Does Poultry Consumption Increase the Risk of Mortality for Gastrointestinal Cancers? A Preliminary Competing Risk Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Outcome Assessment
2.4. Exposure Assessment
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Participant Meat Consumption
3.3. Meat Consumption and Cancer Mortality
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIF | Cumulative Incidence Function |
CRC | Colorectal cancer |
DOC | Other causes of death |
GC | Gastrointestinal cancer |
HR | Hazard ratio |
MICOL | Multicentric Italian Cholelithiasis |
NUTRIHEP | Nutrition and Hepatology |
OCr | Other cancers |
SHR | Subdistribution hazard ratio |
References
- Available online: www.ismeamercati.it (accessed on 15 March 2025).
- Connolly, G.; Clark, C.M.; Campbell, R.E.; Byers, A.W.; Reed, J.B.; Campbell, W.W. Poultry Consumption and Human Health: How Much Is Really Known? A Systematically Searched Scoping Review and Research Perspective. Adv. Nutr. 2022, 13, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.dietaryguidelines.gov/ (accessed on 15 March 2025).
- Available online: www.crea.gov.it (accessed on 15 March 2025).
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans; U.S. Department of Agriculture: Washington, DC, USA, 2020. [Google Scholar]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of Poultry Meat in a Balanced Diet Aimed at Maintaining Health and Wellbeing: An Italian Consensus Document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef]
- Pasiakos, S.; Agarwal, S.; Lieberman, H.; Fulgoni, V. Sources and Amounts of Animal, Dairy, and Plant Protein Intake of US Adults in 2007–2010. Nutrients 2015, 7, 7058–7069. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report: Meat, Fish and Dairy Products and the Risk of Cancer; World Cancer Research Fund International: London, UK, 2018; pp. 1–78. [Google Scholar]
- Sauvaget, C.; Nagano, J.; Allen, N.; Grant, E.J.; Beral, V. Intake of Animal Products and Stroke Mortality in the Hiroshima/Nagasaki Life Span Study. Int. J. Epidemiol. 2003, 32, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Sun, Q.; Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Willett, W.C. Major Dietary Protein Sources and Risk of Coronary Heart Disease in Women. Circulation 2010, 122, 876–883. [Google Scholar] [CrossRef]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912. [Google Scholar] [CrossRef]
- Cozzolongo, R.; Osella, A.R.; Elba, S.; Petruzzi, J.; Buongiorno, G.; Giannuzzi, V.; Leone, G.; Bonfiglio, C.; Lanzilotta, E.; Manghisi, O.G.; et al. Epidemiology of HCV Infection in the General Population: A Survey in a Southern Italian Town. Am. J. Gastroenterol. 2009, 104, 2740–2746. [Google Scholar] [CrossRef]
- Bonfiglio, C.; Cuccaro, F.; Campanella, A.; Rosso, N.; Tatoli, R.; Giannelli, G.; Donghia, R. Effect of Intake of Extra Virgin Olive Oil on Mortality in a South Italian Cohort with and without NAFLD. Nutrients 2023, 15, 4593. [Google Scholar] [CrossRef]
- Attili, A.F.; Capocaccia, R.; Carulli, N.; Festi, D.; Roda, E.; Barbara, L.; Capocaccia, L.; Menotti, A.; Okolicsanyi, L.; Ricci, G.; et al. Factors Associated with Gallstone Disease in the MICOL Experience. Hepatology 1997, 26, 809–818. [Google Scholar] [CrossRef]
- Campanella, A.; Sorino, P.; Bonfiglio, C.; Mirizzi, A.; Franco, I.; Bianco, A.; Misciagna, G.; Caruso, M.G.; Cisternino, A.M.; Notarnicola, M.; et al. Effects of Weight Change on All Causes, Digestive System and Other Causes Mortality in Southern Italy: A Competing Risk Approach. Int. J. Obes. 2022, 46, 113–120. [Google Scholar] [CrossRef] [PubMed]
- United Nations Educational, Scientific and Cultural Organization. International Standard Classification of Education (ISCED-97); United Nations Educational, Scientific and Cultural Organization: Paris, France, 2006. [Google Scholar]
- International Labour Office. International Standard Classification of Occupations; International Labour Office: Geneva, Switzerland, 1990. [Google Scholar]
- Sever, P. New Hypertension Guidelines from the National Institute for Health and Clinical Excellence and the British Hypertension Society. J. Renin-Angiotensin-Aldosterone Syst. 2006, 7, 61–63. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension: ESC/ESH Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef]
- Kaaks, R. Validation and Calibration of Dietary Intake Measurements in the EPIC Project: Methodological Considerations. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S15–S25. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E. The EPIC Project: Rationale and Study Design. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S6–S14. [Google Scholar] [CrossRef]
- Riboli, E.; Hunt, K.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondière, U.; Hémon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study Populations and Data Collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef]
- WHO. International Classification of Diseases, 10th ed.; WHO: Geneva, Switzerland, 1993. [Google Scholar]
- la Società Italiana di Nutrizione Umana. LARN. Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; la Società Italiana di Nutrizione Umana: Milan, Italy, 2014. [Google Scholar]
- Abeysekera, W.; Sooriyarachchi, M. Use of Schoenfeld’s Global Test to Test the Proportional Hazards Assumption in the Cox Proportional Hazards Model: An Application to a Clinical Study. J. Natn. Sci. Foundation Sri Lanka 2009, 37, 41. [Google Scholar] [CrossRef]
- Ahrens, A.; Hansen, C.B.; Schaffer, M.E. Lassopack: Model Selection and Prediction with Regularized Regression in Stata. Stata J. 2020, 20, 176–235. [Google Scholar] [CrossRef]
- Mozumder, S.I.; Rutherford, M.J.; Lambert, P.C. Stpm2cr: A Flexible Parametric Competing Risks Model Using a Direct Likelihood Approach for the Cause-Specific Cumulative Incidence Function. Stata J. 2017, 17, 462–489. [Google Scholar] [CrossRef]
- Austin, P.C.; Lee, D.S.; Fine, J.P. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation 2016, 133, 601–609. [Google Scholar] [CrossRef]
- Coviello, V.; Boggess, M. Cumulative Incidence Estimation in the Presence of Competing Risks. Stata J. Promot. Commun. Stat. Stata 2004, 4, 103–112. [Google Scholar] [CrossRef]
- Kim, S.R.; Kim, K.; Lee, S.A.; Kwon, S.O.; Lee, J.-K.; Keum, N.; Park, S.M. Effect of Red, Processed, and White Meat Consumption on the Risk of Gastric Cancer: An Overall and Dose–Response Meta-Analysis. Nutrients 2019, 11, 826. [Google Scholar] [CrossRef]
- Egeberg, R.; Olsen, A.; Christensen, J.; Halkjær, J.; Jakobsen, M.U.; Overvad, K.; Tjønneland, A. Associations between Red Meat and Risks for Colon and Rectal Cancer Depend on the Type of Red Meat Consumed. J. Nutr. 2013, 143, 464–472. [Google Scholar] [CrossRef]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and Beverages and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies, an Update of the Evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, P.-W.; Zeng, D.-Z. Dose–Response Meta-Analysis of Poultry Intake and Colorectal Cancer Incidence and Mortality. Eur. J. Nutr. 2015, 54, 243–250. [Google Scholar] [CrossRef]
- Daniel, C.R.; Cross, A.J.; Graubard, B.I.; Hollenbeck, A.R.; Park, Y.; Sinha, R. Prospective Investigation of Poultry and Fish Intake in Relation to Cancer Risk. Cancer Prev. Res. 2011, 4, 1903–1911. [Google Scholar] [CrossRef]
- Chen, X. Oxidative Damage in an Esophageal Adenocarcinoma Model with Rats. Carcinogenesis 2000, 21, 257–263. [Google Scholar] [CrossRef]
- Chen, X.; Yang, G.; Ding, W.Y.; Bondoc, F.; Curtis, S.K.; Yang, C.S. An Esophagogastroduodenal Anastomosis Model for Esophageal Adenocarcinogenesis in Rats and Enhancement by Iron Overload. Carcinogenesis 1999, 20, 1801–1808. [Google Scholar] [CrossRef]
- Boldo, E.; Fernández De Larrea, N.; Pollán, M.; Martín, V.; Obón-Santacana, M.; Guevara, M.; Castaño-Vinyals, G.; Canga, J.M.; Pérez-Gómez, B.; Gómez-Acebo, I.; et al. Meat Intake, Cooking Methods, Doneness Preferences and Risk of Gastric Adenocarcinoma in the MCC-Spain Study. Nutrients 2022, 14, 4852. [Google Scholar] [CrossRef]
- Sugimura, T. Nutrition and Dietary Carcinogens. Carcinogenesis 2000, 21, 387–395. [Google Scholar] [CrossRef]
- Tabelle Nutrizionali. Available online: https://www.alimentinutrizione.it/tabelle-nutrizionali (accessed on 15 March 2025).
- Sinha, R.; Rothman, N.; Brown, E.D.; Salmon, C.P.; Knize, M.G.; Swanson, C.A.; Rossi, S.C.; Mark, S.D.; Levander, O.A.; Felton, J.S. High Concentrations of the Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo-[4,5-b]Pyridine (PhIP) Occur in Chicken but Are Dependent on the Cooking MethodHigh Concentrations of the Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo-[4,5-b]Pyridine (PhIP) Occur in Chicken but Are Dependent on the Cooking Method. Cancer Res. 1995, 55, 4516–4519. [Google Scholar]
- Yip, C.S.C.; Lam, W.; Fielding, R. A Summary of Meat Intakes and Health Burdens. Eur. J. Clin. Nutr. 2018, 72, 18–29. [Google Scholar] [CrossRef]
- Kappeler, R.; Eichholzer, M.; Rohrmann, S. Meat Consumption and Diet Quality and Mortality in NHANES III. Eur. J. Clin. Nutr. 2013, 67, 598–606. [Google Scholar] [CrossRef]
- Mejborn, H.; Møller, S.P.; Thygesen, L.C.; Biltoft-Jensen, A. Dietary Intake of Red Meat, Processed Meat, and Poultry and Risk of Colorectal Cancer and All-Cause Mortality in the Context of Dietary Guideline Compliance. Nutrients 2020, 13, 32. [Google Scholar] [CrossRef]
- Donghia, R.; Tatoli, R.; Campanella, A.; Cuccaro, F.; Bonfiglio, C.; Giannelli, G. Adding a Leafy Vegetable Fraction to Diets Decreases the Risk of Red Meat Mortality in MASLD Subjects: Results from the MICOL Cohort. Nutrients 2024, 16, 1207. [Google Scholar] [CrossRef]
- Takata, Y.; Shu, X.-O.; Gao, Y.-T.; Li, H.; Zhang, X.; Gao, J.; Cai, H.; Yang, G.; Xiang, Y.-B.; Zheng, W. Red Meat and Poultry Intakes and Risk of Total and Cause-Specific Mortality: Results from Cohort Studies of Chinese Adults in Shanghai. PLoS ONE 2013, 8, e56963. [Google Scholar] [CrossRef]
- Narayanan, S.P.; Anderson, B.; Bharucha, A.E. Sex- and Gender-Related Differences in Common Functional Gastroenterologic Disorders. Mayo Clin. Proc. 2021, 96, 1071–1089. [Google Scholar] [CrossRef]
- Lopes-Ramos, C.M.; Quackenbush, J.; DeMeo, D.L. Genome-Wide Sex and Gender Differences in Cancer. Front. Oncol. 2020, 10, 597788. [Google Scholar] [CrossRef]
- Feraco, A.; Armani, A.; Amoah, I.; Guseva, E.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Lombardo, M. Assessing Gender Differences in Food Preferences and Physical Activity: A Population-Based Survey. Front. Nutr. 2024, 11, 1348456. [Google Scholar] [CrossRef]
- Available online: https://www.tuttitalia.it/statistiche/indici-demografici-struttura-popolazione/ (accessed on 15 March 2025).
- Cavani, C.; Petracci, M.; Trocino, A.; Xiccato, G. Advances in Research on Poultry and Rabbit Meat Quality. Ital. J. Anim. Sci. 2009, 8, 741–750. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Perception of Rabbit Meat Quality and Major Factors Influencing the Rabbit Carcass and Meat Quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Kim, Y.; Park, I.; Kang, M. Convergent Validity of the International Physical Activity Questionnaire (IPAQ): Meta-Analysis. Public Health Nutr. 2013, 16, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Veeranki, S.P.; Magnussen, C.G.; Xi, B. Recommended Physical Activity and All Cause and Cause Specific Mortality in US Adults: Prospective Cohort Study. BMJ 2020, 370, m2031. [Google Scholar] [CrossRef] [PubMed]
- Fewell, Z.; Davey Smith, G.; Sterne, J.A.C. The Impact of Residual and Unmeasured Confounding in Epidemiologic Studies: A Simulation Study. Am. J. Epidemiol. 2007, 166, 646–655. [Google Scholar] [CrossRef]
Parameter 1 | Total Sample 2 | Sex 3 | p-Value 4 | |
---|---|---|---|---|
Women | Men | |||
N (%) | 4869 | 2356 (48.39) | 2513 (51.61) | |
Total meat categories (g/week) | ||||
<200 | 860 (17.7) | 503 (58.5) | 357 (41.5) | <0.001 |
200–300 | 906 (18.6) | 466 (51.4) | 440 (48.6) | |
301–400 | 870 (17.9) | 416 (47.8) | 454 (52.2) | |
>400 | 2717 (55.8) | 1192 (43.9) | 1525 (56.1) | |
Red meat categories (g/week) | ||||
<150 | 466 (9.6) | 275 (59.0) | 191 (41.0) | <0.001 |
150–250 | 1036 (21.3) | 582 (56.2) | 454 (43.8) | |
251–350 | 1101 (22.6) | 500 (45.4) | 601 (54.6) | |
>350 | 2266 (46.5) | 999 (44.1) | 1267 (55.9) | |
Poultry categories (g/week) | ||||
<100 | 2353 (48.3) | 1188 (50.5) | 1165 (49.5) | <0.001 |
100–200 | 1508 (31.0) | 736 (48.8) | 772 (51.2) | |
201–300 | 520 (10.7) | 233 (44.8) | 287 (55.2) | |
>300 | 488 (10.0) | 199 (40.8) | 289 (59.2) | |
Age at enrolment (yrs) | 51.52 (15.84) | 51.26 (16.02) | 51.76 (15.67) | 0.28 |
SBP (mmHg) | 124.00 (17.85) | 122.45 (18.36) | 125.45 (17.25) | <0.001 |
DBP (mmHg) | 76.75 (9.75) | 75.88 (9.68) | 77.55 (9.75) | <0.001 |
Weight (kg) | 73.07 (14.95) | 66.15 (13.11) | 79.55 (13.62) | <0.001 |
BMI (kg/m2) | 27.53 (5.11) | 27.08 (5.75) | 27.95 (4.39) | <0.001 |
Kcalories | 2173.05 (794.20) | 1953.94 (716.36) | 2378.46 (808.71) | <0.001 |
Wine (mL/day) | 120.04 (175.23) | 51.71 (94.48) | 184.10 (206.51) | <0.001 |
TGs (mg/dL) | 122.07 (87.59) | 105.47 (70.17) | 137.63 (98.75) | <0.001 |
TC (mg/dL) | 197.29 (39.20) | 198.21 (38.48) | 196.44 (39.85) | 0.12 |
HDL (mg/dL) | 51.63 (13.63) | 56.65 (13.95) | 46.93 (11.49) | <0.001 |
LDL (mg/dL) | 121.53 (33.66) | 120.47 (33.48) | 122.53 (33.80) | 0.034 |
Glucose (mg/dL) | 105.88 (25.26) | 102.72 (24.94) | 108.83 (25.21) | <0.001 |
GGT (U/L) | 15.13 (15.06) | 12.10 (13.42) | 17.98 (15.93) | <0.001 |
ALT (U/L) | 16.70 (13.40) | 14.08 (11.44) | 19.16 (14.58) | <0.001 |
AST (U/L) | 12.29 (8.06) | 11.43 (7.65) | 13.10 (8.35) | <0.001 |
Smoking | ||||
Never/former | 4056 (83.3) | 2079 (51.3) | 1977 (48.7) | <0.001 |
Current | 813 (16.7) | 277 (34.1) | 536 (65.9) | |
Age at death (yrs) | 69.05 (57.40–79.98) | 69.33 (57.37–80.42) | 68.93 (57.41–79.49) | 0.82 |
Observation time (yrs) | 18.80 (18.05–19.04) | 18.80 (18.10–19.04) | 18.81 (18.03–19.04) | 0.067 |
Status | ||||
Alive and/or censored | 3841 (78.9) | 1929 (50.2) | 1912 (49.8) | <0.001 |
Dead | 1028 (21.1) | 427 (41.5) | 601 (58.5) | |
Cause of death | ||||
GC | 108 (10.5) | 33 (30.6) | 75 (69.4) | 0.039 |
OCr | 180 (17.5) | 73 (40.6) | 107 (59.4) | |
DOC | 740 (72.0) | 321 (43.4) | 419 (56.6) | |
CCI | 3.00 (1.00–4.00) | 2.00 (1.00–4.00) | 3.00 (1.00–5.00) | <0.001 |
Hypertension | ||||
No | 3664 (75.3) | 1784 (48.7) | 1880 (51.3) | 0.46 |
Yes | 1205 (24.7) | 572 (47.5) | 633 (52.5) | |
Dyslipidemia | ||||
No | 4062 (83.4) | 2024 (49.8) | 2038 (50.2) | <0.001 |
Yes | 807 (16.6) | 332 (41.1) | 475 (58.9) | |
Diabetes | ||||
No | 4543 (93.3) | 2229 (49.1) | 2314 (50.9) | <0.001 |
Yes | 326 (6.7) | 127 (39.0) | 199 (61.0) | |
rMED | ||||
rMED score | ||||
Low | 1286 (26.4) | 492 (38.3) | 794 (61.7) | <0.001 |
Medium | 2561 (52.6) | 1214 (47.4) | 1347 (52.6) | |
High | 1022 (21.0) | 650 (63.6) | 372 (36.4) | |
Job | ||||
Managers and professionals | 174 (6.2) | 37 (21.3) | 137 (78.7) | <0.001 |
Craft, agricultural, and sales workers | 859 (30.4) | 268 (31.2) | 591 (68.8) | |
Elementary occupations | 738 (26.1) | 300 (40.7) | 438 (59.3) | |
Homemaker | 334 (11.8) | 332 (99.4) | 2 (0.6) | |
Pensioners | 680 (24.1) | 251 (36.9) | 429 (63.1) | |
Unemployed | 42 (1.5) | 20 (47.6) | 22 (52.4) | |
Education | ||||
Illiterate | 167 (3.5) | 90 (53.9) | 77 (46.1) | <0.001 |
Primary school | 1328 (27.5) | 721 (54.3) | 607 (45.7) | |
Secondary school | 1475 (30.5) | 673 (45.6) | 802 (54.4) | |
High school | 1374 (28.4) | 645 (46.9) | 729 (53.1) | |
Graduate | 487 (10.1) | 207 (42.5) | 280 (57.5) | |
Marital status | ||||
Single | 755 (15.6) | 378 (50.1) | 377 (49.9) | <0.001 |
Married/cohabiting | 3649 (75.5) | 1640 (44.9) | 2009 (55.1) | |
Separated/divorced | 117 (2.4) | 70 (59.8) | 47 (40.2) | |
Widower | 310 (6.4) | 248 (80.0) | 62 (20.0) |
N (%) | Total Deaths | GC | OCr | DOC | p-Value 1 |
---|---|---|---|---|---|
1028 | 108 (10.5) | 180 (17.5) | 740 (72.0) | ||
Mean (SE) | Mean (SE) | Mean (SE) | Mean (SE) | ||
rMED | 8.74 (0.10) | 8.59 (0.34) | 8.44 (0.27) | 8.83 (0.11) | |
Total Meat (g/week) | 371.13 (8.46) | 411.74 (23.92) | 407.90 (22.19) | 356.56 (9.79) | 0.020 |
Red Meat (g/week) | 220.12 (5.95) | 230.22 (15.86) | 263.34 (18.49) | 208.25 (6.48) | 0.002 |
Lamb (g/week) | 52.23 (3.27) | 56.53 (10.42) | 61.71 (123.87) | 49.33 (3.64) | 0.33 |
Horse (g/week) | 22.73 (1.79) | 22.44 (5.79) | 27.36 (67.15) | 21.69 (1.90) | 0.50 |
Pig (g/week) | 43.88 (1.76) | 54.50 (5.40) | 51.98 (70.19) | 40.44 (1.92) | 0.006 |
Calf (g/week) | 106.65 (3.93) | 102.58 (9.71) | 129.43 (164.61) | 101.72 (4.33) | 0.028 |
White Meat (g/week) | 151.01 (4.86) | 181.53 (15.72) | 144.56 (9.47) | 148.31 (5.90) | 0.10 |
Rabbit (g/week) | 42.18 (2.15) | 44.88 (5.90) | 34.66 (3.65) | 43.62 (2.71) | 0.27 |
Poultry (g/week) | 108.84 (3.82) | 136.65 (12.72) | 109.90 (8.10) | 104.69 (4.55) | 0.044 |
All Causes | GC | OCr | DOC | |
---|---|---|---|---|
HR (95% CI) | SHR (95% CI) | SHR (95% CI) | SHR (95% CI) | |
Model a | ||||
Meat consumption (g/week) | ||||
<200 | 1.00 | 1.00 | 1.00 | 1.00 |
200–300 | 0.81 * (0.67; 0.98) | 0.46 * (0.23, 0.93) | 0.82 (0.51; 1.32) | 0.89 (0.72; 1.10) |
301–400 | 1.09 (0.90; 1.32) | 1.14 (0.64; 2.03) | 1.19 (0.76; 1.86) | 0.95 (0.76; 1.19) |
>400 | 1.18 (0.99; 1.39) | 1.23 (0.73; 2.06) | 1.14 (0.76; 1.71) | 1.00 (0.82; 1.22) |
Model b | ||||
Red meat consumption (g/week) | ||||
<150 | 1.00 | 1.00 | 1.00 | 1.00 |
150–250 | 0.80 * (0.65; 0.98) | 0.95 (0.48; 1.86) | 0.71 (0.43; 1.18) | 0.86 (0.68; 1.08) |
251–350 | 0.97 (0.79; 1.19) | 1.23 (0.63; 2.39) | 0.79 (0.49; 1.29) | 0.99 (0.78; 1.25) |
>350 | 0.97 (0.79; 1.19) | 1.05 (0.53; 2.09) | 1.02 (0.65; 1.61) | 0.88 (0.69; 1.12) |
Model c | ||||
Poultry consumption (g/week) | ||||
<100 | 1.00 | 1.00 | 1.00 | 1.00 |
100–200 | 1.09 (0.94; 1.26) | 1.65 * (1.06; 2.59) | 0.90 (0.64; 1.27) | 0.99 (0.83; 1.17) |
201–300 | 1.13 (0.88; 1.45) | 2.11 * (1.09; 4.09) | 0.94 (0.54; 1.65) | 0.97 (0.70; 1.34) |
>300 | 1.27 * (1.00; 1.61) | 2.27 * (1.23; 4.17) | 0.93 (0.53; 1.61) | 1.07 (0.80; 1.43) |
All Causes | GC | OCr | DOC | |
---|---|---|---|---|
HR (95% CI) | SHR (95% CI) | SHR (95% CI) | SHR (95% CI) | |
Model d | ||||
Meat consumption (g/week) | ||||
Men | ||||
<200 | 1.00 | 1.00 | 1.00 | 1.00 |
200–300 | 0.73 * (0.56; 0.95) | 0.32 * (0.13; 0.80) | 1.02 (0.52; 2.00) | 0.80 (0.61; 1.07) |
301–400 | 1.01 (0.78; 1.29) | 0.81 (0.40; 1.67) | 1.58 (0.83; 3.01) | 0.81 (0.61; 1.08) |
>400 | 1.10 (0.88; 1.38) | 1.00 (0.54; 1.84) | 1.32 (0.73; 2.37) | 0.89 (0.68; 1.15) |
Women | ||||
<200 | 1.00 | 1.00 | 1.00 | 1.00 |
200–300 | 0.92 (0.69; 1.23) | 0.80 (0.26; 2.49) | 0.69 (0.34; 1.40) | 1.00 (0.72; 1.38) |
301–400 | 1.24 (0.92; 1.67) | 1.90 (0.74; 4.87) | 0.85 (0.42; 1.71) | 1.16 (0.81; 1.68) |
>400 | 1.27 (0.97; 1.65) | 1.66 (0.64; 4.27) | 1.05 (0.58; 1.89) | 1.17 (0.86; 1.57) |
Model e | ||||
Red meat consumption (g/week) | ||||
Men | ||||
<150 | 1.00 | 1.00 | 1.00 | 1.00 |
150–250 | 0.80 (0.60; 1.07) | 1.03 (0.44; 2.39) | 0.69 (0.31; 1.52) | 0.84 (0.61; 1.15) |
251–350 | 0.98 (0.74; 1.29) | 1.05 (0.45; 2.44) | 1.12 (0.55; 2.28) | 0.92 (0.67; 1.26) |
>350 | 0.92 (0.70; 1.22) | 0.90 (0.38; 2.11) | 1.26 (0.64; 2.48) | 0.78 (0.57; 1.08) |
Women | ||||
<150 | 1.00 | 1.00 | 1.00 | 1.00 |
150–250 | 0.78 (0.59; 1.05) | 0.64 (0.19; 2.12) | 0.78 (0.41; 1.49) | 0.86 (0.61; 1.21) |
251–350 | 0.96 (0.71; 1.31) | 1.75 (0.60; 5.11) | 0.49 (0.23; 1.07) | 1.02 (0.71; 1.48) |
>350 | 1.06 (0.77; 1.44) | 1.25 (0.41; 3.79) | 0.87 (0.44; 1.69) | 1.04 (0.71; 1.51) |
Model f | ||||
Poultry consumption (g/week) | ||||
Men | ||||
<100 | 1.00 | 1.00 | 1.00 | 1.00 |
100–200 | 1.06 (0.88; 1.28) | 1.65 (0.95; 2.87) | 1.02 (0.65; 1.58) | 0.89 (0.72; 1.12) |
201–300 | 1.01 (0.72; 1.41) | 2.12 (0.96; 4.70) | 0.86 (0.41; 1.78) | 0.80 (0.51; 1.25) |
>300 | 1.25 (0.93; 1.67) | 2.61 * (1.31; 5.19) | 0.70 (0.33; 1.51) | 1.01 (0.69; 1.47) |
Women | ||||
<100 | 1.00 | 1.00 | 1.00 | 1.00 |
100–200 | 1.13 (0.89; 1.43) | 1.37 (0.63; 2.99) | 0.75 (0.42; 1.32) | 1.16 (0.88; 1.52) |
201–300 | 1.33 (0.90; 1.97) | 1.72 (0.51; 5.82) | 1.07 (0.43; 2.67) | 1.20 (0.74; 1.94) |
>300 | 1.34 (0.90; 2.00) | 1.49 (0.35; 5.26) | 1.40 (0.61; 3.18) | 1.17 (0.72; 1.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonfiglio, C.; Tatoli, R.; Donghia, R.; Pesole, P.L.; Giannelli, G. Does Poultry Consumption Increase the Risk of Mortality for Gastrointestinal Cancers? A Preliminary Competing Risk Analysis. Nutrients 2025, 17, 1370. https://doi.org/10.3390/nu17081370
Bonfiglio C, Tatoli R, Donghia R, Pesole PL, Giannelli G. Does Poultry Consumption Increase the Risk of Mortality for Gastrointestinal Cancers? A Preliminary Competing Risk Analysis. Nutrients. 2025; 17(8):1370. https://doi.org/10.3390/nu17081370
Chicago/Turabian StyleBonfiglio, Caterina, Rossella Tatoli, Rossella Donghia, Pasqua Letizia Pesole, and Gianluigi Giannelli. 2025. "Does Poultry Consumption Increase the Risk of Mortality for Gastrointestinal Cancers? A Preliminary Competing Risk Analysis" Nutrients 17, no. 8: 1370. https://doi.org/10.3390/nu17081370
APA StyleBonfiglio, C., Tatoli, R., Donghia, R., Pesole, P. L., & Giannelli, G. (2025). Does Poultry Consumption Increase the Risk of Mortality for Gastrointestinal Cancers? A Preliminary Competing Risk Analysis. Nutrients, 17(8), 1370. https://doi.org/10.3390/nu17081370