Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Sociodemographic Characteristics, Physical Examination Data, and Laboratory Data
2.3. Identifying MASLD
- 1.
- If the GGT was taken within 90 days of data collection for the other FLI variables (BMI, abdominal circumference, and serum triglycerides), this data was used to calculate the FLI.
- 2.
- If the GGT was taken more than 90 days from a data collection point, the points on either side of the GGT value were averaged (i.e., [BMITimePoint1 + BMITimePoint2]/2) and used.
- 3.
- If one data point was missing when averaging, then the only data point available was used to calculate the FLI.
2.4. Identifying Dietary Patterns
2.5. Statistical Approach
3. Results
3.1. Final Study Population
3.2. MASLD and the Mediterranean Diet
3.3. MASLD and Ultra-Processed Foods
3.4. MASLD and Both Dietary Scores
3.5. Sensitivity Analysis with Alternative FLI Cut-Off
3.6. Relationship Between Dietary Scores and FLI Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Kalligeros, M.; Henry, L. Epidemiology of Metabolic Dysfunction-Associated Steatotic Liver Disease. Korean J. Hepatol. 2024, 31, S32. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Leonardo, A.; Gaicomo, Z.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Vaz, K.; Kemp, W.; Majeed, A.; Lubel, J.; Magliano, D.J.; Glenister, K.M.; Bourke, L.; Simmons, D.; Roberts, S.K. NAFLD and MAFLD independently increase the risk of major adverse cardiovascular events (MACE): A 20-year longitudinal follow-up study from regional Australia. Hepatol. Int. 2024, 18, 1135–1143. [Google Scholar] [CrossRef]
- Mantovani, A.; Scorletti, E.; Mosca, A.; Alisi, A.; Byrne, C.D.; Targher, G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020, 111, 154170. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Roberts, S.K.; Majeed, A.; Woods, R.L.; Tonkin, A.M.; Nelson, M.R.; Chan, A.T.; Ryan, J.; Tran, C.; Hodge, A.; et al. Associations between MASLD, atrial fibrillation, cardiovascular events, mortality and aspirin use in older adults. Geroscience 2025, 47, 1303–1318. [Google Scholar] [CrossRef]
- van Kleef, L.A.; Sonneveld, M.J.; Kavousi, M.; Ikram, M.A.; de Man, R.A.; de Knegt, R.J. Fatty liver disease is not associated with increased mortality in the elderly: A prospective cohort study. Hepatology 2023, 77, 585–593. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.; Reddy, R.; Bugianesi, E.; Trimble, G.; Younossi, Z.M. Prevalence and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals from the United States. BMC Gastroenterol. 2019, 19, 56. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Kemp, W.W.; Majeed, A.; Lubel, J.S.; Woods, R.L.; Tran, C.; Ryan, J.; Hodge, A.; Schneider, H.G.; McNeil, J.J.; et al. Metabolic dysfunction-associated steatotic liver disease in older adults is associated with frailty and social disadvantage. Liver Int. 2024, 44, 39–51. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Kemp, W.W.; Majeed, A.; Woods, R.L.; Ryan, J.; Murray, A.M.; Chong, T.T.J.; Lubel, J.S.; Tran, C.; Hodge, A.D.; et al. Late-Life Metabolic Dysfunction-Associated Steatotic Liver Disease and its Association With Physical Disability and Dementia. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2024, 79, glae011. [Google Scholar] [CrossRef]
- Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef]
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Fong, J.G. Disability incidence and functional decline among older adults with major chronic diseases. BMC Geriatr. 2019, 19, 323. [Google Scholar] [CrossRef]
- Fried, T.R.; Bradley, E.H.; WIlliams, C.S.; Tinetti, M.E. Functional Disability and Health Care Expenditures for Older Persons. Arch. Intern. Med. 2001, 161, 2602–2607. [Google Scholar] [CrossRef]
- Wolff, J.L.; Starfield, B.; Anderson, G. Prevalence, Expenditures, and Complications of Multiple Chronic Conditions in the Elderly. Arch. Intern. Med. 2002, 162, 2269–2276. [Google Scholar] [CrossRef]
- English, L.K.; Ard, J.D.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; Jesus, J.d.; et al. Evaluation of Dietary Patterns and All-Cause Mortality. JAMA Netw. Open 2021, 4, 2122277. [Google Scholar] [CrossRef]
- Govindaraju, T.; Sahle, B.W.; McCaffrey, T.A.; McNeil, J.J.; Owen, A.J. Dietary Patterns and Quality of Life in Older Adults: A Systematic Review. Nutrients 2018, 10, 971. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef]
- Suárez, M.; Boqué, N.; Del Bas, J.M.; Mayneris-Perxachs, J.; Arola, L.; Caimari, A. Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 1052. [Google Scholar] [CrossRef]
- Ryan, M.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.; Johnson, N.; Wilson, A. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Liver, E.A.f.t.S.o.t.; Diabetes, E.A.f.t.S.o.; Obesity, E.A.f.t.S.o. EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes. Facts 2024, 17, 374–443. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: Meta-analysis. Br. J. Nutr. 2018, 120, 1081–1097. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann. Neurol. 2013, 74, 580–591. [Google Scholar] [CrossRef]
- Andreo-López, M.C.; Contreras-Bolívar, V.; Muñoz-Torres, M.; García-Fontana, B.; García-Fontana, C. Influence of the Mediterranean Diet on Healthy Aging. Int. J. Mol. Sci. 2023, 24, 4491. [Google Scholar] [CrossRef]
- Whitelock, E.; Ensaff, H. On Your Own: Older Adults’ Food Choice and Dietary Habits. Nutrients 2018, 10, 413. [Google Scholar] [CrossRef]
- Fang, Z.; Rossato, S.L.; Hang, D.; Khandpur, N.; Wang, K.; Lo, C.-H.; Willett, W.C.; Giovannucci, E.L.; Song, M. Association of ultra-processed food consumption with all cause and cause specific mortality: Population based cohort study. BMJ 2024, 385, e078476. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; LawrFence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.D.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019; Volume 48. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Grinshpan, L.S.; Eilat-Adar, S.; Ivancovsky-Wajcman, D.; Kariv, R.; Gillon-Keren, M.; Zelber-Sagi, S. Ultra-processed food consumption and non-alcoholic fatty liver disease, metabolic syndrome and insulin resistance: A systematic review. JHEP Rep. 2024, 6, 100964. [Google Scholar] [CrossRef] [PubMed]
- Henney, A.E.; Gillespie, C.S.; Alam, U.; Hydes, T.J.; Cutherbertson, D.J. Ultra-Processed Food Intake Is Associated with Non-Alcoholic Fatty Liver Disease in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2266. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, S.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Wu, H.; Gu, Y.; Wang, Y.; Zhang, T.; et al. Ultra-processed food consumption and the risk of non-alcoholic fatty liver disease in the Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study. Int. J. Epidemiol. 2021, 51, 237–249. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, H.; Zeng, Y.; Chen, Y.; Xu, C. Association between ultra-processed foods consumption and risk of non-alcoholic fatty liver disease: A population-based analysis of NHANES 2011–2018. Br. J. Nutr. 2022, 130, 996–1004. [Google Scholar] [CrossRef]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021, 41, 2634–2645. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Vaughan, N.V.; George, E.S.; Chan, A.T.; Roberts, S.K.; Ryan, J.; Zaw Zaw Phyo, A.; McNeil, J.J.; Beilin, L.J.; Tran, C.; et al. Mediterranean Diet and Ultra-Processed Food Intake in Older Australian Adults—Associations with Frailty and Cardiometabolic Conditions. Nutrients 2024, 16, 2978. [Google Scholar] [CrossRef]
- McNeil, J.J.; Woods, R.L.; Nelson, M.R.; Murray, A.M.; Reid, C.M.; Kirpach, B.; Storey, E.; Shah, R.C.; Wolfe, R.S.; Tonkin, A.M.; et al. Baseline Characteristics of Participants in the ASPREE (ASPirin in Reducing Events in the Elderly) Study. J. Gerontol. Ser. A 2017, 72, 1586–1593. [Google Scholar] [CrossRef]
- McNeil, J.J.; Woods, R.L.; Ward, S.A.; Britt, C.J.; Lockery, J.E.; Beilin, L.J.; Owen, A.J. Cohort Profile: The ASPREE Longitudinal Study of Older Persons (ALSOP). Int. J. Epidemiol. 2019, 48, 1048–1049h. [Google Scholar] [CrossRef]
- McNeil, J.J.; Nelson, M.R.; Woods, R.L.; Lockery, J.E.; Wolfe, R.; Reid, C.M.; Kirpach, B.; Shah, R.C.; Ives, D.G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef]
- McNeil, J.J.; Wolfe, R.; Woods, R.L.; Tonkin, A.M.; Donnan, G.A.; Nelson, M.R.; Reid, C.M.; Lockery, J.E.; Kirpach, B.; Storey, E.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef]
- McNeil, J.J.; Woods, R.L.; Nelson, M.R.; Reid, C.M.; Kirpach, B.; Wolfe, R.; Storey, E.; Shah, R.C.; Lockery, J.E.; Tonkin, A.M.; et al. Effect of Aspirin on Disability-free Survival in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.J.; Orchard, S.G.; Gilbert, T.J.; Phung, J.J.; Owen, A.J.; Lockett, T.; Nelson, M.R.; Reid, C.M.; Tonkin, A.M.; Abhayaratna, W.P.; et al. The ASPREE Healthy Ageing Biobank: Methodology and participant characteristics. PLoS ONE 2024, 19, e0294743. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- El-Kassas, M.; Alswat, K. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2025, 81, E8–E9. [Google Scholar] [CrossRef]
- Wild, H.; Nurgozhina, M.; Gasevic, D.; Coates, A.M.; Woods, R.L.; Ryan, J.; Beilin, L.; Govindaraju, T.; McNeil, J.J.; Owen, A.J. Nut consumption and disability-free survival in community-dwelling older adults: A prospective cohort study. Age Ageing 2024, 53, afae239. [Google Scholar] [CrossRef]
- Ryan, J.; Espinoza, S.; Ernst, M.E.; Ekram, A.; Wolfe, R.; Murray, A.M.; Shah, R.C.; Orchard, S.G.; Fitzgerald, S.; Beilin, L.J.; et al. Validation of a Deficit-Accumulation Frailty Index in the ASPirin in Reducing Events in the Elderly Study and Its Predictive Capacity for Disability-Free Survival. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2022, 77, 19–26. [Google Scholar] [CrossRef]
- Rockwood, K.; Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Manios, Y.; Papatheodoridis, G. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef]
- Aller, R.; Izaola, O.; de la Fuente, B.; de Luis, D. Mediterranean diet is associated with liver histology in patients with non alcoholic fatty liver disease. Nutr. Hosp. 2015, 32, 2518–2524. [Google Scholar] [CrossRef]
- Sun, N.; Prescott, B.; Ma, J.; Xanthakis, V.; Quatromoni, P.A.; Long, M.T.; Walker, M.E. The Cross-Sectional Association Between Ultra-Processed Food Intake and Metabolic Dysfunction-Associated Steatotic Liver Disease. Clin. Nutr. ESPEN 2025, 66, 215–220. [Google Scholar] [CrossRef]
- Abenavoli, L.; Greco, M.; Milic, N.; Accattato, F.; Foti, D.; Gulletta, E.; Luzza, F. Effect of Mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study. Nutrients 2017, 9, 870. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean diet as an antioxidant: The impact on metabolic health and overall wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the metabolic syndrome: Results of a randomized clinical trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef]
- Ma, L.; Liu, G.; Ding, M.; Zong, G.; Hu, F.B.; Willett, W.C.; Rimm, E.B.; Manson, J.E.; Sun, Q. Isoflavone Intake and the Risk of Coronary Heart Disease in US Men and Women: Results From 3 Prospective Cohort Studies. Circulation 2020, 141, 1127–1137. [Google Scholar] [CrossRef]
- Marini, H.R. Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022, 14, 1550. [Google Scholar] [CrossRef]
- Rahimlou, M.; Baghdadi, G.; Khodi, A.; Rahimi, Z.; Saki, N.; Banaei Jahromi, N.; Cheraghian, B.; Tavasolian, R.; Hosseini, S.A. Polyphenol consumption and Nonalcoholic fatty liver disease risk in adults. Sci. Rep. 2024, 14, 6752. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary Polyphenols and Non-Alcoholic Fatty Liver Disease. Nutrients 2021, 13, 494. [Google Scholar] [CrossRef]
- Li, H.Y.; Gan, R.Y.; Shang, A.; Mao, Q.Q.; Sun, Q.C.; Wu, D.T.; Geng, F.; He, X.Q.; Li, H.B. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. Oxidative Med. Cell. Longev. 2021, 2021, 6621644. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.G.; Verheij, J.; Nieuwdorp, M.; Clement, K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 279–297. [Google Scholar] [CrossRef]
- Hughes, G.; Bennett, K.M.; Hetherington, M.M. Old and alone: Barriers to healthy eating in older men living on their own. Appetite 2004, 43, 269–276. [Google Scholar] [CrossRef]
- Paik, J.M.; Duong, S.; Zelber-Sagi, S.; Lazarus, J.V.; Henry, L.; Younossi, Z.M. Food Insecurity, Low Household Income, and Low Education Level Increase the Risk of Having Metabolic Dysfunction-Associated Fatty Liver Disease Among Adolescents in the United States. Am. J. Gastroenterol. 2024, 119, 1089–1101. [Google Scholar] [CrossRef]
- Kardashian, A.; Dodge, J.L.; Terrault, N.A. Food Insecurity is Associated With Mortality Among U.S. Adults With Nonalcoholic Fatty Liver Disease and Advanced Fibrosis. Clin. Gastroenterol. Hepatol. 2022, 20, 2790–2799.e4. [Google Scholar] [CrossRef]
- Golovaty, I.; Tien, P.C.; Price, J.C.; Sheira, L.; Seligman, H.; Weiser, S.D. Food Insecurity May Be an Independent Risk Factor Associated with Nonalcoholic Fatty Liver Disease among Low-Income Adults in the United States. J. Nutr. 2020, 150, 91–98. [Google Scholar] [CrossRef]
- Yadlapati, S.; Christian, V.J.; Shah, A. Fatty Liver Disease and Food Insecurity: Excess in Scarcity. Curr. Nutr. Rep. 2023, 12, 439–444. [Google Scholar] [CrossRef]
- Theodoridis, X.; Grammatikopoulou, M.; Gkiouras, K.; Papadopoulou, S.; Agorastou, T.; Gkika, I.; Maraki, M.; Dardavessis, T.; Chourdakis, M. Food insecurity and Mediterranean diet adherence among Greek university students. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 477–485. [Google Scholar] [CrossRef]
- Gregório, M.J.; Rodrigues, A.M.; Graça, P.; De Sousa, R.D.; Dias, S.S.; Branco, J.C.; Canhão, H. Food insecurity is associated with low adherence to the Mediterranean diet and adverse health conditions in Portuguese adults. Front. Public Health 2018, 6, 38. [Google Scholar] [CrossRef]
- Aquino-Blanco, A.; Jiménez-López, E.; Victoria-Montesinos, D.; Gutiérrez-Espinoza, H.; Olivares-Arancibia, J.; Yañéz-Sepúlveda, R.; Martín-Calvo, N.; López-Gil, J.F. The Role of Food Security in Mediterranean Diet Adherence Among Adolescents: Findings from the EHDLA Study. Foods 2025, 14, 414. [Google Scholar] [CrossRef]
- Grammatikopoulou, M.G.; Gkiouras, K.; Theodoridis, X.; Tsisimiri, M.; Markaki, A.G.; Chourdakis, M.; Goulis, D.G. Food insecurity increases the risk of malnutrition among community-dwelling older adults. Maturitas 2019, 119, 8–13. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Zelber-Sagi, S.; Kuglemas, C.; Lazarus, J.V.; Paik, A.; de Avila, L.; Gerber, L.; Paik, J.M. Association of food insecurity with MASLD prevalence and liver-related mortality. J. Hepatol. 2025, 82, 203–210. [Google Scholar] [CrossRef]
- Koehler, E.M.; Schouten, J.N.L.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L.A. External Validation of the Fatty Liver Index for Identifying Nonalcoholic Fatty Liver Disease in a Population-based Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Participants | FLI < 30 | FLI 30–60 | FLI ≥ 60 | p-Value |
---|---|---|---|---|---|
Number of participants | 6753 | 2454 (36.3%) | 2336 (34.6%) | 1963 (29.1%) | |
Sex (male) | 3050 (45%) | 823 (33.5%) | 1232 (52.7%) | 985 (50.2%) | <0.001 |
Age (years) (Median [IQR]) | 76.74 (74.57–80.02) | 76.87 (74.61–80.43) | 76.87 (74.67–80.13) | 76.45 (74.41–79.40) | <0.001 |
Caucasian ethnicity (n, %) | 6674 (98.8%) | 2421 (98.7%) | 2308 (98.8%) | 1945 (99.1%) | 0.416 |
BMI (mean ± SD) kg/m2 | 27.28 ± 4.36 | 23.73 ± 2.34 | 27.19 ± 2.23 | 31.83 ± 4.02 | <0.001 |
BMI Category a (n, %) kg/m2 Underweight Healthy weight Overweight Obese | 981 (14.5%) 3247 (48.1%) 1856 (27.5%) 668 (9.9%) | 917 (37.4%) 1465 (59.7%) 72 (2.9%) 0 (0.0%) | 61 (2.6%) 1486 (63.6%) 765 (32.8%) 23 (1.0%) | 3 (0.02%) 296 (15.1%) 1019 (51.9%) 645 (32.9%) | <0.001 |
Waist Circumference (mean ± SD) cm Large waist circumference b (n, %) cm | 95.35 ± 12.18 3510 (52.0%) | 84.68 ± 8.17 424 (17.3%) | 96.31 ± 6.32 1298 (55.6%) | 107.55 ± 9.35 1788 (91.1%) | <0.001 <0.001 |
Laboratory Parameters | |||||
Glucose (mean ± SD) mg/dL | 98.76 ± 17.55 | 94.01 ± 13.23 | 98.58 ± 17.12 | 104.91 ± 20.65 | <0.001 |
Total Cholesterol (mean ± SD) mg/dL | 197.79 ± 39.50 | 202.22 ± 37.02 | 197.07 ± 38.63 | 193.11 ± 39.56 | 0.006 |
HDL Cholesterol (mean ± SD) mg/dL | 61.94 ± 17.84 | 70.86 ± 18.08 | 59.98 ± 15.58 | 53.12 ± 14.69 | <0.001 |
LDL Cholesterol (mean ± SD) mg/dL | 113.15 ± 33.97 | 114.19 ± 32.58 | 114.79 ± 33.93 | 109.90 ± 35.50 | <0.001 |
Triglycerides (mean ± SD) mg/dL | 113.27 ± 1.99 | 85.81 ± 30.20 | 111.11 ± 42.39 | 150.17 ± 60.93 | <0.001 |
eGFR (mean ± SD) mL/min/1.73 m2 | 70.72 ± 13.85 | 72.67 ± 13.30 | 70.59 ± 13.60 | 68.46 ± 14.46 | <0.001 |
Cardiometabolic Conditions | |||||
Diabetes Mellitus c (n, %) | 642 (9.5%) | 102 (4.2%) | 194 (8.3%) | 346 (17.6%) | <0.001 |
Hypertension d (n, %) | 4903 (72.6%) | 1573 (64.1%) | 1729 (74.0%) | 1601 (81.6%) | <0.001 |
Chronic Kidney Disease e (n, %) | 1903 (28.2%) | 594 (24.2%) | 622 (26.6%) | 687 (35.0%) | <0.001 |
Lifestyle Factors | |||||
Currently Smoking (n, %) | 137 (2.0%) | 59 (2.4%) | 47 (2.0%) | 31 (1.6%) | 0.154 |
Currently Drinking Alcohol (n, %) | 4981 (73.8%) | 1850 (75.4%) | 1772 (75.9%) | 1359 (69.2%) | <0.001 |
Dietary Scores | |||||
ASPREE-MDS (Median [IQR]) | 11.10 (9.98–12.68) | 11.76 (10.29–12.96) | 11.34 (9.89–12.59) | 11.06 (9.65–12.42) | <0.001 |
ASPREE-UPF (Median [IQR]) | 6.06 (5–7.25) | 6 (4.75–7.19) | 6.09 (5–7.25) | 6.25 (5.13–7.44) | <0.001 |
Frailty | |||||
Deficit Accumulation Frailty Index [47] (n, %) Not Frail Pre-Frail Frail | 3725 (55.2%) 2439 (36.1%) 583 (8.6%) | 1685 (68.7%) 647 (26.4%) 119 (3.9%) | 1388 (59.5%) 792 (33.9%) 153 (6.6%) | 652 (33.2%) 1000 (50.9%) 311 (15.8%) | <0.001 |
Education Completion | |||||
≤11 years (n, %) | 3202 (47.4%) | 1034 (42.1%) | 1097 (47.0%) | 1071 (54.6%) | <0.001 |
12 years (n, %) | 749 (11.1%) | 292 (11.9%) | 251 (10.7%) | 206 (10.5%) | |
≥13 years (n, %) | 2802 (41.5%) | 1128 (46.0%) | 988 (42.4%) | 686 (34.9%) | |
Living Situation | |||||
Living alone (n, %) | 2160 (32.0%) | 850 (34.6%) | 716 (30.7%)%) | 594 (30.3%) | 0.002 |
MASLD (FLI ≥ 60) vs. No-MASLD (FLI < 30) | ||||||
---|---|---|---|---|---|---|
Unadjusted/Crude Model Relative Risk (95% CI) | p-Value | Age and Sex Adjusted Model Relative Risk (95% CI) | p-Value | Fully Adjusted Model Relative Risk (95% CI) | p-Value | |
Mediterranean Diet Score | ||||||
Q1 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | |||
Q2 | 0.86 (0.79–0.92) | 0.000 | 0.88 (0.82–0.95) | 0.001 | 0.97 (0.91–1.04) | 0.380 |
Q3 | 0.71 (0.65–0.77) | 0.000 | 0.74 (0.68–0.80) | 0.000 | 0.90 (0.83–0.97) | 0.006 |
Age | - | - | 0.98 (0.97–0.98) | 0.000 | 0.95 (0.94–0.96) | <0.001 |
Sex (Male) | - | - | 1.41 (1.32–1.50) | 0.000 | 1.54 (1.45–1.63) | <0.001 |
Diabetes | - | - | - | - | 1.28 (1.20–1.37) | <0.001 |
Hypertension | - | - | - | - | 1.38 (1.26–1.50) | <0.001 |
Chronic Kidney Disease | - | - | - | - | 0.99 (0.99–1.00) | <0.001 |
Deficit Accumulation Frailty Index Not Frail Pre-Frail Frail | - | - | - | - | 1.00 (reference) 2.09 (1.94–2.25) 2.59 (2.36–2.83) | <0.001 <0.001 |
Education Completion <12 years 12 years ≥13 years | - | - | - | - | 1.00 (reference) 0.89 (0.80–0.98) 0.83 (0.78–0.89) | 0.017 <0.001 |
MASLD (FLI ≥ 60) vs. No-MASLD (FLI < 30) | ||||||
---|---|---|---|---|---|---|
Unadjusted/Crude Model Relative Risk (95% CI) | p-Value | Age and Sex Adjusted Model Relative Risk (95% CI) | p-Value | Fully Adjusted Model Relative Risk (95% CI) | p-Value | |
Ultra Processed Food Score (UPF) | ||||||
Q1 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | |||
Q2 | 1.16 (1.07–1.27) | 0.000 | 1.13 (1.04–1.23) | 0.003 | 1.12 (1.04–1.21) | 0.002 |
Q3 | 1.25 (1.16–1.36) | 0.000 | 1.16 (1.07–1.26) | 0.000 | 1.13 (1.05–1.22) | 0.001 |
Age | - | - | 0.97 (0.97–0.98) | 0.000 | 0.95 (0.94–0.96) | <0.001 |
Sex (Male) | - | - | 1.42 (1.33–1.52) | 0.000 | 1.53 (1.44–1.62) | <0.001 |
Diabetes | - | - | - | - | 1.30 (1.12–1.39) | <0.001 |
Hypertension | - | - | - | - | 1.39 (1.27–1.51) | <0.001 |
Chronic Kidney Disease | - | - | - | - | 0.99 (0.99–0.99) | <0.001 |
Deficit Accumulation Frailty Index Not Frail Pre-Frail Frail | - | - | - | - | 1.00 (reference) 2.07 (1.92–2.23) 2.56 (2.35–2.82) | <0.001 <0001 |
Education Completion <12 years 12 years ≥13 years | - | - | - | - | 1.00 (reference) 0.87 (0.79–0.96) 0.82 (0.77–0.88) | 0.006 <0.001 |
MASLD (FLI ≥ 60) vs. No-MASLD (FLI < 30) | Fully Adjusted Model Relative Risk (95% CI) | p-Value |
---|---|---|
Mediterranean Diet | ||
Q1 | 1.00 (reference) | |
Q2 | 0.96 (0.90–1.02) | 0.251 |
Q3 | 0.88 (0.82–0.96) | 0.002 |
Ultra Processed Foods | ||
Q1 | 1.00 (reference) | |
Q2 | 1.13 (1.05–1.21) | 0.001 |
Q3 | 1.14 (1.06–1.23) | 0.001 |
Age | 0.95 (0.94–0.96) | <0.001 |
Sex (Male) | 1.50 (1.41–1.60) | <0.001 |
Diabetes | 1.30 (1.22–1.39) | <0.001 |
Hypertension | 1.38 (1.27–1.51) | <0.001 |
Chronic Kidney Disease | 0.99 (0.99–0.99) | <0.001 |
Deficit Accumulation Frailty Index Not Frail Pre-Frail Frail | 1.00 (reference) 2.06 (1.90–2.22) 2.53 (2.31–2.78) | <0.001 <0.001 |
Education Completion <12 years 12 years ≥13 years | 1.00 (reference) 0.88 (0.79–0.97) 0.83 (0.78–0.89) | 0.010 <0.001 |
MASLD (FLI ≥ 60) vs. Indeterminate and No-MASLD (FLI < 60) | Fully Adjusted Model Relative Risk (95% CI) | p-Value |
---|---|---|
Mediterranean Diet | ||
Q1 | 1.00 (reference) | |
Q2 | 0.94 (0.87–1.02) | 0.137 |
Q3 | 0.90 (0.81–0.97) | 0.014 |
Age | 0.95 (0.94–0.95) | <0.001 |
Sex (Male) | 1.42 (1.33–1.53) | <0.001 |
Diabetes | 1.43 (1.33–1.53) | <0.001 |
Hypertension | 1.36 (1.23–1.50) | <0.001 |
Chronic Kidney Disease | 0.99 (0.99–1.00) | <0.001 |
Deficit Accumulation Frailty Index Not Frail Pre-Frail Frail | 1.00 (reference) 2.33 (2.14–2.54) 3.09 (2.78–3.43) | <0.001 <0.001 |
Education Completion <12 years 12 years ≥13 years | 1.00 (reference) 0.89 (0.79–1.00) 0.82 (0.76–0.89) | 0.054 <0.001 |
MASLD (FLI ≥ 60) vs. Indeterminate and No-MASLD (FLI < 60) | Fully Adjusted Model Relative Risk (95% CI) | p-Value |
---|---|---|
Ultra Processed Foods | ||
Q1 | 1.00 (reference) | |
Q2 | 1.17 (1.07–1.27) | 0.001 |
Q3 | 1.18 (1.08–1.29) | <0.001 |
Age | 0.94 (0.94–0.95) | <0.001 |
Sex (Male) | 1.41 (1.31–1.51) | <0.001 |
Diabetes | 1.45 (1.34–1.57) | <0.001 |
Hypertension | 1.36 (1.24–1.51) | <0.001 |
Chronic Kidney Disease | 0.99 (0.99–0.99) | <0.001 |
Deficit Accumulation Frailty Index Not frail Pre-Frail Frail | 1.00 (reference) 2.32 (2.13–2.53) 3.07 (2.76–3.42) | <0.001 <0.001 |
Education Completion <12 years 12 years ≥13 years | 1.00 (reference) 0.87 (0.78–0.98) 0.81 (0.75–0.87) | 0.022 < 0.001 |
% of MASLD (≥60 vs. <60) | UPF Tertile 1 | UPF Tertile 2 | UPF Tertile 3 |
---|---|---|---|
MedDiet Tertile 1 | 29.45% | 34.57% | 38.18% |
MedDiet Tertile 2 | 24.97% | 30.61% | 30.36% |
MedDiet Tertile 3 | 21.66% | 25.55% | 27.01% |
Age and Sex Adjusted Model: Coefficient (95% CI) | p-Value | |
---|---|---|
Triglycerides | ||
Mediterranean Diet | ||
Q1 | 1.00 (reference) | |
Q2 | −6.30 (−9.29–−3.30) | <0.001 |
Q3 | −10.27 (−13.30–−7.24) | <0.001 |
Age | −0.28 (−0.58–0.02) | 0.065 |
Sex (Male) | −5.98 (−8.46–−3.50) | <0.001 |
Body Mass Index | ||
Mediterranean Diet | ||
Q1 | 1.00 (reference) | |
Q2 | −0.24 (−0.49–0.01) | 0.064 |
Q3 | −0.72 (−0.97–−0.46) | <0.001 |
Age | −0.12 (−0.14–−0.09) | <0.001 |
Sex (Male) | −0.29 (−0.50–−0.08) | 0.006 |
Waist Circumference | ||
Mediterranean Diet | ||
Q1 | 1.00 (reference) | |
Q2 | −0.74 (−1.40–−0.08) | 0.029 |
Q3 | −2.05 (−2.73–−2.39) | <0.001 |
Age | −0.16 (−0.22–−0.09) | <0.001 |
Sex (Male) | 8.13 (7.59–8.67) | <0.001 |
Gamma glutamyl-transferase (GGT) | ||
Mediterranean Diet | ||
Q1 | 1.00 (reference) | |
Q2 | −1.25 (−2.92–0.42) | 0.142 |
Q3 | −1.09 (−2.78–0.59) | 0.203 |
Age | 0.06 (−0.10–0.23) | 0.46 |
Sex (Male) | 4.22 (2.84–5.60) | <0.001 |
Age and Sex Adjusted Model: Coefficient (95% CI) | p-Value | |
---|---|---|
Triglycerides | ||
Ultra Processed Foods | ||
Q1 | 1.00 (reference) | |
Q2 | 4.47 (1.44–7.51) | 0.004 |
Q3 | 4.21 (1.13–7.29) | 0.007 |
Age | −0.18 (−0.49–0.12) | 0.240 |
Sex (Male) | −5.47 (−8.00–−2.93) | <0.001 |
Body Mass Index | ||
Ultra Processed Foods | ||
Q1 | 1.00 (reference) | |
Q2 | 0.37 (0.12–0.63) | 0.004 |
Q3 | 0.36 (0.10–0.62) | 0.006 |
Age | −0.12 (−0.14–−0.09) | <0.001 |
Sex (Male) | −0.27 (−0.48–−0.05) | 0.014 |
Waist Circumference | ||
Ultra Processed Foods | ||
Q1 | 1.00 (reference) | |
Q2 | 0.95 (0.29–1.62) | 0.005 |
Q3 | 1.07 (0.39–1.75) | 0.002 |
Age | −0.15 (−0.21–0.08) | <0.001 |
Sex (Male) | 8.18 (7.62–8.73) | <0.001 |
Gamma glutamyl-transferase (GGT) | ||
Ultra Processed Foods | ||
Q1 | 1.00 (reference) | |
Q2 | −0.62 (−2.30–1.06) | 0.467 |
Q3 | 1.04 (−0.66–2.75) | 0.230 |
Age | 0.06 (−0.11–0.23) | 0.471 |
Sex (Male) | 4.23 (2.82–5.63) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Commins, I.; Clayton-Chubb, D.; Fitzpatrick, J.A.; George, E.S.; Schneider, H.G.; Phyo, A.Z.Z.; Majeed, A.; Janko, N.; Vaughan, N.; Woods, R.L.; et al. Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults. Nutrients 2025, 17, 1415. https://doi.org/10.3390/nu17091415
Commins I, Clayton-Chubb D, Fitzpatrick JA, George ES, Schneider HG, Phyo AZZ, Majeed A, Janko N, Vaughan N, Woods RL, et al. Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults. Nutrients. 2025; 17(9):1415. https://doi.org/10.3390/nu17091415
Chicago/Turabian StyleCommins, Isabella, Daniel Clayton-Chubb, Jessica A. Fitzpatrick, Elena S. George, Hans G. Schneider, Aung Zaw Zaw Phyo, Ammar Majeed, Natasha Janko, Nicole Vaughan, Robyn L. Woods, and et al. 2025. "Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults" Nutrients 17, no. 9: 1415. https://doi.org/10.3390/nu17091415
APA StyleCommins, I., Clayton-Chubb, D., Fitzpatrick, J. A., George, E. S., Schneider, H. G., Phyo, A. Z. Z., Majeed, A., Janko, N., Vaughan, N., Woods, R. L., Owen, A. J., McNeil, J. J., Kemp, W. W., & Roberts, S. K. (2025). Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults. Nutrients, 17(9), 1415. https://doi.org/10.3390/nu17091415