Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress
Abstract
:1. Introduction
2. Physiological Impact of Heat Stress on Monogastric Animals
2.1. Thermoregulatory Mechanisms
2.2. Endocrine and Metabolic Disruptions
2.3. Muscle Metabolism and Oxidative Stress
3. Nutritional Composition of Meat Under Heat Stress
3.1. Proteins and Amino Acids
3.2. Lipids and Fatty Acid Profiles
3.3. Vitamins and Minerals
3.4. Meat Quality Attributes
4. Human Health Implications
4.1. Nutritional Quality of Meat and Dietary Impact
4.2. Potential Health Risks
4.3. Dietary Recommendations
5. Nutritional Mitigation Strategies
5.1. Antioxidant Supplementation
5.2. Osmolyte Supplementation
5.3. Dietary Energy and Protein Optimization
5.4. Economic and Practical Implications
6. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Prasad, R.R.; Dean, M.R.U.; Alungo, B. Climate Change Impacts on Livestock Production and Possible Adaptation and Mitigation Strategies in Developing Countries: A Review. J. Agric. Sci. 2022, 14, 240. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.; Chauhan, S.; Ha, M.; Fegan, N.; Dunshea, F.; Warner, R. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Ross, J.; Hale, B.; Gabler, N.; Rhoads, R.; Keating, A.; Baumgard, L. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1381–1390. [Google Scholar] [CrossRef]
- Bejaoui, B.; Sdiri, C.; Souf, I.B.; Slimen, I.B.; Larbi, M.B.; Koumba, S.; Martin, P.; M’Hamdi, N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023, 28, 3332. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.-Y.; Zheng, C.; Hu, Y.-J.; Wang, L. Nutritional Regulation for Meat Quality and Nutrient Metabolism of PigsExposed to High Temperature Environment. J. Nutr. Food Sci. 2015, 5, 1–5. [Google Scholar]
- Pardo, Z.; Fernández-Fígares, I.; Lachica, M.; Lara, L.; Nieto, R.; Seiquer, I. Impact of Heat Stress on Meat Quality and Antioxidant Markers in Iberian Pigs. Antioxidants 2021, 10, 1911. [Google Scholar] [CrossRef] [PubMed]
- Mia, N.; Rahman, M.; Hahem, M. Effect of heat stress on meat quality: A review. Meat Res. 2023, 3. [Google Scholar] [CrossRef]
- Pečjak, M.; Leskovec, J.; Levart, A.; Salobir, J.; Rezar, V. Effects of Dietary Vitamin E, Vitamin C, Selenium and Their Combination on Carcass Characteristics, Oxidative Stability and Breast Meat Quality of Broiler Chickens Exposed to Cyclic Heat Stress. Animals 2022, 12, 1789. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Dietary taurine supplementation ameliorates muscle loss in chronic heat stressed broilers via suppressing the perk signaling and reversing endoplasmic reticulum-stress-induced apoptosis. J. Sci. Food Agric. 2020, 101, 2125–2134. [Google Scholar] [CrossRef]
- Bekele, G. Review on the Effect of Heat Stress on Poultry Production and Productivities. Food Sci. Nutr. Technol. 2021, 6, 000260. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, K.-W. An update on heat stress in laying hens. World’s Poult. Sci. J. 2023, 79, 689–712. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.; El-Hack, M.A.; Khafaga, A.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.; Saadeldin, I.; Tukur, H.; Habashy, W. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals 2020, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Grageola, F.; García, H.; Arce, N.; Araiza, B.; Yáñez, J.; Cervantes, M. Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures. J. Anim. Physiol. Anim. Nutr. 2014, 98, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Reddy, K.; Kim, H.R.; Kim, K.; Lee, Y.; Kim, M.; Ji, S.; Lee, S.; Jeong, J. Effects of recovery from short-term heat stress exposure on feed intake, plasma amino acid profiles, and metabolites in growing pigs. J. Anim. Sci. Technol. 2021, 63, 531–544. [Google Scholar] [CrossRef]
- Ma, B.; He, X.; Lu, Z.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway. Poult. Sci. 2018, 97, 4150–4158. [Google Scholar] [CrossRef]
- Kim, W.; Daddam, J.; Keng, B.H.; Kim, J.; Kim, J.-K. Heat shock protein 27 regulates myogenic and self-renewal potential of bovine satellite cells under heat stress. J. Anim. Sci. 2023, 101, skad303. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; Pampusch, M.; White, M.; Hathaway, M.; Dayton, W. Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells. J. Anim. Sci. 2011, 89, 3473–3480. [Google Scholar] [CrossRef]
- El-Tarabany, M.; Ahmed-Farid, O.; Nassan, M.; Salah, A. Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens. Antioxidants 2021, 10, 1725. [Google Scholar] [CrossRef]
- Guo, J.; Gao, S.; Quan, S.; Zhang, Y.; Bu, D.; Wang, J. Blood amino acids profile responding to heat stress in dairy cows. Asian-Australas. J. Anim. Sci. 2017, 31, 47–53. [Google Scholar] [CrossRef]
- Cui, Y.; Hao, Y.; Li, J.; Gao, Y.; Gu, X. Proteomic changes of the porcine skeletal muscle in response to chronic heat stress. J. Sci. Food Agric. 2018, 98, 3315–3323. [Google Scholar] [CrossRef]
- Cheng, S.; He, Y.; Zeng, T.; Wang, D.; He, J.; Xia, Q.; Zhou, C.; Pan, D.; Cao, J. Heat stress induces various oxidative damages to myofibrillar proteins in ducks. Food Chem. 2022, 390, 133209. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Celi, P.; Fahri, F.; Leury, B.; Dunshea, F. Dietary antioxidants at supranutritional doses modulate skeletal muscle heat shock protein and inflammatory gene expression in sheep exposed to heat stress. J. Anim. Sci. 2014, 92, 4897–4908. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Wang, J.; Xiang, X.; Yin, S.G.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; et al. Selenomethionine alleviates chronic heat stress-induced breast muscle injury and poor meat quality in broilers via relieving mitochondrial dysfunction and endoplasmic reticulum stress. Anim. Nutr. 2024, 16, 363–375. [Google Scholar] [CrossRef]
- Rakib, M.R.H.; Messina, V.; Gargiulo, J.; Lyons, N.; Garcia, S. Potential use of HSP70 as an indicator of heat stress in dairy cows—A review. J. Dairy Sci. 2024, 107, 11597–11610. [Google Scholar] [CrossRef] [PubMed]
- Selsby, J.; Ganesan, S.; Rhoads, R.; Baumgard, L. 54 The Heat is On: Heat stress induces radical changes in skeletal muscle. J. Anim. Sci. 2019, 97, 58. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Insight on the meat quality and carbonylation profile of breast muscle of broilers in response to chronic heat stress: A proteomic research. Food Chem. 2023, 423, 136437. [Google Scholar] [CrossRef]
- Yang, W.; Xue, J.; Zhang, S.; Yao, C.; Zhang, N.; Fang, R. Enhancing skeletal muscle fiber characteristics, intramuscular fat deposition and fatty acid composition in broilers under heat stress through combined selenomethionine and Bacillus subtilis supplementation in the diet. J. Anim. Sci. 2024, 102, skae267. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.; Warner, R.; DiGiacomo, K.; Osei-Amponsah, R.; Chauhan, S. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 2020, 64, 1613–1628. [Google Scholar] [CrossRef]
- Cuadrado, M.; Dridi, S. Impact of heat stress on poultry production: Feed intake, water homeostasis, gut integrity, and meat quality. Ger. J. Vet. Res. 2024, 4, 43–51. [Google Scholar]
- Li, X.; Zhao, X.; Yu, M.; Zhang, M.-H.; Feng, J.-H. Effects of Heat Stress on Breast Muscle Metabolomics and Lipid Metabolism Related Genes in Growing Broilers. Animals 2024, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.-J.; Lim, C.; Lim, B.; Kim, J.-M. Microbial-transcriptome integrative analysis of heat stress effects on amino acid metabolism and lipid peroxidation in poultry jejunum. Anim. Biotechnol. 2024, 35, 2331179. [Google Scholar] [CrossRef]
- Xie, G. Metabolic and Endocrine Adaptations to Heat Stress in Lactating Dairy Cows. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2015. [Google Scholar]
- Lan, R.; Wang, Y.; Wei, L.; Wu, F.; Yin, F. Heat stress exposure changed liver lipid metabolism and abdominal fat deposition in broilers. Ital. J. Anim. Sci. 2022, 21, 1326–1333. [Google Scholar] [CrossRef]
- Emami, N.; Jung, U.; Voy, B.; Dridi, S. Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver. Antioxidants 2020, 10, 35. [Google Scholar] [CrossRef]
- Penev, T.; Naydenova, N.; Dimov, D.; Marinov, I. Influence of Heat Stress and Physiological Indicators Related to It on Health Lipid Indices in Milk of Holstein-Friesian Cows. J. Oleo Sci. 2021, 70, 745–755. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Lee, C.; Jha, R.; Mishra, B. Dietary supplementation of alpha-lipoic acid mitigates the negative effects of heat stress in broilers. PLoS ONE 2021, 16, e0254936. [Google Scholar] [CrossRef]
- Jing, J.; Zeng, H.; Shao, Q.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; et al. Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox Biol. 2023, 67, 102912. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Y.; Liu, W.; Du, D.; Jiang, W.; Wang, Z.; Li, N.; Hu, Z. Altered rumen microbiome and correlations of the metabolome in heat-stressed dairy cows at different growth stages. Microbiol. Spectr. 2023, 11, e0331223. [Google Scholar] [CrossRef]
- Hubbard, A.; Zhang, X.; Jastrebski, S.; Singh, A.; Schmidt, C. Understanding the liver under heat stress with statistical learning: An integrated metabolomics and transcriptomics computational approach. BMC Genom. 2019, 20, 502. [Google Scholar] [CrossRef]
- Ortega, A.; Babinszky, L.; Rózsáné-Várszegi, Z.; Ozsváth, X.; Oriedo, O.H.; Oláh, J.; Szabó, C. Effects of high vitamin and micro-mineral supplementation on growth performance and pork quality of finishing pigs under heat stress. Acta Agric. Slov. 2022, 118, 1–10. [Google Scholar] [CrossRef]
- Jorge-Smeding, E.; Leung, Y.H.; Ruiz-González, A.; Xu, W.; Astessiano, A.; Trujillo, A.; Rico, D.; Kenéz, Á. Plasma and milk metabolomics revealed changes in amino acid metabolism in Holstein dairy cows under heat stress. Anim. Int. J. Anim. Biosci. 2023, 18, 101049. [Google Scholar] [CrossRef]
- Khare, A.; Thorat, G.; Yadav, V.; Bhimte, A.; Purwar, V. Role of mineral and vitamin in heat stress. J. Pharmacogn. Phytochem. 2018, 7, 229–231. [Google Scholar]
- Untea, A.; Varzaru, I.; Turcu, R.; Panaite, T.; Sărăcilă, M. The use of dietary chromium associated with vitamins and minerals (synthetic and natural source) to improve some quality aspects of broiler thigh meat reared under heat stress condition. Ital. J. Anim. Sci. 2021, 20, 1491–1499. [Google Scholar] [CrossRef]
- El-Maaty, A.A.; Aly, M.; Kotp, M.; Ali, A.; Gabry, M.E. The effect of Seasonal heat stress on oxidants–antioxidants biomarkers, trace minerals and acute-phase response of peri-parturient Holstein Friesian cows supplemented with adequate minerals and vitamins with and without retained fetal membranes. Bull. Natl. Res. Cent. 2021, 45, 8. [Google Scholar] [CrossRef]
- Grande, A.; Delezie, E.; Rapp, C.; Ducatelle, R.; Immerseel, F.; Leleu, S. Zinc amino acid complex improves performance of broilers in heat stress conditions. In Proceedings of the 22nd European Symposium on Poultry Nutrition (ESPN 2019), Gdańsk, Poland, 10–13 June 2019. [Google Scholar]
- Aggarwal, A.; Upadhyay, R. Heat Stress and Immune Function. In Heat Stress and Animal Productivity; Springer: New Delhi, India, 2013; pp. 113–136. [Google Scholar]
- Reddy, P.; Manoj, P.; Goud, K.; Supriya, R.; Kumar, M.; Sravathi, V.; Katam, D. Nutritional strategies for amelioration of heat stress in dairy cows: A Review. Int. J. Vet. Sci. Anim. Husb. 2023, 8, 33–39. [Google Scholar] [CrossRef]
- Zeferino, C.; Komiyama, C.; Pelícia, V.; Fascina, V.; Aoyagi, M.; Coutinho, L.L.; Sartori, J.; Moura, A.S.A.M.T. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Anim. Int. J. Anim. Biosci. 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Ma, D. Unlocking the Role of Small Heat Shock Proteins and Apoptosis in Postmortem Proteolysis and Meat Quality Characteristics of Skeletal Muscles Under Different Conditions. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, 2020. [Google Scholar]
- Lomiwes, D.; Farouk, M.; Wiklund, E.; Young, O. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci. 2014, 96, 26–40. [Google Scholar] [CrossRef]
- Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Sałek, P.; Pakuła, K. Effect of Heat Treatment by the Sous-Vide Method on the Quality of Poultry Meat. Foods 2021, 10, 1610. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Ran, J.; Yu, C.; Yin, L.; Li, Z.; Liu, Y. The age-dependent variations for fatty acid composition and sensory quality of chicken meat and associations between gene expression patterns and meat quality. Livest. Sci. 2021, 254, 104736. [Google Scholar] [CrossRef]
- Hay, T. The Colour and Oxidative Stability of Cooked Pork. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2002. [Google Scholar]
- Li, Y.; Liu, S. Reducing lipid peroxidation for improving colour stability of beef and lamb: On-farm considerations. J. Sci. Food Agric. 2012, 92, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Babinszky, L.; Horváth, M.; Remenyik, J.; Verstegen, M. 8: The adverse effects of heat stress on the antioxidant status and performance of pigs and poultry and reducing these effects with nutritional tools. In Poultry and Pig Nutrition; Wageningen Academic: Wageningen, The Netherlands, 2019. [Google Scholar]
- Ilavarasan, R.; Robinson, J. Amino Acid, Fatty Acid and Cholesterol Content of South Indian Cattle Meat [Bos Indicus] as Influenced by Age at Slaughter. J. Environ. Bio-Sci. 2016, 30, 457–460. [Google Scholar]
- Ahmad, R.; Imran, A.; Hussain, M.B. Nutritional Composition of Meat. Meat Sci. Nutr. 2018, 61, 61–75. [Google Scholar]
- Franczyk-Żarów, M.; Koronowicz, A.; Szymczyk, B.; Biezanowska-Kopec, R.; Leszczyńska, T. Effect of dietary conjugated linoleic acid (CLA) and thermal processing on fatty acid composition of enriched chicken meat. J. Anim. Feed Sci. 2017, 26, 236–246. [Google Scholar] [CrossRef]
- Vicente, F.; Pereira, P. Pork Meat Composition and Health: A Review of the Evidence. Foods 2024, 13, 1905. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xie, T.; Li, S.; Wang, W.; Wang, Y.; Cao, Z.; Yang, H. Effects of Selenium as a Dietary Source on Performance, Inflammation, Cell Damage, and Reproduction of Livestock Induced by Heat Stress: A Review. Front. Immunol. 2021, 12, 820853. [Google Scholar] [CrossRef]
- Shah, S.R.A.; Çetingül, I. Nutritional Advances in Production Performance and Product Quality of Poultry Husbandry Under Heat Stress. Online J. Anim. Feed Res. 2022, 12, 53–65. [Google Scholar]
- Kutay, H.; Şahan, Z.; Açık, P.; Durmuş, M. Factors affecting meat quality in farm animals. BIO Web Conf. 2024, 85, 01066. [Google Scholar] [CrossRef]
- Olgun, O.; Abdulqader, A.; Karabacak, A. The importance of nutrition in preventing heat stress at poultry. World’s Poult. Sci. J. 2021, 77, 661–678. [Google Scholar] [CrossRef]
- Teyssier, J.; Brugaletta, G.; Sirri, F.; Dridi, S.; Rochell, S. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front. Physiol. 2022, 13, 943612. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Fu, B.; Zhang, J.; Wang, G.; Gong, W.; Tian, J.; Li, H.; Zhang, K.; Xia, Y.; Li, Z.-F.; et al. Effects of heat stress on the chemical composition, oxidative stability, muscle metabolism, and meat quality of Nile tilapia (Oreochromis niloticus). Food Chem. 2023, 426, 136590. [Google Scholar] [CrossRef]
- Jadhao, G.; Sawai, D.; Kedare, G.M. Nutritional ways to reduce heat stress in broilers. J. Entomol. Zool. Stud. 2020, 8, 1872–1877. [Google Scholar]
- Yi, W.; Huang, Q.; Wang, Y.; Shan, T. Lipo-nutritional quality of pork: The lipid composition, regulation, and molecular mechanisms of fatty acid deposition. Anim. Nutr. 2023, 13, 373–385. [Google Scholar] [CrossRef]
- Shastak, Y.; Gordillo, A.; Pelletier, W. The relationship between vitamin A status and oxidative stress in animal production. J. Appl. Anim. Res. 2023, 51, 546–553. [Google Scholar] [CrossRef]
- Vakili, R.; Rashidi, A. The effects of dietary fat, vitamin E and zinc supplementation on fatty acid composition and oxidative stability of muscle thigh in broilers under heat stress. Afr. J. Agric. Res. 2011, 6, 2800–2806. [Google Scholar]
- Warda, F.; Graham, L.; Batch-Joudi, J.; Gupta, N.; Haas, M.; Mooradian, A. Omega-3 Fatty Acids Inhibit Endoplasmic Reticulum (ER) Stress in Human Coronary Artery Endothelial Cells. J. Food Biochem. 2023, 2023, 7300030. [Google Scholar] [CrossRef]
- Nimri, L.; Zohar, L.; Horovitz, O. Impact of dietary fats on mental health: Omega-3, saturated, and trans fats in a healthy Israeli population. Food Humanit. 2024, 3, 100407. [Google Scholar] [CrossRef]
- De Lorgeril, M.; Salen, P. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids. BMC Med. 2012, 10, 50. [Google Scholar] [CrossRef]
- Ponnampalam, E.; Hopkins, D.; Butler, K.; Dunshea, F.; Sinclair, A.; Warner, R. Polyunsaturated fats in meat from Merino, first- and second-cross sheep slaughtered as yearlings. Meat Sci. 2009, 83, 314–319. [Google Scholar] [CrossRef]
- Kumar, P.; Ahmed, M.; Abubakar, A.; Hayat, M.; Kaka, U.; Ajat, M.; Goh, Y.; Sazili, A. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci. 2022, 197, 109048. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals. JAMA Cardiol. 2018, 3, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Calder, P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Appl. Sci. 2024, 14, 10810. [Google Scholar] [CrossRef]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Enhancing Digestibility of Chlorella vulgaris Biomass in Monogastric Diets: Strategies and Insights. Animals 2023, 13, 1017. [Google Scholar] [CrossRef]
- Martins, C.F.; Pestana Assunção, J.; Ribeiro Santos, D.M.; Madeira, M.S.M.D.S.; Alfaia, C.M.R.P.M.; Lopes, P.A.A.B.; Coelho, D.F.M.; Cardoso Lemos, J.P.; de Almeida, A.M.; Mestre Prates, J.A.; et al. Effect of dietary inclusion of Spirulina on production performance, nutrient digestibility and meat quality traits in post-weaning piglets. J. Anim. Physiol. Anim. Nutr. 2021, 105, 247–259. [Google Scholar] [CrossRef]
- Calik, A.; Emami, N.K.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part I: Growth performance, body composition and intestinal nutrient transporters. Poult. Sci. 2022, 101, 101857. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Priya, K.M.; Alur, S. Analyzing consumer behaviour towards food and nutrition labeling: A comprehensive review. Heliyon 2023, 9, e19401. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505s–1519s. [Google Scholar] [CrossRef]
- Deacon, G.; Kettle, C.; Hayes, D.; Dennis, C.; Tucci, J. Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit. Rev. Food Sci. Nutr. 2017, 57, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, J.; Liu, F.; Hung, A.; Digiacomo, K.; Chauhan, S.; Leury, B.; Furness, J.; Celi, P.; Dunshea, F. Nutritional Strategies to alleviate heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1391–1402. [Google Scholar] [CrossRef]
- Prates, J.A.M. Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients. Foods 2025, 14, 146. [Google Scholar] [CrossRef]
- Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef]
- Chen, R.; Zhuang, S.; Chen, Y.P.; Cheng, Y.F.; Wen, C.; Zhou, Y.M. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult Sci. 2018, 97, 4297–4305. [Google Scholar] [CrossRef]
- Schaffer, S.; Kim, H.W. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol. Ther. 2018, 26, 225–241. [Google Scholar] [CrossRef]
- Han, H.L.; Zhang, J.F.; Yan, E.F.; Shen, M.M.; Wu, J.M.; Gan, Z.D.; Wei, C.H.; Zhang, L.L.; Wang, T. Effects of taurine on growth performance, antioxidant capacity, and lipid metabolism in broiler chickens. Poult. Sci. 2020, 99, 5707–5717. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Rhoads, R.P., Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef]
- Al-Zghoul, M.B.; Alliftawi, A.R.S.; Saleh, K.M.M.; Jaradat, Z.W. Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poult Sci. 2019, 98, 4113–4122. [Google Scholar] [CrossRef] [PubMed]
- Qaid, M.M.; Al-Garadi, M.A. Protein and Amino Acid Metabolism in Poultry during and after Heat Stress: A Review. Animals 2021, 11, 1167. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Arowolo, M.; Medrano, R.; Li, S.; Yu, Q.; Chen, J.; He, J. Impact of heat stress and nutritional interventions on poultry production. World’s Poult. Sci. J. 2018, 74, 647–664. [Google Scholar] [CrossRef]
- Avi, R. Responses of Poultry to Heat Stress and Mitigation Strategies During Summer in Tropical Countries: A Review. Iraqi J. Vet. Med. 2024, 48, 55–65. [Google Scholar] [CrossRef]
- Chauhan, S.; Rashamol, V.; Bagath, M.; Sejian, V.; Dunshea, F. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef]
- Krishnan, G.; Bagath, M.; Pragna, P.; Vidya, M.K.; Aleena, J.; Archana, P.; Sejian, V.; Bhatta, R. Mitigation of the Heat Stress Impact in Livestock Reproduction. In Theriogenology; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
Component | Changes Under Heat Stress | Mechanisms | Implications for Meat Quality and Human Health | References |
---|---|---|---|---|
Proteins and Amino Acids |
|
|
| [7,59,60,61] |
Lipids and Fatty Acid Profiles |
|
|
| [59,62,63,64] |
Vitamins and Minerals |
|
|
| [10,59,65,66] |
Meat Quality Attributes |
|
|
| [8,59,61,67] |
Aspect | Key Observations/Mechanisms | Health Implications | Recommendations/Interventions | References |
---|---|---|---|---|
Nutritional Quality and Dietary Impact | Heat stress in animals leads to lower high-quality proteins, essential amino acids (e.g., lysine, methionine, and threonine), beneficial fatty acids (decline in omega-3; rise in saturated fats and omega-6/omega-3 imbalance), and reduced levels of key vitamins and minerals. | Reduced nutrient density in meat may result in lower overall protein quality and micronutrient deficiencies, particularly for populations relying heavily on meat for essential nutrients. | Diversify protein sources (e.g., combined with plant proteins) and adjust dietary plans to offset the nutrient deficits. | [10,59,81] |
Potential Health Risks | The altered meat composition (increased saturated fats, decreased omega-3 fatty acids, and lower antioxidant content) promotes a pro-inflammatory state and oxidative stress. | Elevated risks for cardiovascular disease, metabolic disorders, chronic inflammation, and potentially adverse cognitive and immune effects. | Shift toward leaner meats, balance fat intake, and include foods rich in omega-3 and antioxidants to help reduce risks. | [62,81,93,94] |
Dietary Recommendations | Strategies include incorporating omega-3-rich foods (e.g., fatty fish, walnuts, flaxseeds), increasing antioxidants (e.g., vitamin E, selenium), and promoting dietary diversification. | Improving dietary balance can mitigate the health risks of consuming heat-stressed meat and support overall nutritional well-being. | Public health education, improved nutritional labelling, and targeted supplementation or feed strategies to enhance meat quality. | [8,66,84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M. Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress. Nutrients 2025, 17, 1390. https://doi.org/10.3390/nu17081390
Prates JAM. Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress. Nutrients. 2025; 17(8):1390. https://doi.org/10.3390/nu17081390
Chicago/Turabian StylePrates, José A. M. 2025. "Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress" Nutrients 17, no. 8: 1390. https://doi.org/10.3390/nu17081390
APA StylePrates, J. A. M. (2025). Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress. Nutrients, 17(8), 1390. https://doi.org/10.3390/nu17081390