Association Between Body Iron Status and Biological Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. DNA Methylation Biomarkers Analysis
2.3. Serum Iron Measures Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
PhenoAgeAccel | epigenetic age acceleration for PhenoAge |
GrimAgeAccel | epigenetic age acceleration for GrimAge |
IQR | interquartile range |
References
- Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A Red Carpet for Iron Metabolism. Cell 2017, 168, 344–361. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Iron Review. J. Nutr. 2018, 148, 1001S–1067S. [Google Scholar] [CrossRef] [PubMed]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta BBA—Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9–17. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, R.; Zeng, Q. Ferroptosis as a Mechanism for Health Effects of Essential Trace Elements and Potentially Toxic Trace Elements. Biol. Trace Element Res. 2022, 201, 4262–4274. [Google Scholar] [CrossRef]
- Corradini, E.; Buzzetti, E.; Pietrangelo, A. Genetic iron overload disorders. Mol. Asp. Med. 2020, 75, 100896. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: Strengths, limitations, and analytical challenges. Am. J. Clin. Nutr. 2017, 106, 1606S–1614S. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.F. The Regulation of Iron Absorption and Homeostasis. Clin. Biochem. Rev. 2016, 37, 51–62. [Google Scholar]
- Liu, B.; Sun, Y.; Xu, G.; Snetselaar, L.G.; Ludewig, G.; Wallace, R.B.; Bao, W. Association between Body Iron Status and Leukocyte Telomere Length, a Biomarker of Biological Aging, in a Nationally Representative Sample of U.S. Adults. J. Acad. Nutr. Diet. 2019, 119, 617–625. [Google Scholar] [CrossRef]
- Mainous, A.G.; Wright, R.U.; Hulihan, M.M.; Twal, W.O.; McLaren, C.E.; Diaz, V.A.; McLaren, G.D.; Argraves, W.S.; Grant, A.M. Telomere length and elevated iron: The influence of phenotype and HFE genotype. Am. J. Hematol. 2013, 88, 492–496. [Google Scholar] [CrossRef]
- Shin, C.; Baik, I. Transferrin saturation concentrations associated with telomeric ageing: A population-based study. Br. J. Nutr. 2017, 117, 1693–1701. [Google Scholar] [CrossRef]
- Mainous, A.G.; Gill, J.M.; Carek, P.J. Elevated Serum Transferrin Saturation and Mortality. Ann. Fam. Med. 2004, 2, 133–138. [Google Scholar] [CrossRef]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.L.; Newman, A.B. Telomere Length in Epidemiology: A Biomarker of Aging, Age-Related Disease, Both, or Neither? Epidemiol. Rev. 2013, 35, 112–131. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2021, 11, 630186. [Google Scholar] [CrossRef]
- Li, X.; Ploner, A.; Wang, Y.; Magnusson, P.K.; Reynolds, C.; Finkel, D.; Pedersen, N.L.; Jylhävä, J.; Hagg, S. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife 2020, 9, e51507. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Corcoran, D.L.; Sugden, K.; Poulton, R.; Arseneault, L.; Baccarelli, A.; Chamarti, K.; Gao, X.; Hannon, E.; et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife 2022, 11, e73420. [Google Scholar] [CrossRef]
- Sandler, D.P.; Hodgson, M.E.; Deming-Halverson, S.L.; Juras, P.S.; D’aloisio, A.A.; Suarez, L.M.; Kleeberger, C.A.; Shore, D.L.; DeRoo, L.A.; Taylor, J.A.; et al. The Sister Study Cohort: Baseline Methods and Participant Characteristics. Environ. Health Perspect. 2017, 125, 127003-1–127003-11. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sandler, D.P.; Taylor, J.A. Blood DNA Methylation and Breast Cancer: A Prospective Case-Cohort Analysis in the Sister Study. JNCI J. Natl. Cancer Inst. 2020, 112, 87–94. [Google Scholar] [CrossRef]
- Kresovich, J.K.; O’Brien, K.M.; Xu, Z.; Weinberg, C.R.; Sandler, D.P.; Taylor, J.A. Prediagnostic Immune Cell Profiles and Breast Cancer. JAMA Netw. Open 2020, 3, e1919536. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.M.; Sandler, D.P.; Xu, Z.; Kinyamu, H.K.; Taylor, J.A.; Weinberg, C.R. Vitamin D, DNA methylation, and breast cancer. Breast Cancer Res. 2018, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Kresovich, J.K.; Xu, Z.; O’Brien, K.M.; Weinberg, C.R.; Sandler, D.P.; Taylor, J.A. Methylation-Based Biological Age and Breast Cancer Risk. J. Natl. Cancer Inst. 2019, 111, 1051–1058. [Google Scholar] [CrossRef]
- Xu, Z.; Niu, L.; Li, L.; Taylor, J.A. ENmix: A novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 2016, 44, e20. [Google Scholar] [CrossRef]
- Von Holle, A.; O’Brien, K.M.; Sandler, D.P.; Janicek, R.; Weinberg, C.R. Association Between Serum Iron Biomarkers and Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 422–425. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- He, H.; Wang, W.; Crits-Christoph, P.; Gallop, R.; Tang, W.; Chen, D.G.D.; Tu, X.M. On the implication of structural zeros as independent variables in regression analysis: Applications to alcohol research. J. Data Sci. 2014, 12, 439–460. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.G.; Woodman, R.C. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 15 March 2023).
- Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta 2012, 1820, 403–410. [Google Scholar] [CrossRef]
- Henle, E.S.; Linn, S. Formation, Prevention, and Repair of DNA Damage by Iron/Hydrogen Peroxide*. J. Biol. Chem. 1997, 272, 19095–19098. [Google Scholar] [CrossRef]
- Kepinska, M.; Szyller, J.; Milnerowicz, H. The influence of oxidative stress induced by iron on telomere length. Environ. Toxicol. Pharmacol. 2015, 40, 931–935. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhang, S.; Yuan, Y.; Chen, S.; Li, W.; Zuo, M.; Xiang, Y.; Li, T.; Yang, W.; et al. Effects of iron homeostasis on epigenetic age acceleration: A two-sample Mendelian randomization study. Clin. Epigenetics. 2023, 15, 159. [Google Scholar] [CrossRef] [PubMed]
- Lim, U.; Song, M.A. DNA Methylation as a Biomarker of Aging in Epidemiologic Studies. In Cancer Epigenetics for Precision Medicine: Methods and Protocols. Methods in Molecular Biology; Dumitrescu, R.G., Verma, M., Eds.; Springer Science + Business Media: New York, NY, USA, 2018; pp. 219–231. [Google Scholar] [CrossRef]
- Belsky, D.W.; Moffitt, T.E.; Cohen, A.A.; Corcoran, D.L.; Levine, M.E.; Prinz, J.A.; Schaefer, J.; Sugden, K.; Williams, B.; Poulton, R.; et al. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am. J. Epidemiol. 2018, 187, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.N.; Andrews, N.C. Anemia of inflammation: The hepcidin link. Curr. Opin. Hematol. 2005, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and Anemia: A Tight Relationship. Front. Physiol. 2019, 10, 1294. [Google Scholar] [CrossRef]
- Marques, O.; Weiss, G.; Muckenthaler, M.U. The role of iron in chronic inflammatory diseases: From mechanisms to treatment options in anemia of inflammation. Blood 2022, 140, 2011–2023. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Scaramellini, N.; Motta, I. Iron status in chronic inflammatory disease: Therapeutic implications. Pol. Arch. Intern. Med. 2023, 133, 16430. [Google Scholar] [CrossRef]
- Weiss, G. Anemia of Chronic Disorders: New Diagnostic Tools and New Treatment Strategies. Semin. Hematol. 2015, 52, 313–320. [Google Scholar] [CrossRef]
- Fraenkel, P.G. Anemia of Inflammation. Med. Clin. N. Am. 2017, 101, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.J.L.; Rocha, B.M.L.; Menezes Falcão, L. Iron deficiency in chronic and acute heart failure: A contemporary review on intertwined conditions. Eur. J. Intern. Med. 2018, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.S. Age as a Modifiable Risk Factor for Chronic Disease. Integr. Med. 2018, 17, 16–19. [Google Scholar]
- Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018, 5, 61. [Google Scholar] [CrossRef]
- MacNee, W.; Rabinovich, R.A.; Choudhury, G. Ageing and the border between health and disease. Eur. Respir. J. 2014, 44, 1332–1352. [Google Scholar] [CrossRef]
Characteristic | N = 1260 1 |
---|---|
Age at menopause (years) 2 | 51 (47, 55) |
Smoking status | |
Current smoker | 96 (7.6%) |
Never smoked | 662 (53%) |
Former smoker | 502 (40%) |
Highest education completed | |
Graduate degree | 296 (23%) |
Bachelor’s degree | 330 (26%) |
Some college or Associate’s degree | 425 (34%) |
HS or less | 209 (17%) |
Alcohol use | |
Current | 1062 (84%) |
Former or never | 197 (16%) |
BMI, kg/m2 | 26.2 (23.0, 30.5) |
Time since menopause (years) 2 | 9 (5, 15) |
Postmenopausal (yes) | 849 (67%) |
Age at enrollment (years) | 56 (49, 62) |
Ferritin, ug/L | 66 (36, 107) |
Transferrin Saturation, % | 29 (23, 36) |
Iron, ug/dL | 95 (75, 118) |
PhenoAgeAccel | −0.5 (−4.6, 3.4) |
GrimAgeAccel | −0.5 (−2.1, 1.5) |
DunedinPACE | 1.04 (0.99, 1.10) |
Physical activity at baseline (hours per week) | 13 (8, 20) |
Healthy Eating Index (HEI-2015) Total Score | 73 (65, 79) |
Exposure | Aging Outcome | Unadjusted | Adjusted 1 | p-Value, Spline Model vs. Linear Model 2,3 |
---|---|---|---|---|
Ferritin (n = 1249) | GrimAgeAccel | 0.11 (0.05, 0.16) | 0.06 (0.01, 0.11) | 0.59 |
PhenoAgeAccel | 0.07 (0.01, 0.12) | 0.06 (0.00, 0.11) | 0.24 | |
DunedinPACE | 0.11 (0.06, 0.17) | 0.05 (0.00, 0.10) | 0.02 | |
Iron (n = 1251) | GrimAgeAccel | −0.12 (−0.18, −0.07) | −0.05 (−0.10, −0.01) | 0.04 |
PhenoAgeAccel | −0.08 (−0.14, −0.03) | −0.04 (−0.10, 0.01) | 0.00 | |
DunedinPACE | −0.09 (−0.14, −0.03) | −0.02 (−0.07, 0.03) | 0.20 | |
Transferrin saturation (%) (n = 1201) | GrimAgeAccel | −0.12 (−0.18, −0.06) | −0.05 (−0.10, −0.01) | 0.01 |
PhenoAgeAccel | −0.05 (−0.11, 0.01) | −0.01 (−0.06, 0.05) | 0.00 | |
DunedinPACE | −0.07 (−0.12, −0.01) | −0.01 (−0.06, 0.05) | 0.13 |
Unadjusted | Adjusted 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exposure | Aging Outcome | 1st Quartile | 2nd Quartile | 3rd Quartile | 4th Quartile | p -Value Linear Trend | 1st Quartile | 2nd Quartile | 3rd Quartile | 4th Quartile | p-Value Linear Trend 2 |
Ferritin (n = 1210) | GrimAgeAccel | Ref | 0.01 (−0.15, 0.16) | 0.02 (−0.14, 0.18) | 0.17 (0.02, 0.33) | 0.03 | Ref | 0.06 (−0.07, 0.19) | −0.07 (−0.20, 0.06) | 0.07 (−0.07, 0.21) | 0.73 |
PhenoAgeAccel | Ref | 0.05 (−0.11, 0.20) | 0.05 (−0.10, 0.21) | 0.09 (−0.07, 0.25) | 0.28 | Ref | 0.09 (−0.06, 0.25) | 0.07 (−0.09, 0.24) | 0.09 (−0.08, 0.25) | 0.37 | |
DunedinPACE | Ref | 0.15 (0.00, 0.31) | 0.20 (0.04, 0.36) | 0.30 (0.14, 0.46) | 0 | Ref | 0.20 (0.05, 0.35) | 0.13 (−0.02, 0.29) | 0.18 (0.03, 0.33) | 0.06 | |
Transferrin saturation (n = 1164) | GrimAgeAccel | Ref | −0.23 (−0.39, −0.08) | −0.41 (−0.57, −0.25) | −0.41 (−0.57, −0.25) | 0 | Ref | −0.16 (−0.30, −0.03) | −0.22 (−0.36, −0.09) | −0.24 (−0.37, −0.11) | 0 |
PhenoAgeAccel | Ref | −0.09 (−0.24, 0.07) | −0.23 (−0.39, −0.07) | −0.13 (−0.29, 0.03) | 0.03 | Ref | −0.02 (−0.18, 0.14) | −0.14 (−0.30, 0.03) | −0.01 (−0.18, 0.15) | 0.56 | |
DunedinPACE | Ref | −0.17 (−0.33, −0.01) | −0.24 (−0.40, −0.09) | −0.27 (−0.43, −0.12) | 0 | Ref | −0.12 (−0.27, 0.03) | −0.12 (−0.27, 0.03) | −0.11 (−0.26, 0.04) | 0.18 | |
Iron (n = 1212) | GrimAgeAccel | Ref | −0.21 (−0.36, −0.05) | −0.36 (−0.51, −0.20) | −0.39 (−0.55, −0.24) | 0 | Ref | −0.18 (−0.31, −0.05) | −0.25 (−0.38, −0.12) | −0.19 (−0.32, −0.06) | 0 |
PhenoAgeAccel | Ref | −0.23 (−0.38, −0.07) | −0.25 (−0.41, −0.09) | −0.21 (−0.37, −0.06) | 0.01 | Ref | −0.22 (−0.37, −0.06) | −0.19 (−0.35, −0.03) | −0.12 (−0.28, 0.04) | 0.2 | |
DunedinPACE | Ref | −0.19 (−0.34, −0.03) | −0.34 (−0.49, −0.18) | −0.30 (−0.46, −0.15) | 0 | Ref | −0.18 (−0.33, −0.04) | −0.25 (−0.40, −0.10) | −0.13 (−0.28, 0.01) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Von Holle, A.; Ramamurthy, S.; Díaz Santana, M.V.; Kresovich, J.K.; Taylor, J.A.; Xu, Z.; O’Brien, K.M.; Sandler, D.P.; Weinberg, C.R. Association Between Body Iron Status and Biological Aging. Nutrients 2025, 17, 1409. https://doi.org/10.3390/nu17091409
Von Holle A, Ramamurthy S, Díaz Santana MV, Kresovich JK, Taylor JA, Xu Z, O’Brien KM, Sandler DP, Weinberg CR. Association Between Body Iron Status and Biological Aging. Nutrients. 2025; 17(9):1409. https://doi.org/10.3390/nu17091409
Chicago/Turabian StyleVon Holle, Ann, Sahana Ramamurthy, Mary V. Díaz Santana, Jacob K. Kresovich, Jack A. Taylor, Zongli Xu, Katie M. O’Brien, Dale P. Sandler, and Clarice R. Weinberg. 2025. "Association Between Body Iron Status and Biological Aging" Nutrients 17, no. 9: 1409. https://doi.org/10.3390/nu17091409
APA StyleVon Holle, A., Ramamurthy, S., Díaz Santana, M. V., Kresovich, J. K., Taylor, J. A., Xu, Z., O’Brien, K. M., Sandler, D. P., & Weinberg, C. R. (2025). Association Between Body Iron Status and Biological Aging. Nutrients, 17(9), 1409. https://doi.org/10.3390/nu17091409