Microbiota-Based Intervention Alleviates High-Fat Diet Consequences Through Host-Microbe Environment Remodeling
Abstract
:1. Introduction
2. Nutrient Characteristics of a High-Fat Diet
2.1. High-Fat Diet Induces Fat Deposition
Reference | Species | Sex | Age or Weight | Groups | Energy Content | Main Fat Source of High-Fat Diet | Term | Effects |
---|---|---|---|---|---|---|---|---|
Nagai et al., 2005 [17] | human | Men | 23.6 years old | Low-fat meal | 70% Carbohydrates, 10% protein, and 20% fat | Butter, high-fat cream | 210 min after meal | Thermoregulatory sympathetic nervous system (SNS) activity and a greater level of fat oxidation ↑ (p < 0.05) |
High-fat meal | 20% carbohydrates, 10% protein, and 70% fat | |||||||
Meksawan et al., 2004 [13] | Men and women | Male (24.8 ± 1.0 years old) Female (22.3 ± 1.3 years old) | Regular diet | 54% carbohydrates, 16% protein, and 30% fat | Not found | 7 d | HDL ↑ (p < 0.05); no difference in body weight | |
High-fat diet | 31% carbohydrates, 19% protein, and 50% fat | |||||||
Rowlands and Hopkins, 2002 [18] | Men | 27 ± 5 years old | High-carbohydrate diet | 70% carbohydrate, 15% protein, and 15% fat | High-fat meats, eggs and dairy products, nuts and seeds, low-starch vegetable products, and oils | Three 2-week dietary treatment | During exercise: 10%–20% plasma-glucose concentration ↑ (p < 0.01); plasma triacylglycerol ↑ (p < 0.05); 2.5–2.9 fold increase in the peak fat-oxidation rate (p < 0.0001) | |
High-fat diet | 15% carbohydrate, 15% protein, and 70% fat | |||||||
Linehan et al., 2018 [15] | Sprague–Dawley rats | Male | 3 weeks old | Standard diet | 58.5% carbohydrates, 28.7% protein, and 12.7% fat | Not found | 7~28 d | No difference in body weight |
High-fat diet | 44% Carbohydrates, 16% protein, and 40% fat | |||||||
Woodie and Blythe, 2018 [19] | 6 weeks old | Control diet | 44.3% carbohydrate and 5.8% fat | Not found | 63 d | Final body weight, body weight change, fat pad weight, food intake, and kcal consumed ↑ (p < 0.05); no difference in fasting blood glucose | ||
High-fat diet | 20% carbohydrate and 60% fat | |||||||
Cheng et al., 2017 [20] | Sprague–Dawley rats | Male | 3 weeks old | Control diet | 70% carbohydrates, 20% protein, and 10% lipid | Corn oil, milk fat | 56 d | Central obesity, systolic and diastolic hypertension, impaired fasting glucose, hypertriglyceridaemia, and elevated non-HDL cholesterol level |
High-fat diet | 20% carbohydrates, 20% protein, and 60% lipid | |||||||
Huang et al., 2004 [21] | Sprague–Dawley rats | Male | 7 weeks old | Standard diet | 57.99% carbohydrates, 28.50% protein, and 13.49% fat | Lard | 56 d | Body weight, liver weight, adipose tissue, and relative liver weight ↑ (p < 0.05); the plasma cholesterol concentration, a-Amylase, b-Hydroxybutyrate, and Leptin ↑ |
High-fat diet | AIN-76 diet, containing 20% fat | |||||||
Kanthe et al., 2021 [22] | albino Wistar rats | Not found | 180–220 g | Control diet | 60% carbohydrates, 18% protein, and 20% fat | Not found | 21 d | Body weight ↑ (p < 0.05) |
High-fat diet | 50% carbohydrates, 18% protein, and 30% fat | |||||||
Patil et al., 2019 [14] | Control group | 60% carbohydrate, 18% protein, and 20% fat | Vegetable oil | 22 d | Final body weight ↑ (p < 0.05); lipid peroxidation and oxidative stress ↑ | |||
High-fat diet | 50% carbohydrate, 18% protein, and 30% fat | |||||||
Maejima et al., 2020 [23] | Wistar rats | Male | 8-week-old | Normal chow diet | 20.5% protein and 10.1% fat | Not found | 72 d | Body weight, energy intake, visceral fat, and subcutaneous fat ↑ (p < 0.05); muscle ↓ |
High-fat diet | 20.5% protein and 56.7% fat | |||||||
He et al., 2020 [24] | Wistar rats | Male | Not found | Standard diet | 55.5% carbohydrates, 33.3% protein, and 11.2% fat | Not found | 70 d | No difference in TG, TC, LDL-C, and HDL-C (serum) |
High-fat diet | 28.6% carbohydrates, 26.2% protein, and 45.2% fat | |||||||
Schanuel et al., 2019 [16] | C57BL/6 mice | Male | 12 weeks old | Standard chow | 76% carbohydrates, 14% protein, and 10% lipids | Soybean oil, lard | 20 d | Body weight and average fasting blood glucose were no significant differences between groups; inflammatory and fibroblast-like cells ↑ (10 days after, p < 0.05) |
High-fat chow | 26% carbohydrates, 14% protein, and 60% lipids | |||||||
Emelyanova et al., 2019 [25] | C57BL/6 mice | Male | 6 weeks old | Standard chow | 64.5% carbohydrate, 23.6% protein, and 11.9% fat | Lard | 70 d | Body weight, gain of body weight ↑ (p < 0.05) |
High-fat diet | 20% carbohydrate, 20% protein, and 60% fat | |||||||
Pang et al., 2016 [26] | 8 weeks old | Normal diet | 65.42% carbohydrate, 22.47% protein, and 12.11% fat | Not found | 90 d | Energy efficiency ↑ (p < 0.01); epididymal and perirenal fat weight ↑ (p < 0.01); insulin and glucose concentrations ↑ (p < 0.05) | ||
High-fat diet | 20% carbohydrate, 20% protein, and 60% fat | |||||||
Topal et al., 2019 [27] | Swiss albino mice | Female | 8–10 weeks old | Standard chow | 66% carbohydrate, 24% protein, and 10% fat | Not found | 63 d | Body weight, intraperitoneal adipose tissue; adrenal gland weight ↑ (p < 0.01) |
High-fat diet | 23% carbohydrate, 17% protein, and 60% fat |
2.2. Changes in Serum Lipid Indexes
3. High-Fat Diet Alters Host Gut Microbiota Abundance and Diversity
3.1. High-Fat Diet Affects Gut Microbiome Composition
3.2. Alterations in Alpha Diversity May Be Related to Lipid Types
4. Bile Acid—Fat Metabolism and Microbial Action
5. Beneficial Effects of Probiotics on Mice Fed with High-Fat Diet
5.1. Lactobacillus
5.2. Bifidobacterium (Supplementary Table S2)
5.3. Other Probiotics (Supplementary Table S3)
6. Summary
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
ABCG | ATP-binding cassette transporters G |
ACC | acetyl CoA carboxylases |
ACO | 1-aminocyclopropane-1-carboxylicacid oxidase |
AML12 | alpha mouse liver 12 |
AMPKα2 | kinase AMP-activated catalytic subunit alpha 2 |
AP-1 | activator protein-1 |
APOB48 | apolipoprotein B48 |
ATGL | adipose triglyceride lipase |
BA | bile acid |
BSEP | bile salt export pump |
BSH | bile salt hydrolase |
C/EBP-α | CCAAT/enhancer binding protein alpha |
CAT | catalase |
CCL2 | C-C motif ligand 2 |
CCR2 | C-C chemokine receptor 2 |
CPT1α | carnitine palmitoyltransferase-1 alpha |
CPTIα | carnitine palmitoyltransferase-I-alpha |
CRP | C-reactive protein |
CYP7A1 | cholesterol 7α-hydroxylase |
DCA | deoxycholic acid |
DGAT1 | diacylglycerol acyltransferase 1 |
F/B | Firmicutes/Bacteroidetes |
FABP2 | fatty acid binding protein 2 |
FAS | fatty acid synthase |
FAT/CD36 | fatty acid translocase |
FATP4 | fatty-acid transport protein 4 |
FFA | free fatty acid |
FGF21 | fibroblast growth factor 21 |
FXR | farnesoid X receptor |
GLP-1 | glucagon-like peptide 1 |
HDL-C | high-density lipoprotein cholesterol |
HFD | high fat diet |
HSL | hormone-sensitive triglyceride lipase |
IFN-γ | interferon-gamma |
IGF-1 | insulin-like growth factor-1 |
IGFBP-3 | insulin-like growth factor binding protein-3 |
IL-1 | interleukin 1 |
IL-6 | interleukin 6 |
LCA | lithocholic acid |
LDL-C | low-density lipoprotein cholesterol |
LDLR | low-density lipoprotein receptor |
LEfSe | linear discriminant analysis effect size |
LEP | leptin |
LPL | lipoprotein lipase |
LPS | lipopolysaccharide |
LXRα | liver X receptors alpha |
MAPK | mitogen-activated protein kinase |
MCP-1 | monocyte chemoattractant protein-1 |
MOGAT1 | monoacylglycerol O-acyltransferase 1 |
MT-Cytb | mitochondrially encoded cytochrome b |
NAFLD | nonalcoholic fatty liver disease |
NF-κB | nuclear factor-kappaB |
NRF1 | nuclear respiratory factor 1 |
PGC1-α | PPAR-gamma co-activator-1 alpha |
PI3K | phosphatidylinositol 3-kinase |
PKA | protein kinase A |
PLIN | perilipin |
PPARα | peroxisome proliferator-activated receptor alpha |
PPARγ | peroxisome proliferator-activated receptor gamma |
PYY | peptide tyrosine tyrosine |
RIP140 | receptor-interacting protein 140 |
SCD-1 | stearoyl-CoA desaturase-1 |
SCFAs | short-chain fatty acids |
SNS | sympathetic nervous system |
SOD1 | superoxide dismutase 1 |
SREBP-1 | sterol regulatory element-binding protein 1 |
TC | total cholesterol |
TG | triglyceride |
TGR5 | takeda G protein-coupled receptor 5 |
TLR4 | toll-like receptor 4 |
TNF-α | tumor necrosis factor-alpha |
TRAF2 | tumor necrosis factor receptor-associated factor 2 |
UCP1 | uncoupling protein 1 |
ZO-1 | zonula occludens-1 |
References
- Lotrean, L.M.; Stan, O.; Lencu, C.; Laza, V. Dietary patterns, physical activity, body mass index, weight-related behaviours and their interrelationship among Romanian university students-trends from 2003 to 2016. Nutr. Hosp. 2018, 35, 375–383. [Google Scholar] [PubMed]
- Rocha, N.P.; Milagres, L.C.; Filgueiras, M.S.; Suhett, L.G.; Silva, M.A.; Albuquerque, F.M.; Ribeiro, A.Q.; Vieira, S.A.; Novaes, J.F. Association of dietary patterns with excess weight and body adiposity in Brazilian children: The Pase-Brasil study. Arq. Bras. Cardiol. 2019, 113, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ang, Q.Y.; Alba, D.L.; Upadhyay, V.; Bisanz, J.E.; Cai, J.; Lee, H.L.; Barajas, E.; Wei, G.; Noecker, C.; Patterson, A.D.; et al. The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. Elife 2021, 10, e70349. [Google Scholar] [CrossRef]
- Lampuré, A.; Castetbon, K.; Hanafi, M.; Deglaire, A.; Schlich, P.; Péneau, S.; Hercberg, S.; Méjean, C. Relative influence of socioeconomic, psychological and sensory characteristics, physical activity and diet on 5-year weight gain in French adults. Nutrients 2017, 9, 1179. [Google Scholar] [CrossRef]
- Viola, P.C.A.F.; Carvalho, C.A.; Bragança, M.L.B.M.; França, A.K.T.D.C.; Alves, M.T.S.S.B.E.; da Silva, A.A.M. High consumption of ultra-processed foods is associated with lower muscle mass in Brazilian adolescents in the RPS birth cohort. Nutrition 2020, 79–80, 110983. [Google Scholar] [CrossRef] [PubMed]
- Aghayan, M.; Asghari, G.; Yuzbashian, E.; Mahdavi, M.; Mirmiran, P.; Azizi, F. Secular trend in dietary patterns of Iranian adults from 2006 to 2017: Tehran lipid and glucose study. Nutr. J. 2020, 19, 110. [Google Scholar] [CrossRef]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004, 101, 15718–15723. [Google Scholar] [CrossRef]
- Requena, T.; Velasco, M. The human microbiome in sickness and in health. Rev. Clínica Española 2021, 221, 233–240. [Google Scholar] [CrossRef]
- Wilson, A.S.; Koller, K.R.; Ramaboli, M.C.; Nesengani, L.T.; Ocvirk, S.; Chen, C.; Flanagan, C.A.; Sapp, F.R.; Merritt, Z.T.; Bhatti, F.; et al. Diet and the human gut microbiome: An international review. Dig. Dis. Sci. 2020, 65, 723–740. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Ferrario, C.; van Sinderen, D.; Ventura, M. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ. Microbiol. 2017, 19, 1379–1390. [Google Scholar] [CrossRef]
- Jing, Y.S.; Ma, Y.F.; Pan, F.B.; Li, M.S.; Zheng, Y.G.; Wu, L.F.; Zhang, D.S. An insight into antihyperlipidemic effects of polysaccharides from natural resources. Molecules 2022, 27, 1903. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kong, Q.; Li, X.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. A High-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients 2020, 12, 3197. [Google Scholar] [CrossRef] [PubMed]
- Meksawan, K.; Pendergast, D.R.; Leddy, J.J.; Mason, M.; Horvath, P.J.; Awad, A.B. Effect of low and high fat diets on nutrient intakes and selected cardiovascular risk factors in sedentary men and women. J. Am. Coll. Nutr. 2004, 23, 131–140. [Google Scholar] [CrossRef]
- Patil, B.S.; Kanthe, P.S.; Reddy, C.R.; Das, K.K. Emblica officinalis (Amla) ameliorates high-fat diet induced alteration of cardiovascular pathophysiology. Cardiovasc. Hematol. Agents Med. Chem. 2019, 17, 52–63. [Google Scholar] [CrossRef]
- Linehan, V.; Fang, L.Z.; Hirasawa, M. Short-term high-fat diet primes excitatory synapses for long-term depression in orexin neurons. J. Physiol. 2018, 596, 305–316. [Google Scholar] [CrossRef]
- Schanuel, F.S.; Romana-Souza, B.; Monte-Alto-Costa, A. Short-term administration of a high-fat diet impairs wound repair in mice. Lipids 2020, 55, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Sakane, N.; Moritani, T. Metabolic responses to high-fat or low-fat meals and association with sympathetic nervous system activity in healthy young men. J. Nutr. Sci. Vitaminol. 2005, 51, 355–360. [Google Scholar] [CrossRef]
- Rowlands, D.S.; Hopkins, W.G. Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism 2002, 51, 678–690. [Google Scholar] [CrossRef]
- Woodie, L.; Blythe, S. The differential effects of high-fat and high-fructose diets on physiology and behavior in male rats. Nutr. Neurosci. 2018, 21, 328–336. [Google Scholar] [CrossRef]
- Cheng, H.S.; Ton, S.H.; Phang, S.C.W.; Tan, J.B.L.; Abdul Kadir, K. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome. J. Adv. Res. 2017, 8, 743–752. [Google Scholar] [CrossRef]
- Huang, B.W.; Chiang, M.T.; Yao, H.T.; Chiang, W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes. Metab. 2004, 6, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Kanthe, P.S.; Patil, B.S.; Das, K.K. Terminalia arjuna supplementation ameliorates high fat diet-induced oxidative stress in nephrotoxic rats. J. Basic Clin. Physiol. Pharmacol. 2021, 33, 409–417. [Google Scholar] [CrossRef]
- Maejima, Y.; Yokota, S.; Horita, S.; Shimomura, K. Early life high-fat diet exposure evokes normal weight obesity. Nutr. Metab. 2020, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shi, M.; Wu, J.; Sun, Z.; Guo, J.; Liu, Y.; Han, D. Effects of a high-fat diet on intracellular calcium (Ca2+) handling and cardiac remodeling in Wistar rats without hyperlipidemia. Ultrastruct. Pathol. 2020, 44, 42–51. [Google Scholar] [CrossRef]
- Emelyanova, L.; Boukatina, A.; Myers, C.; Oyarzo, J.; Lustgarten, J.; Shi, Y.; Jahangir, A. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. PLoS ONE 2019, 14, e0217045. [Google Scholar] [CrossRef]
- Pang, J.; Xi, C.; Huang, X.; Cui, J.; Gong, H.; Zhang, T. Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice. PLoS ONE 2016, 11, e0146675. [Google Scholar] [CrossRef]
- Topal, F.; Goren, H.; Yucel, F.; Sahinturk, V.; Aydar, Y. Effect of consuming high-fat diet on the morphological parameters of adrenal gland. Bratisl. Med. J. 2019, 120, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Muniz, L.B.; Alves-Santos, A.M.; Camargo, F.; Martins, D.B.; Celes, M.R.N.; Naves, M.M.V. High-lard and high-cholesterol diet, but not high-lard diet, leads to metabolic disorders in a modified dyslipidemia model. Arq. Bras. De Cardiol. 2019, 113, 896–902. [Google Scholar] [CrossRef]
- Yan, S.; Liu, S.; Qu, J.; Li, X.; Hu, J.; Zhang, L.; Liu, X.; Li, X.; Wang, X.; Wen, L.; et al. A lard and soybean oil mixture alleviates low-fat-high-carbohydrate diet-induced nonalcoholic fatty liver disease in mice. Nutrients 2022, 14, 560. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Bogensberger, B.; Benčič, A.; Knüppel, S.; Boeing, H.; Hoffmann, G. Effects of oils and solid fats on blood lipids: A systematic review and network meta-analysis. J. Lipid Res. 2018, 59, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Shen, X.; Wang, F.; Li, Y.; Zheng, X. Black current anthocyanins improve lipid metabolism and modulate gut microbiota in high-fat diet-induced obese mice. Mol. Nutr. Food Res. 2021, 65, e2001090. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Lee, H.H.; Gil, H.S.; Chung, K.S.; Kim, J.K.; Kim, D.H.; Yoon, J.; Chung, E.K.; Lee, J.K.; Yang, W.M.; et al. Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food Funct. 2021, 12, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Tang, M.; Li, J.; Xie, Y.; Li, Y.; Xie, J.; Zhou, L.; Liu, Y.; Yu, X. Gut microbiota and serum metabolic signatures of high-fat-induced bone loss in mice. Front. Cell. Infect. Microbiol. 2021, 11, 788576. [Google Scholar] [CrossRef]
- Wu, L.; Yan, Q.; Chen, F.; Cao, C.; Wang, S. Bupleuri radix extract ameliorates impaired lipid metabolism in high-fat diet-induced obese mice via gut microbia-mediated regulation of FGF21 signaling pathway. Biomed. Pharmacother. 2021, 135, 111187. [Google Scholar] [CrossRef]
- Islam, T.; Koboziev, I.; Albracht-Schulte, K.; Mistretta, B.; Scoggin, S.; Yosofvand, M.; Moussa, H.; Zabet-Moghaddam, M.; Ramalingam, L.; Gunaratne, P.H.; et al. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice. Mol. Nutr. Food Res. 2021, 65, e2100274. [Google Scholar] [CrossRef]
- Peng, C.; Xu, X.; Li, Y.; Li, X.; Yang, X.; Chen, H.; Zhu, Y.; Lu, N.; He, C. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice. Biol. Sex Differ. 2020, 11, 5. [Google Scholar] [CrossRef]
- Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int. J. Obes. 2020, 44, 213–225. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, N.; Tan, H.Y.; Li, S.; Zhang, C.; Zhang, Z.; Feng, Y. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics 2020, 10, 11302–11323. [Google Scholar] [CrossRef] [PubMed]
- Won, S.M.; Chen, S.; Lee, S.Y.; Lee, K.E.; Park, K.W.; Yoon, J.H. Lactobacillus sakei ADM14 induces anti-obesity effects and changes in gut microbiome in high-fat diet-induced obese mice. Nutrients 2020, 12, 3703. [Google Scholar] [CrossRef]
- Van Hul, M.; Karnik, K.; Canene-Adams, K.; De Souza, M.; Van den Abbeele, P.; Marzorati, M.; Delzenne, N.M.; Everard, A.; Cani, P.D. Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E779–E791. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, C.; Zheng, N.; Jia, W.; Zhang, W.; Li, H. Metabolic and gut microbial characterization of obesity-prone mice under a high-fat diet. J. Proteome Res. 2019, 18, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhao, Y.; Zhu, H.; Liang, N.; Ma, K.Y.; Lei, L.; He, W.S.; et al. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct. 2019, 10, 2847–2860. [Google Scholar] [CrossRef]
- Cao, W.; Chin, Y.; Chen, X.; Mi, Y.; Xue, C.; Wang, Y.; Tang, Q. The role of gut microbiota in the resistance to obesity in mice fed a high fat diet. Int. J. Food Sci. Nutr. 2020, 71, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Igarashi, M.; Li, X.; Nakatani, A.; Miyamoto, J.; Inaba, Y.; Sutou, A.; Saito, T.; Sato, T.; Tachibana, N.; et al. Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS ONE 2018, 13, e0202083. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, G.; Li, Q.; Jiao, S.; Feng, C.; Zhao, X.; Yin, H.; Du, Y.; Liu, H. Chitin oligosaccharide modulates gut microbiota and attenuates high-fat-diet-induced metabolic syndrome in mice. Mar. Drugs 2018, 16, 66. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, N.; Sun, Y.; Wu, S.; Tian, W.; Lai, Y.; Li, P.; Du, B. Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Appl. Microbiol. Biotechnol. 2021, 105, 287–299. [Google Scholar]
- Li, D.; Wu, H.; Dou, H.; Guo, L.; Huang, W. Microcapsule of sweet orange essential oil changes gut microbiota in diet-induced obese rats. Biochem. Biophys. Res. Commun. 2018, 505, 991–995. [Google Scholar] [CrossRef]
- Choi, S.; Hwang, Y.J.; Shin, M.J.; Yi, H. Difference in the gut microbiome between ovariectomy-induced obesity and diet-induced obesity. J. Microbiol. Biotechnol. 2017, 27, 2228–2236. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q.; Ma, W.; Tian, F.; Shen, H.; Zhou, M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct. 2017, 8, 4644–4656. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Knight, R.; Leibel, R.L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 2015, 26, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Jing, N.; Liu, X.; Jin, M.; Yang, X.; Hu, X.; Li, C.; Zhao, K. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct. 2020, 11, 6971–6986. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Wang, Q.; Yi, S.; Liu, X.; Jin, H.; Xu, J.; Wen, G.; Zhu, J.; Tuo, B. The source of the fat significantly affects the results of high-fat diet intervention. Sci. Rep. 2022, 12, 4315. [Google Scholar] [CrossRef]
- Qiao, B.; Li, X.; Wu, Y.; Guo, T.; Tan, Z. Comparative analysis of the gut microbiota in mice under lard or vegetable blend oil diet. J. Oleo Sci. 2022, 71, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.J.; Marin, J.J.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. 2009, 15, 804–816. [Google Scholar] [CrossRef]
- Jones, B.V.; Begley, M.; Hill, C.; Gahan, C.G.; Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 13580–13585. [Google Scholar] [CrossRef]
- Kisiela, M.; Skarka, A.; Ebert, B.; Maser, E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: A bioinformatic perspective. J. Steroid Biochem. Mol. Biol. 2012, 129, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hao, C.; Yao, W.; Zhu, D.; Lu, H.; Li, L.; Ma, B.; Sun, B.; Xue, D.; Zhang, W. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Wang, K.; Liao, M.; Zhou, N.; Bao, L.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019, 26, 222–235.e5. [Google Scholar] [CrossRef]
- Inagaki, T.; Moschetta, A.; Lee, Y.K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R.T.; Shelton, J.M.; Richardson, J.A.; Repa, J.J.; et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 3920–3925. [Google Scholar] [CrossRef]
- Kurdi, P.; Kawanishi, K.; Mizutani, K.; Yokota, A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J. Bacteriol. 2006, 188, 1979–1986. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, Z.; Zhang, X.; Zhu, F.; Liu, Y.; Jin, C.; Du, X.; Xu, C.; Chen, Y.; Cai, W.; et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes 2020, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, W.; Chen, Y.; Huang, F.; Lu, L.; Lin, C.; Huang, T.; Ning, Z.; Zhai, L.; Zhong, L.L.; et al. Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J. Clin. Investig. 2020, 130, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Guo, W.L.; Li, Q.Y.; Xu, J.X.; Cao, Y.J.; Liu, B.; Yu, X.D.; Rao, P.F.; Ni, L.; Lv, X.C. The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet. Food Funct. 2020, 11, 3316–3331. [Google Scholar] [CrossRef]
- Sun, C.; Qiu, C.; Zhang, Y.; Yan, M.; Tan, J.; He, J.; Yang, D.; Wang, D.; Wu, L. Lactiplantibacillus plantarum NKK20 Alleviates High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Regulating Bile Acid Anabolism. Molecules 2023, 28, 4042. [Google Scholar] [CrossRef]
- Jacouton, E.; Mondot, S.; Langella, P.; Bermúdez-Humarán, L.G. Impact of Oral Administration of Lactiplantibacillus plantarum Strain CNCM I-4459 on Obesity Induced by High-Fat Diet in Mice. Bioengineering 2023, 10, 1151. [Google Scholar] [CrossRef]
- Cai, H.; Wen, Z.; Li, X.; Meng, K.; Yang, P. Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARα signal pathway and gut microbiota. Appl. Microbiol. Biotechnol. 2020, 104, 5959–5972. [Google Scholar] [CrossRef]
- Jang, A.R.; Jung, D.H.; Lee, T.S.; Kim, J.K.; Lee, Y.B.; Lee, J.Y.; Kim, S.Y.; Yoo, Y.C.; Ahn, J.H.; Hong, E.H.; et al. Lactobacillus plantarum NCHBL-004 modulates high-fat diet-induced weight gain and enhances GLP-1 production for blood glucose regulation. Nutrition 2024, 128, 112565. [Google Scholar] [CrossRef]
- Gan, Y.; Tang, M.W.; Tan, F.; Zhou, X.R.; Fan, L.; Xie, Y.X.; Zhao, X. Anti-obesity effect of Lactobacillus plantarum CQPC01 by modulating lipid metabolism in high-fat diet-induced C57BL/6 mice. J. Food Biochem. 2020, 44, e13491. [Google Scholar] [CrossRef]
- Choi, M.J.; Yu, H.; Kim, J.I.; Seo, H.; Kim, J.G.; Kim, S.K.; Lee, H.S.; Cheon, H.G. Anti-obesity effects of Lactiplantibacillus plantarum SKO-001 in high-fat diet-induced obese mice. Eur. J. Nutr. 2023, 62, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Dong, H.J.; Jeong, H.U.; Ryu, D.W.; Song, S.M.; Kim, Y.R.; Jung, H.H.; Kim, T.H.; Kim, Y.H. Lactobacillus plantarum LMT1-48 exerts anti-obesity effect in high-fat diet-induced obese mice by regulating expression of lipogenic genes. Sci. Rep. 2020, 10, 869. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Chen, H.; Zhou, X.R.; Chu, L.L.; Ran, W.T.; Tan, F.; Zhao, X. Regulating effect of Lactobacillus plantarum CQPC03 on lipid metabolism in high-fat diet-induced obesity in mice. J. Food Biochem. 2020, 44, e13495. [Google Scholar]
- Yin, T.; Bayanjargal, S.; Fang, B.; Inaba, C.; Mutoh, M.; Kawahara, T.; Tanaka, S.; Watanabe, J. Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. attenuates visceral fat accumulation induced by high-fat diet in mice. Benef. Microbes 2020, 11, 655–667. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Ma, F.; Sun, M.; Mu, G.; Tuo, Y. The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet. Food Funct. 2020, 11, 5024–5039. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, H.; Qi, X.; Sun, Y.; Ma, Y.; Li, Q. Lactobacillus plantarum HF02 alleviates lipid accumulation and intestinal microbiota dysbiosis in high-fat diet-induced obese mice. J. Sci. Food Agric. 2023, 103, 4625–4637. [Google Scholar] [CrossRef]
- Das, T.K.; Kar, P.; Panchali, T.; Khatun, A.; Dutta, A.; Ghosh, S.; Chakrabarti, S.; Pradhan, S.; Mondal, K.C.; Ghosh, K. Anti-obesity potentiality of Lactiplantibacillus plantarum E2_MCCKT isolated from a fermented beverage, haria: A high fat diet-induced obese mice model study. World J. Microbiol. Biotechnol. 2024, 40, 168. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, A.J.; Islam, R.; Sarkar, S.; Saha, T. Lactobacillus plantarum KAD protects against high-fat diet-induced hepatic complications in Swiss albino mice: Role of inflammation and gut integrity. PLoS ONE 2024, 19, e0313548. [Google Scholar] [CrossRef]
- Cai, X.; Huang, J.; Yu, T.; Guan, X.; Sun, M.; Zhao, D.; Zheng, Y.; Wang, Q. Lactiplantibacillus plantarum BXM2 Treatment Alleviates Disorders Induced by a High-Fat Diet in Mice by Improving Intestinal Health and Modulating the Gut Microbiota. Nutrients 2025, 17, 407. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, Y.; Shin, D.S.; Ra, J.; Choi, Y.M.; Ryu, B.H.; Lee, J.; Park, E.; Paik, H.D. Hepatoprotective Effect of Lactiplantibacillus plantarum DSR330 in Mice with High Fat Diet-Induced Nonalcoholic Fatty Liver Disease. J. Microbiol. Biotechnol. 2024, 34, 399–406. [Google Scholar] [CrossRef]
- Soundharrajan, I.; Kuppusamy, P.; Srisesharam, S.; Lee, J.C.; Sivanesan, R.; Kim, D.; Choi, K.C. Positive metabolic effects of selected probiotic bacteria on diet-induced obesity in mice are associated with improvement of dysbiotic gut microbiota. FASEB J. 2020, 34, 12289–12307. [Google Scholar] [CrossRef]
- Ondee, T.; Pongpirul, K.; Janchot, K.; Kanacharoen, S.; Lertmongkolaksorn, T.; Wongsaroj, L.; Somboonna, N.; Ngamwongsatit, N.; Leelahavanichkul, A. Lactiplantibacillus plantarum dfa1 Outperforms Enterococcus faecium dfa1 on Anti-Obesity in High Fat-Induced Obesity Mice Possibly through the Differences in Gut Dysbiosis Attenuation, despite the Similar Anti-Inflammatory Properties. Nutrients 2021, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Jung, S.R.; Lee, S.Y.; Lee, N.K.; Paik, H.D.; Lim, S.I. Lactobacillus plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients 2018, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Riezu-Boj, J.I.; Barajas, M.; Pérez-Sánchez, T.; Pajares, M.J.; Araña, M.; Milagro, F.I.; Urtasun, R. Lactiplantibacillus plantarum DSM20174 Attenuates the Progression of Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Metabolic Risk Factors, and Attenuating Adipose Inflammation. Nutrients 2022, 14, 5212. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Kim, S.; Park, H.; Park, S.; Ji, Y.; Todorov, S.D.; Lim, S.D.; Holzapfel, W.H. Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus Plantarum KC28 in a Diet-Induced Obesity Murine Model. Probiotics Antimicrob. Proteins 2021, 13, 677–697. [Google Scholar] [CrossRef]
- Kuerman, M.; Bao, Y.; Guo, M.; Jiang, S. Safety assessment of two strains and anti-obese effects on mice fed a high-cholesterol diet. Biochem. Biophys. Res. Commun. 2021, 572, 131–137. [Google Scholar] [CrossRef]
- Li, Z.; Jin, H.; Oh, S.Y.; Ji, G.E. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem. Biophys. Res. Commun. 2016, 480, 222–227. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X.; Wang, W.; Gu, L.; Hu, C.; Sun, H.; Xu, C.; Hou, J.; Jiang, Z. Lactobacillus paracasei 24 Attenuates Lipid Accumulation in High-Fat Diet-Induced Obese Mice by Regulating the Gut Microbiota. J. Agric. Food Chem. 2022, 70, 4631–4643. [Google Scholar] [CrossRef]
- Miao, Z.; Zheng, H.; Liu, W.H.; Cheng, R.; Lan, H.; Sun, T.; Zhao, W.; Li, J.; Shen, X.; Li, H.; et al. Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice. Probiotics Antimicrob. Proteins 2023, 15, 844–855. [Google Scholar] [CrossRef]
- Miao, Z.H.; Wang, J.N.; Shen, X.; Zhou, Q.Q.; Luo, Y.T.; Liang, H.J.; Wang, S.J.; Qi, S.H.; Cheng, R.Y.; He, F. Long-term use of Lacticaseibacillus paracasei N1115 from early life alleviates high-fat-diet-induced obesity and dysmetabolism in mice. Benef Microbes 2022, 13, 407–416. [Google Scholar] [CrossRef]
- Galindev, U.; Erdenebold, U.; Batnasan, G.; Ganzorig, O.; Batdorj, B. Anti-obesity effects of potential probiotic Lactobacillus strains isolated from Mongolian fermented dairy products in high-fat diet-induced obese rodent model. Braz. J. Microbiol. 2024, 55, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.R.; Kwon, T.J.; Chung, E.C.; Bae, J.; Soung, S.H.; Tak, H.J.; Choi, J.Y.; Lee, Y.E.; Won Hwang, N.; Lee, J.S.; et al. Combination of Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 attenuates fat accumulation and alters the metabolome and gut microbiota in mice with high-fat diet-induced obesity. Food Funct. 2024, 15, 647–662. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.C.; Chen, M.; Huang, Z.R.; Guo, W.L.; Ai, L.Z.; Bai, W.D.; Yu, X.D.; Liu, Y.L.; Rao, P.F.; Ni, L. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Res. Int. 2021, 139, 109956. [Google Scholar] [CrossRef] [PubMed]
- Song, E.J.; Lee, E.S.; Kim, Y.I.; Shin, D.U.; Eom, J.E.; Shin, H.S.; Lee, S.Y.; Nam, Y.D. Gut microbial change after administration of Lacticaseibacillus paracasei AO356 is associated with anti-obesity in a mouse model. Front. Endocrinol. 2023, 14, 1224636. [Google Scholar] [CrossRef]
- Novotny Núñez, I.; Maldonado Galdeano, C.; de Moreno de LeBlanc, A.; Perdigón, G. Lactobacillus casei CRL 431 administration decreases inflammatory cytokines in a diet-induced obese mouse model. Nutrition 2015, 31, 1000–1007. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Gu, M.; Werlinger, P.; Cho, J.H.; Cheng, J.; Suh, J.W. Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int. J. Mol. Sci. 2022, 23, 13436. [Google Scholar] [CrossRef]
- Chen, M.; Pan, P.; Zhang, H.; Li, R.; Ren, D.; Jiang, B. Latilactobacillus sakei QC9 alleviates hyperglycaemia in high-fat diet and streptozotocin-induced type 2 diabetes mellitus mice via the microbiota-gut-liver axis. Food Funct. 2024, 15, 8008–8029. [Google Scholar] [CrossRef]
- Park, S.S.; Lim, S.K.; Lee, J.; Park, H.K.; Kwon, M.S.; Yun, M.; Kim, N.; Oh, Y.J.; Choi, H.J. Latilactobacillus sakei WIKIM31 Decelerates Weight Gain in High-Fat Diet-Induced Obese Mice by Modulating Lipid Metabolism and Suppressing Inflammation. J. Microbiol. Biotechnol. 2021, 31, 1568–1575. [Google Scholar] [CrossRef]
- Lim, S.M.; Jeong, J.J.; Woo, K.H.; Han, M.J.; Kim, D.H. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr. Res. 2016, 36, 337–348. [Google Scholar] [CrossRef]
- Jang, H.M.; Han, S.K.; Kim, J.K.; Oh, S.J.; Jang, H.B.; Kim, D.H. Lactobacillus sakei Alleviates High-Fat-Diet-Induced Obesity and Anxiety in Mice by Inducing AMPK Activation and SIRT1 Expression and Inhibiting Gut Microbiota-Mediated NF-κB Activation. Mol. Nutr. Food Res. 2019, 63, e1800978. [Google Scholar] [CrossRef]
- Ji, Y.; Park, S.; Chung, Y.; Kim, B.; Park, H.; Huang, E.; Jeong, D.; Jung, H.Y.; Kim, B.; Hyun, C.K.; et al. Amelioration of obesity-related biomarkers by Lactobacillus sakei CJLS03 in a high-fat diet-induced obese murine model. Sci. Rep. 2019, 9, 6821. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, X.; Yang, H.; Liu, H.; Yang, X.; Liu, Q.; Tian, H.; Xue, Y.; Ren, P.; Kuang, X.; et al. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol. Res. 2022, 175, 106020. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Cao, G.; Zhao, W.; Bie, X.; Lu, F.; Lu, Z.; Lu, Y. Lactobacillus acidophilus NX2-6 Improved High-Fat Diet-Induced Glucose Metabolism Disorder Independent of Promotion of Insulin Secretion in Mice. J. Agric. Food Chem. 2021, 69, 15598–15610. [Google Scholar] [CrossRef]
- Song, M.; Park, S.; Lee, H.; Min, B.; Jung, S.; Park, S.; Kim, E.; Oh, S. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice. J. Dairy Sci. 2015, 98, 1492–1501. [Google Scholar] [CrossRef]
- Ondee, T.; Pongpirul, K.; Visitchanakun, P.; Saisorn, W.; Kanacharoen, S.; Wongsaroj, L.; Kullapanich, C.; Ngamwongsatit, N.; Settachaimongkon, S.; Somboonna, N.; et al. Lactobacillus acidophilus LA5 improves saturated fat-induced obesity mouse model through the enhanced intestinal Akkermansia muciniphila. Sci. Rep. 2021, 11, 6367. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, S.; Zhang, Z.; Zhang, T.; Teng, X.; Xiao, G.; Huang, S. Isolation of Lactobacillus acidophilus strain and its anti-obesity effect in a diet induced obese murine model. Lett. Appl. Microbiol. 2024, 77, ovae021. [Google Scholar] [CrossRef] [PubMed]
- Molina-Tijeras, J.A.; Diez-Echave, P.; Vezza, T.; Hidalgo-García, L.; Ruiz-Malagón, A.J.; Rodríguez-Sojo, M.J.; Romero, M.; Robles-Vera, I.; García, F.; Plaza-Diaz, J.; et al. Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacol. Res. 2021, 167, 105471. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Xu, Y.; Li, W.; Jiang, S.; Zhang, J.; Xue, H. Limosilactobacillus fermentum HNU312 alleviates lipid accumulation and inflammation induced by a high-fat diet: Improves lipid metabolism pathways and increases short-chain fatty acids in the gut microbiome. Food Funct. 2024, 15, 8878–8892. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, S.I.; Jang, M.; Jeong, Y.A.; Kang, C.H.; Kim, G.H. Combination of Limosilactobacillus fermentum MG4231 and MG4244 attenuates lipid accumulation in high-fat diet-fed obese mice. Benef. Microbes 2021, 12, 479–491. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, M.; Heo, H.; Park, J.Y.; Lee, J.; Kang, C.H. Limosilactobacillus fermentum MG4294 and Lactiplantibacillus plantarum MG5289 Ameliorates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced Mice. Nutrients 2023, 15, 2005. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, G.; Noh, M.G.; Park, J.H.; Jang, M.; Fang, S.; Park, H. Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity. Exp. Mol. Med. 2020, 52, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Xue, H.; Zhang, Z.; Wang, J.; Li, A.; Zhang, J.; Luo, P.; Zhan, M.; Zhou, X.; Chen, L.; et al. Amelioration of Type 2 Diabetes Using Four Strains of Lactobacillus Probiotics: Effects on Gut Microbiota Reconstitution-Mediated Regulation of Glucose Homeostasis, Inflammation, and Oxidative Stress in Mice. J. Agric. Food Chem. 2023, 71, 20801–20814. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.P.; Molz, P.; Fraga, B.S.; Bondarczuk, N.H.; Silveira, P.D.; Ferri, M.H.; Crestani, T.B.; Breyer, G.M.; Guimarães, G.R.; Motta, A.S.D.; et al. Effect of Probiotic Lacticaseibacillus rhamnosus LB1.5 on Anxiety-like Behavior, Neuroprotection and Neuroinflammation Markers of Male Mice Fed a High-Fat Diet. Nutrients 2024, 16, 879. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ding, L.; Ma, G.; Zhang, Y.; Sun, Y.; Li, Z.; Tao, X.; Ali, A.; Wang, D.; Wu, L. Lactobacillus rhamnosus TR08 Improves Dyslipidemia in Mice Fed with a High Fat Diet by Regulating the Intestinal Microbiota, Reducing Systemic Inflammatory Response, and Promoting Sphingomholipid Metabolism. Molecules 2022, 27, 7357. [Google Scholar] [CrossRef]
- Chen, Y.T.; Chiou, S.Y.; Hsu, A.H.; Lin, Y.C.; Lin, J.S. Lactobacillus rhamnosus Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in High-Fat Diet-Induced Obese Mice. Mol. Nutr. Food Res. 2022, 66, e2100348. [Google Scholar] [CrossRef]
- Ivanovic, N.; Minic, R.; Dimitrijevic, L.; Radojevic Skodric, S.; Zivkovic, I.; Djordjevic, B. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct. 2015, 6, 558–565. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Liu, J.R. Effect of Lactobacillus rhamnosus GG on Energy Metabolism, Leptin Resistance, and Gut Microbiota in Mice with Diet-Induced Obesity. Nutrients 2020, 12, 2557. [Google Scholar] [CrossRef]
- Sun, M.; Wu, T.; Zhang, G.; Liu, R.; Sui, W.; Zhang, M.; Geng, J.; Yin, J.; Zhang, M. Lactobacillus rhamnosus LRa05 improves lipid accumulation in mice fed with a high fat diet via regulating the intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism. Food Funct. 2020, 11, 9514–9525. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, H.Q.; Zhang, X.; Zhang, H.; Xia, J.; Ding, K.; Fang, Z.Y. Probiotic administration of Lactobacillus rhamnosus GR-1 attenuates atherosclerotic plaque formation in ApoE−/− mice fed with a high-fat diet. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3533–3541. [Google Scholar]
- Ukibe, K.; Miyoshi, M.; Kadooka, Y. Administration of Lactobacillus gasseri SBT2055 suppresses macrophage infiltration into adipose tissue in diet-induced obese mice. Br. J. Nutr. 2015, 114, 1180–1187. [Google Scholar] [CrossRef]
- Kim, M.J.; Shin, S.K.; Han, J.W.; Kim, J.E.; Lee, M.J.; Bae, H.R.; Kwon, E.Y. Lactobacillus paragasseri SBT2055 attenuates obesity via the adipose tissue-muscle-gut axis in obese mice. Microbiol. Res. 2025, 290, 127972. [Google Scholar] [CrossRef]
- Lee, C.S.; Park, M.H.; Kim, B.K.; Kim, S.H. Antiobesity Effect of Novel Probiotic Strains in a Mouse Model of High-Fat Diet-Induced Obesity. Probiotics Antimicrob. Proteins 2021, 13, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Kang, H.; Yang, G.; Oh, S.; Kim, E. The PKA-SREBP1c Pathway Plays a Key Role in the Protective Effects of Lactobacillus johnsonii JNU3402 Against Diet-Induced Fatty Liver in Mice. Mol. Nutr. Food Res. 2023, 67, e2200496. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, H.J.; Kim, J.Y.; Shim, J.J.; Lee, J.H. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024, 16, 2570. [Google Scholar] [CrossRef]
- Park, D.Y.; Ahn, Y.T.; Park, S.H.; Huh, C.S.; Yoo, S.R.; Yu, R.; Sung, M.K.; McGregor, R.A.; Choi, M.S. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS ONE 2013, 8, e59470. [Google Scholar] [CrossRef]
- Li, S.; Qi, C.; Zhu, H.; Yu, R.; Xie, C.; Peng, Y.; Yin, S.W.; Fan, J.; Zhao, S.; Sun, J. Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet. Food Funct. 2019, 10, 4705–4715. [Google Scholar] [CrossRef] [PubMed]
- Abot, A.; Pomié, N.; Astre, G.; Jaomanjaka, F.; Marchand, P.; Cani, P.D.; Roudier, N.; Knauf, C. Limosilactobacillus reuteri BIO7251 administration improves metabolic phenotype in obese mice fed a high fat diet: An inter-organ crosstalk between gut, adipose tissue and nervous system. Int. J. Food. Sci. Nutr. 2024, 75, 58–69. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, Z.; Stanton, C.; Ross, R.P.; Zhao, J.; Zhang, H.; Yang, B.; Chen, W. Lactobacillus rhamnosus FJSYC4-1 and Lactobacillus reuteri FGSZY33L6 alleviate metabolic syndrome via gut microbiota regulation. Food Funct. 2021, 12, 3919–3930. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, Y.J.; Kang, H.; Yang, G.; Hong, E.J.; Lim, J.Y.; Oh, S.; Kim, E. Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through PPARγ signaling. Sci. Rep. 2019, 9, 20152. [Google Scholar] [CrossRef]
- Liang, C.; Zhou, X.H.; Jiao, Y.H.; Guo, M.J.; Meng, L.; Gong, P.M.; Lyu, L.Z.; Niu, H.Y.; Wu, Y.F.; Chen, S.W.; et al. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol. Nutr. Food Res. 2021, 65, e2100136. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Kang, I.B.; Kim, H.; Song, K.Y.; Seo, K.H. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: Direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue. Mol. Nutr. Food Res. 2017, 61, 1700252. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, H.; Tsao, R.; Mine, Y. Lactobacillus pentosus S-PT84 Prevents Low-Grade Chronic Inflammation-Associated Metabolic Disorders in a Lipopolysaccharide and High-Fat Diet C57/BL6J Mouse Model. J. Agric. Food Chem. 2020, 68, 4374–4386. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Joung, H.; Chu, J.; Cho, M.; Kim, Y.W.; Kim, K.H.; Shin, C.H.; Lee, J.; Ha, J.H. Lactobacillus delbrueckii subsp. Lactis CKDB001 Ameliorates Metabolic Complications in High-Fat Diet-Induced Obese Mice. Nutrients 2024, 16, 4260. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, T.; Cui, X.; Li, L.; Chen, B.; Li, Y.; Yue, T. Lactobacillus coryniformis subsp. torquens T3 alleviates non-alcoholic fatty liver disease via reconstruction of the gut microbiota and redox system. J. Sci. Food Agric. 2023, 103, 6814–6825. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kang, I.; Lee, Y.; Habib, M.A.; Choi, B.J.; Kang, J.S.; Park, D.S.; Kim, Y.S. Bifidobacterium longum subsp. Infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and Reduces High-Fat-Diet-Induced Obesity in Mice. J. Agric. Food Chem. 2021, 69, 6032–6042. [Google Scholar] [CrossRef] [PubMed]
- Kou, R.; Wang, J.; Li, A.; Wang, Y.; Zhang, B.; Liu, J.; Sun, Y.; Wang, S. Ameliorating Effects of Bifidobacterium longum subsp. Infantis FB3-14 against High-Fat-Diet-Induced Obesity and Gut Microbiota Disorder. Nutrients 2023, 15, 4104. [Google Scholar] [CrossRef]
- In Kim, H.; Kim, J.K.; Kim, J.Y.; Jang, S.E.; Han, M.J.; Kim, D.H. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutr. Res. 2019, 67, 78–89. [Google Scholar] [CrossRef]
- Wu, T.; Sun, M.; Liu, R.; Sui, W.; Zhang, J.; Yin, J.; Fang, S.; Zhu, J.; Zhang, M. Bifidobacterium longum subsp. Longum Remodeled Roseburia and Phosphatidylserine Levels and Ameliorated Intestinal Disorders and liver Metabolic Abnormalities Induced by High-Fat Diet. J. Agric. Food Chem. 2020, 68, 4632–4640. [Google Scholar]
- Lim, S.M.; Kim, D.H. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota. Nutr. Res. 2017, 41, 86–96. [Google Scholar] [CrossRef]
- Wang, G.; Jiao, T.; Xu, Y.; Li, D.; Si, Q.; Hao, J.; Zhao, J.; Zhang, H.; Chen, W. Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food Funct. 2020, 11, 6115–6127. [Google Scholar] [CrossRef]
- Ma, L.; Zheng, A.; Ni, L.; Wu, L.; Hu, L.; Zhao, Y.; Fu, Z.; Ni, Y. Bifidobacterium animalis subsp. lactis lkm512 Attenuates Obesity-Associated Inflammation and Insulin Resistance Through the Modification of Gut Microbiota in High-Fat Diet-Induced Obese Mice. Mol. Nutr. Food Res. 2022, 66, e2100639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, B.; Zhang, N.; Zhang, Q.; Niu, T.; Zhao, L.; Sun, E.; Wang, J.; Xiao, R.; He, J.; et al. The Effect of Bifidobacterium animalis subsp. Lactis MN-Gup on Glucose Metabolism, Gut Microbiota, and Their Metabolites in Type 2 Diabetic Mice. Nutrients 2024, 16, 1691. [Google Scholar] [CrossRef] [PubMed]
- Ban, O.H.; Lee, M.; Bang, W.Y.; Nam, E.H.; Jeon, H.J.; Shin, M.; Yang, J.; Jung, Y.H. Bifidobacterium lactis IDCC 4301 Exerts Anti-Obesity Effects in High-Fat Diet-Fed Mice Model by Regulating Lipid Metabolism. Mol. Nutr. Food Res. 2023, 67, e2200385. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Xiao, J.Z.; Satoh, T.; Odamaki, T.; Takahashi, S.; Sugahara, H.; Yaeshima, T.; Iwatsuki, K.; Kamei, A.; Abe, K. Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol. Biochem. 2010, 74, 1656–1661. [Google Scholar] [CrossRef]
- Cano, P.G.; Santacruz, A.; Trejo, F.M.; Sanz, Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity 2013, 21, 2310–2321. [Google Scholar] [CrossRef]
- Rahman, M.S.; Lee, Y.; Park, D.S.; Kim, Y.S. Bifidobacterium bifidum DS0908 and Bifidobacterium longum DS0950 Culture-Supernatants Ameliorate Obesity-Related Characteristics in Mice with High-Fat Diet-Induced Obesity. J. Microbiol. Biotechnol. 2023, 33, 96–105. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, R.; Wang, Y. Effects of the probiotic Bacillus coagulans BC69 on the metabolic and histological alterations induced by a high-sugar and high-fat diet in C57BL/6J mice. Food Funct. 2023, 14, 6596–6609. [Google Scholar] [CrossRef]
- Kim, B.; Kwon, J.; Kim, M.S.; Park, H.; Ji, Y.; Holzapfel, W.; Hyun, C.K. Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice. PLoS ONE 2018, 13, e0210120. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, B.; Xu, H.; Mei, X.; Xu, X.; Zhang, X.; Ni, J.; Li, W. Bacillus amyloliquefaciens SC06 Protects Mice Against High-Fat Diet-Induced Obesity and Liver Injury via Regulating Host Metabolism and Gut Microbiota. Front. Microbiol. 2019, 10, 161. [Google Scholar] [CrossRef]
- Hashemnia, S.M.R.; Meshkani, R.; Zamani-Garmsiri, F.; Shabani, M.; Tajabadi-Ebrahimi, M.; Ragerdi Kashani, I.; Siadat, S.D.; Mohassel Azadi, S.; Emamgholipour, S. Amelioration of obesity-induced white adipose tissue inflammation by Bacillus coagulans T4 in a high-fat diet-induced obese murine model. Life Sci. 2023, 314, 121286. [Google Scholar] [CrossRef]
- Cao, G.T.; Dai, B.; Wang, K.L.; Yan, Y.; Xu, Y.L.; Wang, Y.X.; Yang, C.M. Bacillus licheniformis, a potential probiotic, inhibits obesity by modulating colonic microflora in C57BL/6J mice model. J. Appl. Microbiol. 2019, 127, 880–888. [Google Scholar] [CrossRef]
- Wen, X.; Feng, X.; Xin, F.; An, R.; Huang, H.; Mao, L.; Liu, P.; Zhang, J.; Huang, H.; Liu, X.; et al. B. vulgatus ameliorates high-fat diet-induced obesity through modulating intestinal serotonin synthesis and lipid absorption in mice. Gut Microbes 2024, 16, 2423040. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.K.; Tang, M.; Lei, L.; Li, J.R.; Sun, H.; Jiang, J.; Dong, B.; Li, H.Y.; Jiang, J.D.; et al. Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes 2024, 16, 2304159. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Xiong, X.; Liu, M.; Liang, Q.; Zhao, Q.; Wei, G.; Shi, J.; Li, X. Bacteroides ovatus alleviates high-fat and high-cholesterol-induced nonalcoholic fatty liver disease via gut-liver axis. Biomed. Pharmacother. 2024, 178, 117156. [Google Scholar] [CrossRef]
- Wang, Y.; You, Y.; Tian, Y.; Sun, H.; Li, X.; Wang, X.; Wang, Y.; Liu, J. Pediococcus pentosaceus PP04 Ameliorates High-Fat Diet-Induced Hyperlipidemia by Regulating Lipid Metabolism in C57BL/6N Mice. J. Agric. Food Chem. 2020, 68, 15154–15163. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, Y.; Zhang, N.; Li, X.; Wang, X.; Wang, W.; Zhang, J.; Piao, C.; Wang, Y.; Liu, J. Pediococcus pentosaceus PP04 improves high-fat diet-induced liver injury by the modulation of gut inflammation and intestinal microbiota in C57BL/6N mice. Food Funct. 2021, 12, 6851–6862. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, W.; Edirisuriya, P.; Ai, Q.; Nie, K.; Ji, X.; Zhou, K. Characterization of metabolites and biomarkers for the probiotic effects of Clostridium cochlearium on high-fat diet-induced obese C57BL/6 mice. Eur. J. Nutr. 2022, 61, 2217–2229. [Google Scholar] [CrossRef]
- Luo, Y.; Jin, Y.; Wang, H.; Wang, G.; Lin, Y.; Chen, H.; Li, X.; Wang, M. Effects of Clostridium tyrobutyricum on Lipid Metabolism, Intestinal Barrier Function, and Gut Microbiota in Obese Mice Induced by High-Fat Diet. Nutrients 2024, 16, 493. [Google Scholar] [CrossRef]
- Benvenuti, L.; D’Antongiovanni, V.; Pellegrini, C.; Fornai, M.; Bernardini, N.; Ippolito, C.; Segnani, C.; Di Salvo, C.; Colucci, R.; Martelli, A.; et al. Dietary Supplementation with the Probiotic SF68 Reinforces Intestinal Epithelial Barrier in Obese Mice by Improving Butyrate Bioavailability. Mol. Nutr. Food Res. 2023, 67, e2200442. [Google Scholar] [CrossRef]
- Xu, W.; Yu, J.; Yang, Y.; Li, Z.; Zhang, Y.; Zhang, F.; Wang, Q.; Xie, Y.; Zhao, B.; Wu, C. Strain-level screening of human gut microbes identifies Blautia producta as a new anti-hyperlipidemic probiotic. Gut Microbes 2023, 15, 2228045. [Google Scholar] [CrossRef]
- Castro-Rodríguez, D.C.; Reyes-Castro, L.A.; Vega, C.C.; Rodríguez-González, G.L.; Yáñez-Fernández, J.; Zambrano, E. Leuconostoc mesenteroides subsp. mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet-Induced Obesity in Male Mice. Probiotics Antimicrob. Proteins 2020, 12, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhu, W.; Lin, Y.; Chan, F.K.L.; Xu, Z.; Ng, S.C. Roseburia hominis improves host metabolism in diet-induced obesity. Gut Microbes 2025, 17, 2467193. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Zhou, Y.; He, L.; Li, Y.; Shahzad, M.; Li, D. Coprococcus protects against high-fat diet-induced nonalcoholic fatty liver disease in mice. J. Appl. Microbiol. 2024, 135, lxae125. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Kaicen, W.; Bian, X.; Yang, L.; Ding, S.; Li, Y.; Li, S.; Zhuge, A.; Li, L. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb. Biotechnol. 2023, 16, 1924–1939. [Google Scholar] [CrossRef]
Reference | Species | Sex | Age or Weight | Control Group (CG) Diet | High-Fat Diet | Terms | Sample | Dominant Flora of HF | Compared with the CG | Diversity (HF vs. CG) |
---|---|---|---|---|---|---|---|---|---|---|
Song et al., 2021 [32] | C57BL/6 mice | Male | 4 weeks old | 70% carbohydrate, 10% fat, 20% protein | 35% carbohydrate, 45% fat, 20% protein | 14 weeks | Feces | Phylum: about 66% Firmicutes, 27% Bacteroidetes, 5% Proteobacteria, and 1% Tenericutes Genus: Parabacteroides, Clostridiales, Lactobacillus, Akkermansia, Bacteroides, and Alistipes | Increase: Firmicutes, Proteobacteria, Tenericutes, and Lactobacillus Reduce: Bacteroidetes, Parabacteroides, Akkermansia, Bacteroides, and Alistipes | Alpha: Not found Beta: the respective aggregation areas do not overlap |
Han et al., 2021 [33] | C57BL/6 mice | Male | 19–22 g | 55.9% carbohydrate, 5.2% fat, 18% protein | 41% carbohydrate, 30% fat, 13% protein | 14 weeks | Feces | Phylum: about 40% Bacteroidetes, 29% Firmicutes, and 24% Proteobacteria Genus: Not found | Increase: Firmicutes and Proteobacteria Reduce: Bacteroidetes | Alpha: Not found Beta: the respective aggregation areas do not overlap |
Lu et al., 2021 [34] | C57BL/6 mice | Male | 7 weeks old | 70% carbohydrate, 10% fat, 20% protein | 20% carbohydrate, 60% fat, 20% protein | 12 weeks | Feces | Phylum: about 55% Firmicutes, 40% Bacteroidetes, and 2% Proteobacteria Genus: Alistipes, Blautia, Oscillibacter, Rikenella, Ruminiclostridium, Ruminococcaceae_UCG-014, Lachnoclostridium, Lactococcus, Streptococcus | Increase: Firmicutes, Oscillibacter Reduce: Bacteroidetes, Proteobacteria | Alpha: Not found Beta: the respective aggregation areas do not overlap |
Wu et al., 2021 [35] | C57BL/6 mice | Male | 20 ± 2 g | 73.5% corn, 20% wheat bran, 5% fish meal, 1% farina, and 0.5% salt | 20.8% carbohydrate, 60.9% fat, 18.3% protein, and 228 mg/kg cholesterol | 16 weeks | Feces | Phylum: Firmicutes, Bacteroidetes, TM7, Tenericutes, and Actinobacteria Genus: Anaerostipes, Coprococcus, Blautia, Oscillospira, Ruminococcus, Allobaculum, Clostridium, Lactobacillus, Parabacteroides, Paraprevotella, Prevotella, Odoribacter, Butyricimonas, AF12, Bacteroides, Desulfovibrio, Bilophila, and Bifidobacterium | Increase: Anaerostipes, Coprococcus, Blautia, Oscillospira, Ruminococcus, Allobaculum, Clostridium, Odoribacter, Butyricimonas, AF12, Bacteroides, Desulfovibrio, and Bilophila Reduce: Lactobacillus, Parabacteroides, Paraprevotella, Prevotella, and Bifidobacterium | Alpha: Chao1, Observed species, Shannon ↓ Beta: CG and HF groups formed two distinct clusters |
Islam et al., 2021 [36] | C57BL/6 mice | Male | 5 weeks old | Not found | 35% carbohydrate, 45% fat, 20% protein | 14 weeks | Cecal contents | Phylum: about 57% Firmicutes, 30% Bacteroidetes, and 12% Verrucomicrobia Family: Lachnospiraceae, Muribaculaceae, Ruminococcaceae, Akkermansiaceae, Erysipelotrichaceae, Bacteroidaceae, Clostridiaceae 1, Peptostreptococcaceae, and Burkholderiaceae | Not found | Not found |
Peng et al., 2020 [37] | C57BL/6 mice | Male | 6 weeks old | 70% carbohydrate, 10% fat, 20% protein | 35% carbohydrate, 45% fat, 20% protein | 12 weeks | Feces | Phylum: about 54% Bacteroidetes, and 42% Firmicutes Genus: Ruminococcaceae_UCG_014, Eisenbergiella, Faecalibaculum, Prevotellaceae_UCG_001, Alloprevotella, Akkermansia, and Ruminococcus_2 | Increase: Bacteroidetes, Ruminococcaceae_UCG_014, Eisenbergiella, Faecalibaculum, Prevotellaceae_UCG_001, Alloprevotella, Akkermansia, and Ruminococcus_2 Reduce: Firmicutes | Alpha: Sobs ↑(p < 0.01), Shannon ↑(p > 0.05) Beta: the respective aggregation areas do not overlap |
Peng et al., 2020 [37] | C57BL/6 mice | Female | 6 weeks old | 70% carbohydrate, 10% fat, 20% protein | 35% carbohydrate, 45% fat, 20% protein | 12 weeks | Feces | Phylum: about 62% Firmicutes, 27% Bacteroidetes, and 8% Proteobacteria Genus: Escherichia_Shigella, Blautia, Parabacteroides, Erysipetatoclostridium, Anaerotruncus, Ruminiclostridium_9, Lachnoclostridium, Ruminococcaceae_UCG_004, Streptococcus, Lactococcus, and Acinetobacter | Increase: Proteobacteria, Escherichia_Shigella, Blautia, Parabacteroides, Erysipetatoclostridium, Anaerotruncus, Ruminiclostridium_9, Lachnoclostridium, Ruminococcaceae_UCG_004, Streptococcus, Lactococcus, and Acinetobacter Reduce: Firmicutes and Bacteroidetes | Alpha: Sobs ↓ (p < 0.01), Shannon ↓ (p < 0.05) Beta: the respective aggregation areas do not overlap |
Wang et al., 2020 [38] | C57BL/6 mice | Male | 6 weeks old | Containing 10% fat by energy | Containing 60% fat by energy | 16 weeks | Feces | Phylum: about 70% Firmicutes, 17% Bacteroidetes, 14% Proteobacteria Genus: Allobaculum, Bacteroides, Lachnospiraceae_NK4A136_group, Desullovibrio, Ruminiclostridium_9, Alistipes, Coriobacteriaceae_UCG-002, Lactobacillus, Helicobacter, and Alloprevotella | Increase: Proteobacteria, Bacteroides, Lachnospiraceae_NK4A136_group, Desullovibrio, Ruminiclostridium_9, Alistipes, Coriobacteriaceae_UCG-002, Lactobacillus, and Helicobacter Reduce: Firmicutes, Bacteroidetes, and Allobaculum | Alpha: Not found Beta: the respective aggregation areas do not overlap |
Xu et al., 2020 [39] | C57BL/6 mice | Male | 4 weeks old | Normal chow diet | 20% carbohydrate, 60% fat, 20% protein | 9 weeks | Feces | Phylum: about 57% Firmicutes, 36% Bacteroidetes, 5% Proteobacteria, and 1% Verrucomicrobia Genus: Allobaculum, Bacteroides, Lactococcus, Parabacteroides, and Odoribacter | Increase: Firmicutes, Proteobacteria, Verrucomicrobia, and Odoribacter Reduce: Bacteroidetes, Bacteroides, and Parabacteroides | Alpha: Observed species, Chao, ACE, and Simpson ↓ Beta: the respective aggregation areas do not overlap |
Won et al., 2020 [40] | C57BL/6 mice | Male | 5 weeks old | Containing 10% fat by energy | Containing 60% fat by energy | 10 weeks | Cecal contents | Phylum: about 44% Firmicutes, 28% Verrucomicrobia, 22% Proteobacteria, and 3% Bacteroidetes Family: Lachnospiraceae, Ruminococcaceae, Desulfovlbrionaceae, Bacteridaceae, Helicobacteraceae, and Muribaculaceae | Increase: Firmicutes, Verrucomicrobia, Lachnospiraceae, and Desulfovlbrionaceae Reduce: Bacteroidetes, Proteobacteria, Ruminococcaceae, Helicobacteraceae, and Muribaculaceae | Alpha: No significant change in the alpha diversity index Beta: the respective aggregation areas do not overlap |
Jing et al., 2022 [11] | C57BL/6 mice | Male | 7 weeks old | 70% carbohydrate, 10% fat, 20% protein | 35% carbohydrate, 45% fat, 20% protein | 8 weeks | Cecal contents | Phylum: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes Genus: Aerococcus, Staphylococcus, Bacteroides, Adlercreutzia, Alistipes, Akkermansia, Parabacteroides, Turicibacter, Lachnospiraceae_NK4A136_group, and norank_f_Lachnospiraceae | Increase: Proteobacteria, Actinobacteria, Turicibacter, and Lachnospiraceae_NK4A136_group Reduce: Firmicutes, Bacteroidetes, Aerococcus, Adlercreutzia, Alistipes, Akkermansia, Parabacteroides, and norank_f_Lachnospiraceae | Alpha: Chao, Shannon ↓ Beta: the respective aggregation areas do not overlap |
Van et al., 2020 [41] | C57BL/6 mice | Male | 9 weeks old | 70% carbohydrate, 10% fat, 20% protein | Containing 60% fat by energy | 8 weeks | Cecal contents | Phylum: Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia Genus: Akkermansia, Allobaculum, Ruminococcus, Oscillospira, Odoribacter, Parabacteroides, and Bacteroides | Increase: Ruminococcus, Oscillospira, and Odoribacter Reduce: Allobaculum, Parabacteroides, and Bacteroides | Alpha: Shannon, Simpson, Chao 1 ↓ Beta: the respective aggregation areas do not overlap |
Gu et al., 2019 [42] | C57BL/6 mice | Male | 6 weeks old | 48.2% cornstarch, 16.1% maltodextrin, 6.4% sucrose, 2.4% soybean oil, 1.6% lard | 22.5% maltodextrin, 8.9% sucrose, 3.3% soybean oil, 30.1% lard | 8 weeks | Cecal contents | Phylum: about 52% Firmicutes, 42% Bacteroidetes, and 5% Proteobacteria Genus: Butyricimonas, Butyricicoccus, Rikenella, Anaerotruncus, Xylanibacter, and Parasutterella | Increase: Bacteroidetes, Proteobacteria, Butyricimonas, Rikenella, Xylanibacter, Butyricicoccus, Anaerotruncus, and Parasutterella Reduce: Firmicules, Oscillibacter, Lachnospiracea_incertae_sedis, Flavonifractor, Helicobacter, Bacteoides, and Pseudoflavonifractor | Alpha: no significant difference in Shannon and Chao1 Beta: the respective aggregation areas do not overlap |
Liu et al., 2019 [43] | C57BL/6 mice | Male | 7 weeks old | Containing 9.4% fat by energy | Containing 40% fat by energy | 28 weeks | Feces | Phylum: 53% Bacteroidetes, 39% Firmicutes, 7% Proteobacteria, and 1% Verrucomicrobia Family: Bacteroidales_S24-7_group, Lachnospiraceae, Ruminococcaceae, Rikenellaceae, Bacteroiddaceae, Erysipelotrichaceae, Porphyromonadaceae, Lactobacillaceae, Helicobacteraceae, Desulfovibrionaceae, Verrucomicrobiaceae, and Peptostreptococcaceae | Increase: Bacteroidetes, Proteobacteria, Bacteroidales_S24-7_group, Ruminococcaceae, Rikenellaceae, Helicobacteraceae, Desulfovibrionaceae, and Peptostreptococcaceae Reduce: Firmicutes, Verrucomicrobia, Lachnospiraceae, Erysipelotrichaceae, Lactobacillaceae, and Verrucomicrobiaceae | Alpha: Sobs, Shannon ↓ Beta: the respective aggregation areas do not overlap |
Cao et al., 2020 [44] | C57BL/6 mice | Male | 4 weeks old | All mice were fed a high-fat diet, and fat mice were compared with lean mice | 7.2% cornstarch, 9.9% maltodextrin, 17.0% sucrose, 5.5% soybean oil, 39.4% lard | 16 weeks | Colon contents | Phylum: about 56% Bacteroidetes, 35% Firmicutes and 2% Actinobacteria Genus: about 12% Alistipes, 10% Bacteroides, 6% Oscillibacter, 5% Ruminiclostridium, 3% Lachnospiraceae, 2% Lactobacillus, and 2% Faecalibaculum | Increase: Bacteroidetes, Alistipes, Oscillibacter, Ruminiclostridium, Odoribacter, and Alloprevotella Reduce: Firmicutes, Faecalibaculum, Lactobacillus, Bacteroides, Lachnospiraceae, and Akkermansia | Alpha: Simpson ↑ (p < 0.05); no significant difference in Sobs, Shannon, Chao1, ACE, and PD whole tree Beta: the microbial communities of the two groups were clustered separately and in close proximity |
Watanabe et al., 2018 [45] | C57BL/6 mice | Male | 7 weeks old | Not found | 26% carbohydrate, 61% fat, 23% protein | 4 weeks | Feces | Phylum: about 73% Firmicutes, 15% Bacteroidetes, 4% Proteobacteria, and 1% Actinobacteria Family: Lachnospiraceae, Peptostrept-ococcaceae, Clostridiaceae, Defemb-acteraceae, Helicobacteraceae, Porph-yromonadaceae, Rikenellaceae, Corio-bacteriaceae, Desulfovbrionaceae, Bcte-roidaceae, Peptococcaceae, Ruminoc-occaceae, Lactobacillaceae, and Streptococcaceae | Not found | Alpha: / Beta: the samples were closely clustered, and the microbiota composition between samples was similar |
Zheng et al., 2018 [46] | C57BL/6 mice | Male | 6 weeks old | 70% carbohydrate, 10% fat, 20% protein | 35% carbohydrate, 45% fat, 20% protein | 5 months | Feces | Phylum: about 47% Firmicutes, 27% Bacteroidetes, 17% Proteobacteria, and 6% Actinobacteria Family: Coriobacteriaceae, Erysipel-otrichaceae, S24-7, Desulfovibrionaceae, Ruminococcaceae, Lachnospiraceae, Peptostreptococcaceae, Porphyromonadaceae, and Rikenellaceae | Increase: Bacteroidetes, Proteobacteria, Peptostreptococcaceae, Porphyromonadaceae, and Coriobacteriaceae Reduce: Firmicutes, Actinobacteria, Bifidobacteriaceae, and Lactobacillaceae | Alpha: Not found Beta: there is a certain distance between the two sets of sample points |
Huang et al., 2021 [47] | Sprague-Dawley rats | Male | Not found | Standard chow diet (The Medical LaboratorymAnimal Center in Guangdong, China) | 15% lard, 20% sucrose, 10% casein, 1.2% cholesterol, 0.2% sodium cholate, and 53.6% standard chow diet | 9 weeks | Colon contents | Phylum: about 91% Firmicutes, 5% Proteobacteria, and 3.4% Bacteroidetes Genus: Bacteroides, Allobaculum, Blautia, Lachnoclostridium, Parabacteroides, Staphylococcus, Fusicatenibacter, Shuttleworthia, and Ralstonia | Increase: Firmicutes, Bacteroidetes, and Ralstonia Reduce: Proteobacteria, Turicibacter, Acinetobacter, Brevundimonas, and Bacillus | Alpha: Sobs, Shannon, Chao1, PD whole tree ↓ (p < 0.01); Goods coverage ↑ (p < 0.01) Beta: the respective aggregation areas do not overlap |
Li et al., 2018 [48] | Sprague- Dawley rats | Male | 200–220 g | Low-fat diet | 80% low-fat diet feed + 10% egg yolk powder + 10% lard | 8 weeks | Feces | Phylum: about 73% Firmicutes and 24% Bacteroidetes Genus: Lactobacillus, Barnesiella, Prevotella, Pseudoflavonifractor, Lachnoclostridium, Flavonifractor, Desulfovibrio, Oscillibacter, and Ruminiclostriium | Increase: Lactobacillus, Barnesiella, Desulfovibrio, and Oscillibacter Reduce: Lachnoclostridium, Prevotella, and Pseudoflavonifractor | Not found |
Choi et al., 2017 [49] | ICR mice | Female | 8 weeks old | Nomal chow diet | Containing 60% fat by energy | 12 weeks | Mixed colon and cecal contents | Phylum: about 86% Firmicutes, 8% Actinobacteria, 7% Bacteroidetes Genus: Lactobacillus, Akkermansia, Bacteroides, Prevotella, Ruminococcus, Rikenellaceae, and Dorea | Increase: Firmicutes, Actinobacteria, Lactobacillus, and Ruminococcus Reduce: Bacteroidetes, Prevotella, and Rikenellaceae | Alpha: Not found Beta: the respective aggregation areas do not overlap |
Zhao et al., 2017 [50] | Wistar rats | Male | 160–180 g | 70% carbohydrate, 10% fat, 20% protein | 35% carbohydrate, 45% fat, 20% protein | 10 weeks | Feces | Phylum: about 84% Firmicutes, 8% Bacteroidetes, and 2% Proteobacteria Genus: Lachnoclostridium, Ruminococcaceae_UCG-014, Bacteroidales_S24-7_group_norank, Ruminococcaceae_UCG-005, Bilophila, Eubacterium_coprostanoligenes_group, and Akkermansia | Increase: Firmicutes, Lachnoclostridium, and Bilophila Reduce: Bacteroidetes, Proteobacteria, Ruminococcaceae_UCG-014, Bacteroidales_S24-7_group_norank, Ruminococcaceae_UCG-005, Eubacterium_coprostanoligenes_group, and Akkermansia | Alpha: Shannon ↓ Beta: the respective aggregation areas do not overlap |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Li, Z.; Xu, H.; Shi, D.; Huang, Y.; Pan, H.; Zhao, Y.; Zhao, H.; Yang, M.; Wei, H.; et al. Microbiota-Based Intervention Alleviates High-Fat Diet Consequences Through Host-Microbe Environment Remodeling. Nutrients 2025, 17, 1402. https://doi.org/10.3390/nu17091402
Yi L, Li Z, Xu H, Shi D, Huang Y, Pan H, Zhao Y, Zhao H, Yang M, Wei H, et al. Microbiota-Based Intervention Alleviates High-Fat Diet Consequences Through Host-Microbe Environment Remodeling. Nutrients. 2025; 17(9):1402. https://doi.org/10.3390/nu17091402
Chicago/Turabian StyleYi, Lanlan, Zhipeng Li, Hong Xu, Dejia Shi, Ying Huang, Hongbin Pan, Yanguang Zhao, Hongye Zhao, Minghua Yang, Hongjiang Wei, and et al. 2025. "Microbiota-Based Intervention Alleviates High-Fat Diet Consequences Through Host-Microbe Environment Remodeling" Nutrients 17, no. 9: 1402. https://doi.org/10.3390/nu17091402
APA StyleYi, L., Li, Z., Xu, H., Shi, D., Huang, Y., Pan, H., Zhao, Y., Zhao, H., Yang, M., Wei, H., & Zhao, S. (2025). Microbiota-Based Intervention Alleviates High-Fat Diet Consequences Through Host-Microbe Environment Remodeling. Nutrients, 17(9), 1402. https://doi.org/10.3390/nu17091402