A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Trial Diets
2.3. Intervention Procedures
2.4. Outcome Measurements and Sample Size Calculation
2.5. Collection of Participant Information and Stools
2.6. The Non-Soap Fatty Acids and Triacylglycerol Analysis
2.7. The Soap Fatty Acid Analysis
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Effect of Novel Formula Supplied with MLCTs and sn-2 Palmitate on Growth
3.3. Stool Characteristics
3.4. Fecal Lipid Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MLCTs | Medium- and long-chain triacylglycerols |
TAGs | Triacylglycerols |
MCFAs | Medium-chain fatty acids |
LCFAs | Long-chain fatty acids |
LCTs | Long-chain TAGs |
OPO | 1,3-dioleoyl-2-palmitoyl-glycerol |
UPU | 1,3-unsaturated fatty acids-2-palmitic acid |
Novel-F | Novel formula group |
Contr-F | Control formula group |
BF group | Breastfeeding group |
Zw/a | Weight-for-age z-scores |
Zl/a | Length-for-age z-scores |
Zw/l | Weight-for-length z-scores |
Zc/a | Head circumference-for-age z-scores |
HPLC | High-performance liquid chromatography |
RID | 2414 Refractive Index Detector |
ITT | Intention-to-treat |
References
- Estorninos, E.; Lawenko, R.B.; Palestroque, E.; Lebumfacil, J.; Marko, M.; Cercamondi, C.I. Infant formula containing bovine milk-derived oligosaccharides supports age-appropriate growth and improves stooling pattern. Pediatr. Res. 2022, 91, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Prell, C.; Koletzko, B. Breastfeeding and Complementary Feeding. Dtsch. Arztebl. Int. 2016, 113, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.G. The lipids in human milk. Prog. Lipid Res. 1996, 35, 53–92. [Google Scholar] [CrossRef] [PubMed]
- He, X.; McClorry, S.; Hernell, O.; Lönnerdal, B.; Slupsky, C.M. Digestion of human milk fat in healthy infants. Nutr. Res. 2020, 83, 15–29. [Google Scholar] [CrossRef]
- Zhao, P.A.-O.; Zhang, S.; Liu, L.; Pang, X.A.-O.; Yang, Y.; Lu, J.; Lv, J. Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk. J. Agric. Food Chem. 2018, 66, 4571–4579. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, C.; Jin, J.; Jin, Q.; Akoh, C.C.; Wei, W.; Wang, X. Medium- and Long-Chain Triacylglycerol: Preparation, Health Benefits, and Food Utilization. Annu. Rev. Food Sci. Technol. 2024, 15, 381–408. [Google Scholar] [CrossRef]
- Yuan, T.; Geng, Z.; Dai, X.; Zhang, X.; Wei, W.; Wang, X.; Jin, Q. Triacylglycerol Containing Medium-Chain Fatty Acids: Comparison of Human Milk and Infant Formulas on Lipolysis during In Vitro Digestion. J. Agric. Food Chem. 2020, 68, 4187–4195. [Google Scholar] [CrossRef]
- Yu, J.; Yan, Z.; Mi, L.; Wang, L.; Liu, Z.; Ye, X.; Jin, Q.; Pang, J.; Wei, W.; Wang, X. Medium- and long-chain triacylglycerols and di-unsaturated fatty acyl-palmitoyl-glycerols in Chinese human milk: Association with region during the lactation. Front. Nutr. 2022, 9, 1040321. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yuan, T.; Jin, Q.; Wei, W.; Wang, X. Digestion of Medium- and Long-Chain Triacylglycerol and sn-2 Palmitate in Infant Formula: A Study Based on Dynamic In Vitro Simulation of Infant Gastrointestinal Lipolysis. J. Agric. Food Chem. 2022, 70, 3263–3271. [Google Scholar] [CrossRef]
- Jensen, C.; Fau Buist, N.R.; Wilson, T. Absorption of individual fatty acids from long chain or medium chain triglycerides in very small infants. Am. J. Clin. Nutr. 1986, 43, 745–751. [Google Scholar] [CrossRef]
- Nejrup, R.G.; Licht, T.A.-O.; Hellgren, L.A.-O. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci. Rep. 2017, 7, 3975. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, H.; Wu, J.; Kasai, M.; Aoyama, T. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci. Biotechnol. Biochem. 2006, 70, 2919–2926. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Tang, T.K.; Phuah, E.T.; Karim, N.A.A.; Alitheen, N.B.M.; Tan, C.P.; Razak, I.S.A.; Lai, O.M. Structural difference of palm based Medium- and Long-Chain Triacylglycerol (MLCT) further reduces body fat accumulation in DIO C57BL/6J mice when consumed in low fat diet for a mid-term period. Food Res. Int. 2018, 103, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.X.; Chen, S.N.; Zhu, H.L.; Niu, X.; Li, J.; Fan, Y.W.; Deng, Z.Y. Consumption of Interesterified Medium- and Long-Chain Triacylglycerols Improves Lipid Metabolism and Reduces Inflammation in High-Fat Diet-Induced Obese Rats. J. Agric. Food Chem. 2020, 68, 8255–8262. [Google Scholar] [CrossRef]
- Tsuji, H.; Kasai, M.; Takeuchi, H.; Nakamura, M.; Okazaki, M.; Kondo, K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J. Nutr. 2001, 131, 2853–2859. [Google Scholar] [CrossRef]
- Yuan, T.; Cheng, X.; Shen, L.; Liu, Z.; Ye, X.; Yan, Z.; Wei, W.; Wang, X. Novel Human Milk Fat Substitutes Based on Medium- and Long-Chain Triacylglycerol Regulate Thermogenesis, Lipid Metabolism, and Gut Microbiota Diversity in C57BL/6J Mice. J. Agric. Food Chem. 2024, 72, 6213–6225. [Google Scholar] [CrossRef]
- Padial-Jaudenes, M.; Castanys-Munoz, E.; Ramirez, M.; Lasekan, J.A.-O. Physiological Impact of Palm Olein or Palm Oil in Infant Formulas: A Review of Clinical Evidence. Nutrients 2020, 12, 3676. [Google Scholar] [CrossRef]
- Bar-Yoseph, F.; Lifshitz, Y.; Cohen, T.; Malard, P.; Xu, C. SN2-Palmitate Reduces Fatty Acid Excretion in Chinese Formula-fed Infants. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 341–347. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary triacylglycerol structure and its role in infant nutrition. Adv. Nutr. 2011, 2, 275–283. [Google Scholar] [CrossRef]
- Innis, S.M.; Dyer, R.; Nelson, C.M. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 1994, 29, 541–545. [Google Scholar] [CrossRef]
- Shoji, H.A.-O.; Arai, H.A.-O.; Kakiuchi, S.; Ito, A.; Sato, K.A.-O.; Jinno, S.A.-O.; Takahashi, N.A.-O.; Masumoto, K.; Yoda, H.; Shimizu, T. Infant Formula with 50% or More of Palmitic Acid Bound to the sn-2 Position of Triacylglycerols Eliminate the Association between Formula-Feeding and the Increase of Fecal Palmitic Acid Levels in Newborns: An Exploratory Study. Nutrients 2024, 16, 1558. [Google Scholar] [CrossRef] [PubMed]
- Litmanovitz, I.; Davidson, K.; Eliakim, A.; Regev, R.H.; Dolfin, T.; Arnon, S.; Bar-Yoseph, F.; Goren, A.; Lifshitz, Y.; Nemet, D. High Beta-palmitate formula and bone strength in term infants: A randomized, double-blind, controlled trial. Calcif. Tissue Int. 2013, 92, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ghide, M.K.; Li, K.; Wang, J.; Abdulmalek, S.A.; Yan, Y. Immobilization of Rhizomucor miehei lipase on magnetic multiwalled carbon nanotubes towards the synthesis of structured lipids rich in sn-2 palmitic acid and sn-1,3 oleic acid (OPO) for infant formula use. Food Chem. 2022, 390, 133171. [Google Scholar] [CrossRef]
- Guo, D.; Li, F.; Zhao, J.A.-O.; Zhang, H.A.-O.; Liu, B.; Pan, J.; Zhang, W.; Chen, W.A.-O.; Xu, Y.; Jiang, S.; et al. Effect of an infant formula containing sn-2 palmitate on fecal microbiota and metabolome profiles of healthy term infants: A randomized, double-blind, parallel, controlled study. Food Funct. 2022, 13, 2003–2018. [Google Scholar] [CrossRef]
- Sheng, X.Y.; Mi, W.; Yuan, Q.B.; Liu, B.Y.; Carnielli, V.; Ning, Y.B.; Einerhand, A.W.C. An A2 β-casein infant formula with high sn-2 palmitate and casein phosphopeptides supports adequate growth, improved stool consistency, and bone strength in healthy, term Chinese infants: A randomized, double-blind, controlled clinical trial. Front. Nutr. 2024, 11, 1442584. [Google Scholar] [CrossRef]
- Chen, B.; Jia, Q.; Chen, Z.; You, Y.; Liu, Y.; Zhao, J.; Chen, L.; Ma, D.; Xing, Y. Comparative evaluation of enriched formula milk powder with OPO and MFGM vs. breastfeeding and regular formula milk powder in full-term infants: A comprehensive study on gut microbiota, neurodevelopment, and growth. Food Funct. 2024, 15, 1417–1430. [Google Scholar] [CrossRef]
- Yao, M.; Lien, E.L.; Capeding, M.R.; Fitzgerald, M.; Ramanujam, K.; Yuhas, R.; Northington, R.; Lebumfacil, J.; Wang, L.; DeRusso, P.A. Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 440–448. [Google Scholar] [CrossRef]
- Litmanovitz, I.; Bar-Yoseph, F.; Lifshitz, Y.; Davidson, K.; Eliakim, A.; Regev, R.H.; Nemet, D. Reduced crying in term infants fed high beta-palmitate formula: A double-blind randomized clinical trial. BMC Pediatr. 2014, 14, 152. [Google Scholar] [CrossRef]
- Savino, F.; Palumeri, E.; Castagno, E.; Cresi, F.; Dalmasso, P.; Cavallo, F.; Oggero, R. Reduction of crying episodes owing to infantile colic: A randomized controlled study on the efficacy of a new infant formula. Eur. J. Clin. Nutr. 2006, 60, 1304–1310. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, H.; Wang, X.; Yu, R.-Q.; Zhou, Q.; Wei, W.; Wang, X.; Jin, Q. Triacylglycerol containing medium-chain fatty acids (MCFA-TAG): The gap between human milk and infant formulas. Int. Dairy J. 2019, 99, 104545. [Google Scholar] [CrossRef]
- WS/T 423-2022; Growth Standards for Children Under 7 Years of Age. National Health Commission of the People’s Republic of China: Beijing, China, 2022.
- Thomson, K.; Rice, S.; Arisa, O.; Johnson, E.; Tanner, L.; Marshall, C.; Sotire, T.; Richmond, C.; O’Keefe, H.; Mohammed, W.; et al. Oral nutritional interventions in frail older people who are malnourished or at risk of malnutrition: A systematic review. Health Technol. Assess. 2022, 26, 1–112. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.E.; Jung, H.K.; Lee, T.H.; Jo, Y.; Lee, H.; Song, K.H.; Hong, S.N.; Lim, H.C.; Lee, S.J.; Chung, S.S.; et al. Guidelines for the Diagnosis and Treatment of Chronic Functional Constipation in Korea, 2015 Revised Edition. J. Neurogastroenterol. Motil. 2016, 22, 383–411. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Arnold, C.D.; Wessells, K.R.; Stewart, C.P. Lipid-based nutrient supplements for prevention of child undernutrition: When less may be more. Am. J. Clin. Nutr. 2023, 118, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Huang, W.; Xu, X.; Wang, L.; Wang, Q.; Li, S.; Yuan, X. Stool Saponified Fatty Acid, Behavior, Growth, and Stool Characteristics in Infants Fed a High-OPO Formula: A Randomized, Double-Blind Clinical Trial. Front. Pediatr. 2021, 9, 712201. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, X.; Li, D.; Zhang, X.; Wei, W.; Jin, Q.; Wang, X. Development of in vitro digestion simulation of gastrointestinal tract to evaluate lipolysis and proteolysis: Comparison of infant model digestion of breast milk and adult model digestion of cow milk. Food Hydrocoll. 2023, 142, 108859. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Li, Y.; Lin, X.; Hong, Z.; Huang, J.; Zhang, X.; Yang, Y.; Su, Y. Effects of Sn-2-palmitate-enriched formula feeding on infants’ growth, stool characteristics, stool fatty acid soap contents and bone mineral content: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 63, 10256–10266. [Google Scholar] [CrossRef]
- Civardi, E.; Garofoli, F.; Longo, S.; Mongini, M.E.; Grenci, B.; Mazzucchelli, I.; Angelini, M.; Castellazzi, A.; Fasano, F.; Grinzato, A.; et al. Safety, growth, and support to healthy gut microbiota by an infant formula enriched with functional compounds. Clin. Nutr. 2017, 36, 238–245. [Google Scholar] [CrossRef]
- Béghin, L.; Marchandise, X.; Lien, E.; Bricout, M.; Bernet, J.P.; Lienhardt, J.F.; Jeannerot, F.; Menet, V.; Requillart, J.C.; Marx, J.; et al. Growth, stool consistency and bone mineral content in healthy term infants fed sn-2-palmitate-enriched starter infant formula: A randomized, double-blind, multicentre clinical trial. Clin. Nutr. 2019, 38, 1023–1030. [Google Scholar] [CrossRef]
- Carnielli, V.P.; Luijendijk, I.H.; Van Goudoever, J.B.; Sulkers, E.J.; Boerlage, A.A.; Degenhart, H.J.; Sauer, P.J. Structural position and amount of palmitic acid in infant formulas: Effects on fat, fatty acid, and mineral balance. J. Pediatr. Gastroenterol. Nutr. 1996, 23, 553–560. [Google Scholar] [CrossRef]
- Kien, C.L.; Bunn, J.Y.; Ugrasbul, F. Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am. J. Clin. Nutr. 2005, 82, 320–326. [Google Scholar] [CrossRef]
- Matsuo, T.; Matsuo, M.; Taguchi, N.; Takeuchi, H. The thermic effect is greater for structured medium- and long-chain triacylglycerols versus long-chain triacylglycerols in healthy young women. Metab. Clin. Exp. 2001, 50, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Hamilton, J.A.; Kirkland, J.L.; Corkey, B.E.; Guo, W. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes. Res. 2003, 11, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Y.; Jacoby, J.J.; Jiang, Y.; Zhang, Y.; Yu, L.L. Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. J. Agric. Food Chem. 2017, 65, 6599–6607. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Ong, K.K.; Linné, Y.; Neovius, M.; Brage, S.; Dunger, D.B.; Wareham, N.J.; Rössner, S. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J. Clin. Endocrinol. Metab. 2007, 92, 98–103. [Google Scholar] [CrossRef]
- Nowacki, J.; Lee, H.C.; Lien, R.; Cheng, S.W.; Li, S.T.; Yao, M.; Northington, R.; Jan, I.; Mutungi, G. Stool fatty acid soaps, stool consistency and gastrointestinal tolerance in term infants fed infant formulas containing high sn-2 palmitate with or without oligofructose: A double-blind, randomized clinical trial. Nutr. J. 2014, 13, 105. [Google Scholar] [CrossRef]
- Kennedy, K.; Fewtrell, M.S.; Morley, R.; Abbott, R.; Quinlan, P.T.; Wells, J.C.; Bindels, J.G.; Lucas, A. Double-blind, randomized trial of a synthetic triacylglycerol in formula-fed term infants: Effects on stool biochemistry, stool characteristics, and bone mineralization. Am. J. Clin. Nutr. 1999, 70, 920–927. [Google Scholar] [CrossRef]
- Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2016, 56, 1952–1959. [Google Scholar] [CrossRef]
- Owen, R.W.; Weisgerber, U.M.; Carr, J.; Harrison, M.H. Analysis of calcium-lipid complexes in faeces. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. (ECP) 1995, 4, 247–255. [Google Scholar] [CrossRef]
Novel-F | Contr-F | |
---|---|---|
Energy, kJ | 2140 | 2119 |
Carbohydrate, g | 52.78 | 52.40 |
Protein, g | 11.52 | 10.78 |
Fat, g | 27.48 | 27.50 |
sn-2 palmitate, g | 3.10 | / |
MLCTs, g | 4.40 | / |
Linoleic acid, g | 4.79 | 4.52 |
α-linolenic acid, mg | 404 | 452 |
Oleic acid, g | 8.38 | 11.3 |
Palmitic acid, g | 7.18 | 1.73 |
sn-2 palmitic acid/total palmitic acid, % | 41.5 | 7.2 |
Characteristics | Novel-F (n = 65) | Contr-F (n = 46) | BF (n = 66) |
---|---|---|---|
Gestational age, weeks | 39.1 ± 1.3 a | 39.4 ± 1.4 a | 40.3 ± 1.4 b |
Male infants, n (%) | 36 (55.4) | 27 (58.7) | 38 (57.6) |
Birth weight, g | 3291 ± 390 | 3294 ± 388 | 3429 ± 336 |
Birth length, cm | 50.21 ± 1.28 | 50.35 ± 1.20 | 50.54 ± 1.64 |
Maternal age, years | 28.92 ± 4.91 | 28.59 ± 4.85 | 27.61 ± 4.40 |
Vaginal delivery, n (%) | 26 (40.0) ab | 28 (60.9) b | 25 (37.9) a |
Primipara, n (%) | 18 (27.7) | 16 (34.8) | 28 (42.4) |
Tobacco exposure during pregnancy, n (%) | 20 (30.8) | 12 (26.1) | 25 (37.9) |
Infant DHA intake, mg/d | 131.6 ± 30.6 | 128.9 ± 26.3 | 125.0 ± 35.4 |
Novel-F (n = 65) | Contr-F (n = 46) | BF (n = 66) | p | |||
---|---|---|---|---|---|---|
Group | Time | Interaction | ||||
Weight, g | ||||||
Baseline, mean (SD) | 4510 ± 490 | 4465 ± 492 | 4565 ± 444 | 0.052 | <0.001 | 0.028 |
Endline, mean (SD) | 6705 ± 580 a | 6362 ± 561 b | 6645 ± 723 ab | |||
Change, mean (95% CI) | 2178 (2038 to 2319) | 1885 (1718 to 2052) | 2100 (1960 to 2241) | |||
Length, cm | ||||||
Baseline, mean (SD) | 55.1 ± 2.0 | 55.0 ± 1.9 | 55.0 ± 1.6 | 0.171 | 0.004 | 0.274 |
Endline, mean (SD) | 62.2 ± 2.3 | 61.4 ± 2.0 | 61.5 ± 2.3 | |||
Change, mean (95% CI) | 7.1(6.5 to 7.6) | 6.5 (5.8 to 7.1) | 6.5 (6.0 to 7.0) | |||
Head circumference, cm | ||||||
Baseline, mean (SD) | 36.8 ± 0.9 | 36.5 ± 0.8 | 36.8 ± 1.1 | 0.132 | <0.001 | 0.11 |
Endline, mean (SD) | 40.3 ± 0.9 | 40.1 ± 0.7 | 40.0 ± 0.9 | |||
Change, mean (95% CI) | 3.5(3.2 to 3.7) | 3.5 (3.3 to 3.8) | 3.2 (3.0 to 3.4) |
Novel-F (n = 65) | Contr-F (n = 46) | BF (n = 66) | p | |||
---|---|---|---|---|---|---|
Group | Time | Interaction | ||||
Zw/a | ||||||
Baseline, mean (SD) | 0.09 ± 1.00 | −0.02 ± 0.92 | 0.18 ± 0.89 | 0.047 | 0.142 | 0.042 |
Endline, mean (SD) | 0.26 ± 0.77 a | −0.26 ± 0.76 b | 0.14 ± 0.90 ab | |||
Change, mean (95% CI) | 0.13 (−0.08 to 0.35) | −0.28 (−0.54 to −0.03) | 0.02 (−0.19 to 0.23) | |||
Zl/a | ||||||
Baseline, mean (SD) | 0.21 ± 0.97 | 0.14 ± 0.85 | 0.17 ± 0.75 | 0.145 | 0.016 | 0.275 |
Endline, mean (SD) | 0.26 ± 0.97 | −0.09 ± 0.92 | −0.05 ± 1.00 | |||
Change, mean (95% CI) | 0.04 (−0.21 to 0.28) | −0.23 (−0.52 to 0.06) | −0.20 (−0.44 to 0.05) | |||
Zw/l | ||||||
Baseline, mean (SD) | −0.33 ± 0.85 | −0.29 ± 1.25 | −0.08 ± 1.00 | 0.058 | 0.001 | 0.478 |
Endline, mean (SD) | 0.14 ± 0.92 | −0.92 ± 0.98 | 0.37 ± 1.15 | |||
Change, mean (95% CI) | 0.47 (0.12 to 0.82) | 0.17 (−0.25 to 0.58) | 0.46 (0.11 to 0.80) | |||
Zc/a | ||||||
Baseline, mean (SD) | 0.13 ± 0.76 | −0.15 ± 0.62 | 0.08 ± 0.86 | 0.055 | 0.746 | 0.103 |
Endline, mean (SD) | 0.22 ± 0.74 | −0.03 ± 0.47 | −0.08 ± 0.71 | |||
Change, mean (95% CI) | 0.10 (−0.10 to 0.29) | 0.12 (−0.11 to 0.35) | −0.16 (−0.35 to 0.35) |
Novel-F (n = 65) | Contr-F (n = 46) | BF (n = 66) | |
---|---|---|---|
Frequency | |||
Baseline | 1.40 ± 0.86 a | 1.50 ± 0.83 ab | 1.99 ± 1.66 b |
Endline | 0.94 ± 0.47 a | 1.10 ± 0.44 ab | 1.28 ± 0.88 b |
Change | −0.45 ± 0.98 | −0.40 ± 0.94 | −0.71 ± 1.58 |
Consistency | |||
Baseline | 5.34 ± 1.06 a | 5.65 ± 0.67 ab | 5.80 ± 0.40 b |
Endline | 5.31 ± 0.64 a | 5.24 ± 0.64 a | 5.65 ± 0.54 b |
Change | −0.03 ± 1.13 | −0.41 ± 0.88 | −0.15 ± 0.64 |
Novel-F (n = 65) | Contr-F (n = 46) | BF (n = 66) | p | |
---|---|---|---|---|
Baseline | 0.055 | |||
Type 1 | 1 (1.5) | 0 (0.0) | 0 (0.0) | |
Type 2 | 1 (1.5) | 0 (0.0) | 0 (0.0) | |
Type 3 | 2 (3.1) | 1 (2.2) | 0 (0.0) | |
Type 4 | 7 (10.8) | 2 (4.3) | 0 (0.0) | |
Type 5 | 14 (21.5) | 9 (19.6) | 13 (19.7) | |
Type 6 | 40 (61.5) | 34 (73.9) | 53 (80.3) | |
Endline | <0.001 | |||
Type 1 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Type 2 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Type 3 | 0 (0.0) | 1 (2.2) | 0 (0.0) | |
Type 4 | 6 (9.2) | 2 (4.3) | 2 (3.0) | |
Type 5 | 33 (50.8) | 28 (60.9) | 19 (28.8) | |
Type 6 | 26 (40.0) | 15 (32.6) | 45 (68.2) |
Lipids | Novel-F | Contr-F | BF |
---|---|---|---|
Non-soap fatty acids | 12.82 ± 6.66 a | 17.73 ± 8.99 b | 17.87 ± 11.61 b |
Soap fatty acids | 16.07 ± 7.57 b | 17.17 ± 8.33 b | 12.13 ± 9.10 a |
12:0 | 0.01 ± 0.03 | 0.02 ± 0.04 | 0.01 ± 0.03 |
14:0 | 0.18 ± 0.12 ab | 0.21 ± 0.27 b | 0.14 ± 0.21 a |
16:0 | 8.70 ± 4.82 b | 7.86 ± 6.57 b | 4.99 ± 4.33 a |
18:2 | 0.28 ± 0.24 | 0.28 ± 0.25 | 0.29 ± 0.36 |
18:1 | 1.75 ± 1.17 ab | 1.87 ± 1.55 b | 1.33 ± 1.27 a |
18:0 | 4.28 ± 1.51 ab | 4.57 ± 2.62 b | 3.59 ± 2.20 a |
20:4 | 0.07 ± 0.09 | 0.05 ± 0.05 | 0.11 ± 0.22 |
22:6 | 0.06 ± 0.09 | 0.03 ± 0.05 | 0.30 ± 1.72 |
24:0 | 0.78 ± 0.59 ab | 0.89 ± 0.85 b | 0.64 ± 0.96 a |
24:1 | 0.05 ± 0.06 | 0.07 ± 0.05 | 0.08 ± 0.11 |
Total fatty acids | 30.46 ± 10.22 a | 35.68 ± 14.87 b | 30.06 ± 15.59 ab |
Triacylglycerols | 4.21 ± 2.55 a | 7.14 ± 7.41 b | 5.08 ± 3.45 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yang, M.; Wei, W.; Huang, S.; Qiu, Y.; Li, Z.; Lan, Q.; Huang, B.; Wu, T.; Bi, Q.; et al. A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants. Nutrients 2025, 17, 1401. https://doi.org/10.3390/nu17091401
Chen X, Yang M, Wei W, Huang S, Qiu Y, Li Z, Lan Q, Huang B, Wu T, Bi Q, et al. A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants. Nutrients. 2025; 17(9):1401. https://doi.org/10.3390/nu17091401
Chicago/Turabian StyleChen, Xiaoyan, Mengtao Yang, Wei Wei, Siyu Huang, Yingzhen Qiu, Zhen Li, Qiuye Lan, Bixia Huang, Tong Wu, Qianqian Bi, and et al. 2025. "A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants" Nutrients 17, no. 9: 1401. https://doi.org/10.3390/nu17091401
APA StyleChen, X., Yang, M., Wei, W., Huang, S., Qiu, Y., Li, Z., Lan, Q., Huang, B., Wu, T., Bi, Q., Wang, X., & Zhu, H. (2025). A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants. Nutrients, 17(9), 1401. https://doi.org/10.3390/nu17091401