska, I.; Santhakumaran, S.; Nicholl, R.; Chang, J.; Uthaya, S.; Modi, N. Preterm Formula, Fortified or Unfortified Human Milk for Very Preterm Infants, the PREMFOOD Study: A Parallel Randomised Feasibility Trial. Neonatology 2024, 121, 222–232. [Google Scholar] [CrossRef]
- Giuffrida, F.; Austin, S.; Cuany, D.; Sanchez-Bridge, B.; Longet, K.; Bertschy, E.; Sauser, J.; Thakkar, S.K.; Lee, L.Y.; Affolter , M.; et al. Comparison of macronutrient content in human milk measured by mid-infrared human milk analyzer and reference methods. J. Perinatol. 2019, 39, 497–503. [Google Scholar] [CrossRef]
- Koletzko, B.; Poindexter, B.; Uauy, R. (Eds.) Nutritional Care of Preterm Infants: Scientific Basis and Practical Guidelines World Reviews in Nutrition and Dietetics; Karger: Basel, Switzerland, 2014; Volume 110, pp. 300–305. [Google Scholar]
- Gale, G.; Santhakumaran, S.; Wells, J.; Modi, N. Adjustment of directly measured adipose tissue volume in infants. Int. J. Obes. 2014, 38, 995–999. [Google Scholar] [CrossRef]
- Villar, J.; Puglia, F.; Fenton, T.; Cheik Ismail, L.; Staines-Urias, E.; Giuliani, F.; Ohuma, E.O.; Victora, C.G.; Sullivan, P.; Barros, F.C.; et al. Body composition at birth and its relationship with neonatal anthropometric ratios: The newborn body composition study of the INTERGROWTH-21(st) project. Pediatr. Res. 2017, 82, 305–316. [Google Scholar] [CrossRef]
- British Association of Perinatal Medicine. Categories of Care. 2011. Available online: https://www.bapm.org/resources/34-categories-of-care-2011 (accessed on 2nd December 2024).
- Andrews, E.; Beattie, M.; Johnson, M. Measuring body composition in the preterm infant: Evidence base and practicalities. Clin. Nutr. 2019, 38, 2521–2530. [Google Scholar] [CrossRef]
- Simon, L.; Frondas-Chauty, A.; Senterre, T.; Flamant, C.; Darmaun, D.; Roze, J.C. Determinants of body composition in preterm infants at the time of hospital discharge. Am. J. Clin. Nutr. 2014, 100, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Cerasani, J.; Ceroni, F.; De Cosmi, V.; Mazzocchi, A.; Morniroli, D.; Roggero, P.; Mosca, F.; Agostoni, C.; Giannì, M.L. Human Milk feeding and preterm Infants’ growth and body composition: A literature review. Nutrients 2020, 12, 1155. [Google Scholar] [CrossRef] [PubMed]
- Gruszfeld, D.; Weber, M.; Gradowska, K.; Socha, P.; Grote, V.; Xhonneux, A.; Dain, E.; Verduci, E.; Riva, E.; Closa-Monasterolo, R.; et al. Association of early protein intake and pre-peritoneal fat at five years of age: Follow-up of a randomized clinical trial. Nutr. Metabol. Card. Dis. 2016, 26, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Kayshyap, S. Schulze K: Energy requirements and protein-energy metabolism and balance in preterm and term infants. In Neonatal Nutrition and Metabolism, 2nd ed.; Thureen, P.J., Hay, W.W., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 134–146. [Google Scholar]
- Teller, I.C.; Embleton, N.D.; Griffin, I.J.; van Elburg, R.M. Post-discharge formula feeding in preterm infants: A systematic review mapping evidence about the role of macronutrient enrichment. Clin. Nutr. 2016, 35, 791–801. [Google Scholar] [CrossRef]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef]
- Belfort, M.; Cherkerzian, S.; Bell, K.; Soldateli, B.; Cordova Ramos, E.; Palmer, C.; Steele, T.; Pepin, H.; Ellard, D.; Drouin, K.; et al. Macronutrient intake from human milk, infant growth, and body composition at term equivalent age: A longitudinal study of hospitalized very preterm infants. Nutrients 2020, 12, 2249. [Google Scholar] [CrossRef]
- Cooke, R.; Griffin, I.; McCormick, K. Adiposity Is Not Altered in Preterm Infants Fed With a Nutrient-Enriched Formula After Hospital Discharge. Pediatr. Res. 2010, 67, 660–664. [Google Scholar] [CrossRef]
- Gale, C.; Logan, K.; Santhakumaran, S.; Parkinson, J.R.; Hyde, M.J.; Modi, N. Effect of breastfeeding compared with formula feeding on infant body composition: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 656–669. [Google Scholar] [CrossRef]
- Ramel, S.; Gray, H.; Christiansen, E.; Boys, C.; Georgieff, M.K.; Demerath, E.W. Greater early gains in fat-free mass, but not fat mass, are associated with improved neurodevelopment at 1 year corrected age for prematurity in very low birth weight preterm infants. J. Pediatr. 2016, 173, 108–115. [Google Scholar] [CrossRef]
- Lingwood, B.E.; Al-Theyab, N.; Eiby, Y.A.; Colditz, P.B.; Donovan, T.J. Body composition in very preterm infants before discharge is associated with macronutrient intake. Br. J. Nutr. 2020, 123, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Uthaya, S.; Liu, X.; Babalis, D.; Doré, C.J.; Warwick, J.; Bell, J.; Thomas, L.; Ashby, D.; Durighel, G.; Ederies, A.; et al. Nutritional Evaluation and Optimisation in Neonates: A randomized, double-blind controlled trial of amino acid regimen and intravenous lipid composition in preterm parenteral nutrition. Am. J. Clin. Nutr. 2016, 103, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.A.; Gunawan, E.; Nguyen, K.; Reeves, A.; Argent, V.; Finck, A.; Carlo, W.A. Early Human Milk Fortification in Infants Born Extremely Preterm: A Randomized Trial. Pediatrics 2023, 152, e2023061603. [Google Scholar] [CrossRef] [PubMed]
- Modi, N.; Thomas, E.; Uthaya, S.; Umranikar, S.; Bell, J.; Yajnik, C. Whole body magnetic resonance imaging of healthy newborn infants demonstrates increased central adiposity in Asian Indians. Pediatr. Res. 2009, 65, 584–587. [Google Scholar] [CrossRef]
Demographic/Clinical Characteristic * | ExUHM (n = 23) | PrPTF (n = 7) | PrFHM (n = 17) | PrUHM (n = 15) | p-Value $ |
---|---|---|---|---|---|
Sex (%) | 0.49 | ||||
Male | 52.2 | 85.7 | 58.8 | 53.3 | |
Female | 47.8 | 14.3 | 41.2 | 46.7 | |
Gestational age (weeks) | 30.0 (28.7 to 31.0) | 29.3 (26.3 to 31.7) | 30.3 (28.9 to 30.7) | 30.3 (28.1 to 31.6) | 0.93 |
Birth weight (g) | 1235 (1077 to 1643) | 1436 (880 to 1567) | 1313 (1225 to 1555) | 1333 (1070 to 1540) | 0.93 |
Birth weight z score | −0.15 (−1.15 to 0.46) | −0.34 (−0.85 to 0.22) | −0.55 (−1.08 to 0.00) | −0.22 (−0.89 to 0.06) | 0.86 |
Birth length (cm) | 39.0 (37.2 to 41.4) | 37.5 (34.2 to 41.0) | 38.6 (37.0 to 40.0) | 38.5 (37.2 to 40.8) | 0.63 |
Birth OFC (cm) | 27.9 (25.6 to 29.0) | 28.5 (25.0 to 29.6) | 27.0 (26.0 to 28.7) | 27.5 (26.0 to 29.0) | 0.96 |
Multiple birth (%) | 0.78 | ||||
No | 52.2 | 71.4 | 47.1 | 46.7 | |
Yes | 47.8 | 28.6 | 52.9 | 53.3 | |
Small for gestational age (<1.28 z score) (%) | 17.4 | 14.3 | 17.6 | 7.0 | 0.88 |
Received antenatal steroids (%) | 91.3 | 100 | 88.2 | 100 | 0.65 |
Apgar score at 5 min | 8.0 (8.0 to 10.0) | 8.0 (7.0 to 10.0) | 9.0 (8.0 to 9.0) | 9.0 (9.0 to 9.0) | 0.93 |
Maternal age years | 35.0 (33.0 to 38.0) | 35.0 (28.0 to 35.0) | 35.0 (33.0 to 38.0) | 37.0 (31.0 to 38.0) | 0.38 |
Maternal parity (%) | 0.39 | ||||
1 | 65.2 | 71.4 | 82.3 | 86.7 | |
>1 | 34.8 | 28.6 | 17.7 | 13.3 | |
Maternal ethnicity (%) | 0.76 | ||||
White | 60.9 | 85.7 | 76.5 | 79.9 | |
Mixed | 8.7 | 14.3 | 5.9 | 6.7 | |
Asian | 8.7 | 0 | 0 | 6.7 | |
Black | 13.0 | 0 | 17.6 | 6.7 | |
Other | 8.7 | 0 | 0 | 0 | |
Percent level 1 and 2 care # | 46.1 (22.2 to 63.0) | 52.4 (25.8 to 80.4) | 27.0 (18.3 to 64.7) | 49.4 (11.1 to 61.3) | 0.78 |
35 weeks PMA | |||||
Weight (g) | 1846 (1575 to 2170) | 2022 (2030 to 2560) | 1962 (1760 to 2120) | 2022 (1747 to 2215) | 0.48 |
Length (cm) | 43.5 (41.0 to 45.6) | 44.0 (43.1 to 44.9) | 43.7 (41.1 to 44.7) | 43.9 (42.5 to 44.6) | 0.82 |
Head circumference (cm) | 30.8 (29.4 to 32.0) | 31.7 (31.0 to 32.0) | 30.8 (29.9 to 32.0) | 31.2 (30.8 to 32.0) | 0.80 |
Term | |||||
Weight (g) | 2875 (2260 to 3510) | 4000 (3180 to 4040) | 3220 (2940 to 3760) | 3280 (3040 to 3720) | 0.05 |
Length (cm) | 43.5 (45.0 to 52.5) | 51.0 (50.0 to 55.0) | 50.5 (47.5 to 52.0) | 50.0 (48.0 to 52.0) | 0.18 |
OFC (cm) | 35.3 (32.8 to 36.4) | 37.0 (35.8 to 37.8) | 35.6 (34.1 to 36.5) | 35.8 (34.7 to 37.4) | 0.13 |
Term | |||||
TAT (L) | 0.761 (0.492 to 0.974) | 1.138 (0.794 to 1.271) | 0.968 (0.677 to 1.102) | 0.818 (0.710 to 0.971) | 0.11 |
NATM (g) | 2306.5 (1771.3 to 2593.3) | 2876.1 (2465.4 to 2975.8) | 2441.7 (2188.2 to 2769.4) | 2543.8 (2209.5 to2949.9) | 0.03 |
Percent adiposity | 23.5 (18.9 to 25.4) | 25.6 (22.5 to 28.5) | 25.2 (20.7 to 28.6) | 23.0 (21.0 to 24.3) | 0.20 |
Outcome | ExUHM (a) n = 23 | PrPTF (b) n = 7 | PrFHM (c) n = 17 | PrUHM (d) n = 15 | p-Value; Pairwise Comparisons $ |
---|---|---|---|---|---|
Days on PN | 10.9 (3.5) | 13.4 (4.8) | 13.2 (8.3) | 11.7 (7.9) | 0.63 |
UDM mL/kg/d (T1) | 11.6 (26.3) | 17.2 (29.8) | 3.3 (5.7) | 21.4 (39.4) | 0.30 |
UDM mL/kg/d (T2) | 0.9 (3.9) n = 20 | 0 (0) | 0 (0) n = 16 | 0 (0) | 0.63 |
FDM mL/kg/d (T1) | 0 (0) | 0 (0) | 14.7 (26.5) | 0 (0) | 0.01; c > a **; c > d * |
FDM mL/kg/d (T2) | 0 (0) n = 20 | 0 (0) | 0.8 (3.1) n = 16 | 0 (0) | 0.47 |
UHM mL/kg/d (T1) | 135.8 (18.3) | 41.3 (29.5) | 20.1 (11.9) | 102.8 (38.5) | <0.001; a > b; a > c; a > d; d > b; d > c |
UHM mL/kg/d (T2) | 123.0 (45.0) n = 20 | 13.0 (22.7) | 79.9 (63.4) n = 16 | 85.1 (69.0) | <0.001; a > b; d > b * |
FHM mL/kg/d (T1) | 0 (0) | 0 (0) | 110.6 (27.7) | 10.2 (19.1) | <0.001; c > a; c > b; c > d |
FHM mL/kg/d (T2) | 6.1 (27.2) n = 20 | 0 (0) | 34.1 (44.3) n = 16 | 14.3 (53.5) | 0.13 |
Form mL/kg/d (T1) | 0.3 (0.4) | 78.2 (32.2) | 2.5 (6.5) | 16.2 (22.2) | <0.001; b > a; b > c; b > d; d > a * |
Form mL/kg/d (T2) | 18.8 (36.6) n = 20 | 133.9 (52.0) | 30.9 (54.0) n = 16 | 50.9 (55.3) | <0.001; b > a; b > c; b > d ** |
Total milk mL/kg/d (T1) | 136.1 (18.3) | 119.5 (21.4) | 133.2 (21.8) | 129.2 (29.2) | 0.38 |
Total milk mL/kg/d (T2) | 147.8 (37.5) n = 20 | 146.9 (33.1) | 145.0 (51.9) n = 16 | 150.3 (52.9) | 0.99 |
Protein g/kg/d (T1) | 2.68 (0.24) | 3.01 (0.57) | 3.84 (0.40) | 2.75 (0.51) | <0.001; c > a; c > b; c > d |
Protein g/kg/d (T2) | 2.53 (0.82) n = 20 | 2.98 (0.68) | 2.91 (0.80) n = 16 | 3.14 (0.90) | 0.20 |
Energy kcal/kg/d (T1) | 110.78 (8.57) | 107.39 (11.83) | 124.15 (10.60) | 109.95 (12.02) | <0.001; c > a; c > b **; c > d ** |
Energy kcal/kg/d (T2) | 100.93 (26.68) n = 20 | 109.29 (25.79) | 108.16 (26.63) n = 16 | 118.09 (22.14) | 0.44 |
Pro:En g/100 kcal (T1) | 2.42 (0.13) | 2.79 (0.30) | 3.09 (0.12) | 2.50 (0.32) | <0.001; c > a; c > d; c > b *; b > a *; b > d * |
Pro:En g/100 kcal (T2) | 2.47 (0.19) n = 20 | 2.74 (0.12) | 2.67 (0.30) n = 16 | 2.60 (0.32) | 0.04; b > a ***; c > a *** |
Fat g/kg/d (T1) | 5.28 (0.48) | 4.95 (0.71) | 5.14 (0.56) | 5.07 (0.76) | 0.56 |
Fat g/kg/d (T2) | 4.66 (1.94) n = 20 | 5.65 (1.42) | 5.09 (1.84) n = 16 | 5.49 (1.81) | 0.40 |
CHO g/kg/d (T1) | 13.04 (1.19) | 12.45 (0.87) | 15.58 (1.24) | 13.26 (1.17) | <0.001; c > a; c > b; c > d |
CHO g/kg/d (T2) | 9.99 (4.18) n = 20 | 11.28 (2.48) | 11.53 (4.18) n = 16 | 12.02 (4.33) | 0.35 |
Feed at discharge (%) | <0.001 | ||||
Breast milk | 82.6 | 0 | 64.7 | 46.7 | |
Formula | 0 | 57.14 | 29.4 | 33.3 | |
Mixed | 17.4 | 42.6 | 5.9 | 20.0 | |
Feed at term scan (%) | <0.001 | ||||
Breast milk | 60.9 | 0 | 52.9 | 26.7 | |
Formula | 8.7 | 85.7 | 11.8 | 26.7 | |
Mixed | 30.4 | 14.3 | 35.3 | 46.6 |
ExUHM n * = 23 | PrPTF n * = 7 | PrFHM n * = 17 | PrUHM n * = 15 | ||
---|---|---|---|---|---|
∆Wt z score | Unadj | Ref | 0.77 (0.28 to 1.25), p <0.01 | 0.38 (0.03 to 0.74), p = 0.04 | 0.22 (−0.15 to 0.59), p = 0.24 |
birth to 35w | Adj 1 | Ref | 0.75 (0.30 to 1.21), p < 0.01 | 0.32 (−0.02 to 0.66), p = 0.06 | 0.18 (−0.17 to 0.66), p = 0.06 |
∆Wt z score | Unadj | Ref | 1.11 (0.57 to 1.66), p < 0.001 | 0.47 (0.07 to 0.87), p = 0.02 | 0.28 (−0.14 to 0.70), p = 0.19 |
birth to disch | Adj 2 | Ref | 1.09 (0.56 to 1.62), p < 0.001, | 0.40 (0.01 to 0.80), p = 0.04 | 0.25 (−0.15 to 0.66), p = 0.22 |
∆Wt z score | Unadj | Ref | 1.12 (0.40 to 1.84), p < 0.01 | 0.52 (−0.01 to 1.06), p = 0.05 | 0.34 (−0.22 to 0.89), p = 0.23 |
birth to term | Adj 1 | Ref | 1.11 (0.38 to 1.84), p < 0.01 | 0.49 (−0.05 to 1.03), p = 0.08 | 0.32 (−0.24 to 0.88), p = 0.25 |
∆Length z score | Unadj | Ref | 0.52 (−0.08 to 1.11), p = 0.09 | 0.21 (−0.23 to 0.65), p = 0.34 | 0.02 (−0.45 to 0.48), p = 0.95 |
birth to 35w | Adj 1 | Ref | 0.51 (−0.05 to 1.07), p = 0.08 | 0.15 (−0.27 to 0.56), p = 0.48 | −0.03 (−0.47 to 0.41), p = 0.90 |
∆Length z score | Unadj | Ref | 1.18 (0.14 to 2.22), p = 0.03 | 0.81 (0.02 to 1.60), p = 0.04 | −0.19 (−1.03 to 0.65), p = 0.65 |
birth to term | Adj 1 | Ref | 1.22 (0.18 to 2.26), p = 0.02 | 0.87 (0.08 to 1.67), p = 0.03 | −0.12 (−0.96 to 0.72), p = 0.77 |
∆OFC z score | Unadj | Ref | 0.64 (−0.49 to 1.76), p = 0.26 | 0.16 (−0.71 to 1.02), p = 0.72 | 0.02 (−0.86 to 0.91), p = 0.96 |
birth to term | Adj 1 | Ref | 0.54 (−0.58 to 1.67), p = 0.34 | 0.07 (−0.80 to 0.94), p = 0.87 | −0.03 (−0.90 to 0.85), p = 0.96 |
TAT (L) | Unadj | Ref | 0.293 (0.037 to 0.548), p = 0.03 | 0.162 (−0.027 to 0.351), p = 0.09 | 0.081 (−0.115 to 0.277), p = 0.41 |
Adj 3 | Ref | 0.165 (−0.009 to 0.338), p = 0.06 | 0.080 (−0.047 to 0.207), p = 0.21 | −0.081 (−0.218 to 0.057), p = 0.25 | |
Non-ATM (g) | Unadj | Ref | 506.2 (119.3 to 893.0), p = 0.01 | 224.5 (−62.1 to 511.1), p = 0.12 | 340.6 (43.2 to 638.0), p = 0.03 |
Adj 3 | Ref | 274.3 (30.1 to 518.5), p = 0.03 | 136.5 (−42.0 to 315.1), p = 0.13 | 159.6 (−34.4 to 353.6), p = 0.11 | |
% ATM | Unadj | Ref | 2.9 (−0.7 to 6.4), p = 0.11 | 2.1 (−0.5 to 4.7), p = 0.12 | 0.02 (−2.7 to 2.7), p = 0.99 |
Adj 4 | Ref | 2.3 (−1.0 to 5.7), p = 0.17 | 1.7 (−0.7 to 4.1), p = 0.16 | −1.2 (−3.8 to 1.4), p = 0.36 | |
IAAT | Unadj | Ref | 49.0 (6.7 to 108.1), p = 0.02 | 24.5 (−2.9 to 59.4), p = 0.08 | 17.2 (−9.3 to 51.6), p = 0.22 |
(% change) | Adj 3 | Ref | 35.0 (5.1 to 73.2), p = 0.02 | 15.0 (−4.0 to 38.3), p = 0.13 | 0.1 (−17.9 to 22.0), p = 0.99 |
INAAT | Unadj | Ref | 41.1 (−0.3 to 99.4), p = 0.05 | 9.9 (−15.1 to 42.1), p = 0.47 | 16.0 (−11.2 to 51.5), p = 0.27 |
(% change) | Adj 3 | Ref | 19.1 (−8.7 to 55.4), p = 0.19 | −1.1 (−18.5 to 20.2), p = 0.91 | −5.1 (−23.1 to 17.4), p = 0.63 |
DSCAAT | Unadj | Ref | 66.2 (1.1 to 173.2), p = 0.05 | 26.1 (−12.7 to 82.2), p = 0.21 | 12.9 (−23.0 to 65.4), p = 0.53 |
(% change) | Adj 3 | Ref | 31.7 (−6.8 to 86.1), p = 0.12 | 7.3 (−16.6 to 38.1), p = 0.58 | −18.5 (−38.1 to 7.3), p = 0.14 |
DSCNAAT | Unadj | Ref | 47.3 (−0.1 to 117.1), p = 0.05 | 33.8 (0.3 to 78.4), p = 0.05 | 26.0 (−6.5 to 69.9), p = 0.13 |
(% change) | Adj 3 | Ref | 25.7 (−9.4 to 74.5), p = 0.17 | 23.6 (−2.8 to 57.1), p = 0.08 | 6.9 (−17.6 to 38.8), p = 0.61 |
SSCAAT (L) | Unadj | Ref | 0.055 (0.008 to 0.103), p = 0.02 | 0.023 (−0.012 to 0.059), p = 0.20 | 0.005 (−0.032 to 0.042), p = 0.78 |
Adj 3 | Ref | 0.031 (−0.006 to 0.067), p = 0.10 | 0.005 (−0.021 to 0.032), p = 0.68 | −0.028 (−0.057 to 0.001), p = 0.06 | |
SSCNAAT (L) | Unadj | Ref | 0.191 (0.023 to 0.360), p = 0.03 | 0.117 (−0.008 to 0.242), p = 0.07 | 0.063 (−0.067 to 0.1920, p = 0.34 |
Adj 3 | Ref | 0.110 (−0.008 to 0.227), p = 0.07 | 0.066 (−0.020 to 0.152), p = 0.13 | −0.040 (−0.133 to 0.054), p = 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, L.; Uthaya, S.; Modi, N. Impact of Unfortified Human Milk, Fortified Human Milk, and Preterm Formula Intake on Body Composition at Term in Very Preterm Infants: Secondary Analysis of the PREMFOOD Trial. Nutrients 2025, 17, 1366. https://doi.org/10.3390/nu17081366
Mills L, Uthaya S, Modi N. Impact of Unfortified Human Milk, Fortified Human Milk, and Preterm Formula Intake on Body Composition at Term in Very Preterm Infants: Secondary Analysis of the PREMFOOD Trial. Nutrients. 2025; 17(8):1366. https://doi.org/10.3390/nu17081366
Chicago/Turabian StyleMills, Luke, Sabita Uthaya, and Neena Modi. 2025. "Impact of Unfortified Human Milk, Fortified Human Milk, and Preterm Formula Intake on Body Composition at Term in Very Preterm Infants: Secondary Analysis of the PREMFOOD Trial" Nutrients 17, no. 8: 1366. https://doi.org/10.3390/nu17081366
APA StyleMills, L., Uthaya, S., & Modi, N. (2025). Impact of Unfortified Human Milk, Fortified Human Milk, and Preterm Formula Intake on Body Composition at Term in Very Preterm Infants: Secondary Analysis of the PREMFOOD Trial. Nutrients, 17(8), 1366. https://doi.org/10.3390/nu17081366