Circulating Levels of Branched-Chain Amino Acids Are Associated with Diet: A Cross-Sectional Analysis
Abstract
:1. Background
2. Methods
2.1. Study Design and Participants
2.2. Dietary Intake, Dietary Scores, and Compliance with Dietary Recommendations
2.3. Sample Preparation and Metabolic Profiling
2.4. Other Covariates
2.5. Eligibility and Exclusion Criteria
2.6. Statistical Analyses
3. Results
3.1. Selection of Participants
3.2. Associations Between Individual Food Items, Food Categories, and BCAA
3.3. Associations Between Nutrients and BCAA
3.4. Associations Between Dietary Scores and BCAA
3.5. Associations Between Compliance with Dietary Recommendations and BCAA
4. Discussion
4.1. Associations Between Individual Food Items, Food Categories, and BCAA
4.2. Associations Between Nutrients and BCAA
4.3. Associations Between Dietary Scores and BCAA
4.4. Associations Between Compliance with Dietary Recommendations and BCAA
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHEI | alternate healthy eating index |
BCAA | branched-chain amino acids |
BMI | body mass index |
FFQ | food frequency questionnaire |
HILIC | hydrophilic interaction chromatography |
HRMS | high-resolution mass spectrometry |
LC-MS | liquid chromatography-mass spectrometry |
MUFA | monounsaturated fatty acids |
PUFA | polyunsaturated fatty acids |
SFA | saturated fatty acids |
T2DM | type 2 diabetes mellitus |
References
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Chotechuang, N.; Azzout-Marniche, D.; Bos, C.; Chaumontet, C.; Gausserès, N.; Steiler, T.; Gaudichon, C.; Tomé, D. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1313–E1323. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 1983, 63, 484–546. [Google Scholar] [CrossRef]
- Doestzada, M.; Zhernakova, D.V.; van den Munckhof, I.C.L.; Wang, D.; Kurilshikov, A.; Chen, L.; Bloks, V.W.; van Faassen, M.; Rutten, J.H.; Joosten, L.A.; et al. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: An association and Mendelian randomization study. BMC Med. 2022, 20, 485. [Google Scholar] [CrossRef]
- Yoo, H.S.; Shanmugalingam, U.; Smith, P.D. Potential roles of branched-chain amino acids in neurodegeneration. Nutrition 2022, 103–104, 111762. [Google Scholar] [CrossRef]
- Nagata, C.; Nakamura, K.; Wada, K.; Tsuji, M.; Tamai, Y.; Kawachi, T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: The Takayama study. Am. J. Epidemiol. 2013, 178, 1226–1232. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Qi, Q.; Hruby, A.; Manson, J.E.; Willett, W.C.; Wolpin, B.M.; Hu, F.B.; Qi, L. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int. J. Epidemiol. 2016, 45, 1482–1492. [Google Scholar] [CrossRef]
- Rietman, A.; Schwarz, J.; Tomé, D.; Kok, F.J.; Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 2014, 68, 973–979. [Google Scholar] [CrossRef]
- Biolo, G.; Tessari, P.; Inchiostro, S.; Bruttomesso, D.; Fongher, C.; Sabadin, L.; Fratton, M.G.; Valerio, A.; Tiengo, A. Leucine and phenylalanine kinetics during mixed meal ingestion: A multiple tracer approach. Am. J. Physiol. 1992, 262, E455–E463. [Google Scholar] [CrossRef]
- Walrand, S.; Short, K.R.; Bigelow, M.L.; Sweatt, A.J.; Hutson, S.M.; Nair, K.S. Functional impact of high protein intake on healthy elderly people. Am. J. Physiol.—Endocrinol. Metab. 2008, 295, E921–E928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rao, S.; Zhang, X.; Peng, Z.; Song, W.; Xie, S.; Cao, H.; Zhang, Z.; Yang, W. Dietary and circulating branched chain amino acids are unfavorably associated with body fat measures among Chinese adults. Nutr. Res. 2024, 128, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Merz, B.; Frommherz, L.; Rist, M.J.; Kulling, S.E.; Bub, A.; Watzl, B. Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women-Results from the KarMeN Study. Nutrients 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Firmann, M.; Mayor, V.; Vidal, P.M.; Bochud, M.; Pécoud, A.; Hayoz, D.; Paccaud, F.; Preisig, M.; Song, K.S.; Yuan, X.; et al. The CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc. Disord. 2008, 8, 6. [Google Scholar] [CrossRef]
- Bernstein, L.; Huot, I.; Morabia, A. Amélioration des performances d’un questionnaire alimentaire semi-quantitatif comparé à un rappel des 24 heures. Sante Publique 1995, 7, 403–413. [Google Scholar]
- Beer-Borst, S.; Costanza, M.C.; Pechère-Bertschi, A.; Morabia, A. Twelve-year trends and correlates of dietary salt intakes for the general adult population of Geneva, Switzerland. Eur. J. Clin. Nutr. 2009, 63, 155–164. [Google Scholar] [CrossRef]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population Antonia. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Vormund, K.; Braun, J.; Rohrmann, S.; Bopp, M.; Ballmer, P.; Faeh, D. Mediterranean diet and mortality in Switzerland: An alpine paradox? Eur. J. Nutr. 2015, 54, 139–148. [Google Scholar] [CrossRef]
- Walter, P.; Infanger, E.; Mühlemann, P. Food pyramid of the Swiss Society for Nutrition. Ann. Nutr. Metab. 2007, 51, 15–20. [Google Scholar] [CrossRef]
- Swiss Society of Nutrition. Pyramide Alimentaire Suisse. Available online: http://www.sge-ssn.ch/fr/toi-et-moi/boire-et-manger/equilibre-alimentaire/pyramide-alimentaire-suisse/ (accessed on 12 June 2024).
- Patriota, P.; Marques-Vidal, P. Retirement is associated with a decrease in dietary quality. Clin. Nutr. ESPEN 2021, 45, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Schneid Schuh, D.; Guessous, I.; Gaspoz, J.M.; Theler, J.M.; Marques-Vidal, P. Twenty-four-year trends and determinants of change in compliance with Swiss dietary guidelines. Eur. J. Clin. Nutr. 2019, 73, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Teav, T.; Gallart-Ayala, H.; van der Velpen, V.; Mehl, F.; Henry, H.; Ivanisevic, J. Merged targeted quantification and untargeted profiling for comprehensive assessment of acylcarnitine and amino acid metabolism. Anal. Chem. 2019, 91, 11757–11769. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.; Sloutskis, D.; Kumanyika, S.; Sparti, A.; Schutz, Y.; Morabia, A. Data-based approach for developing a physical activity frequency questionnaire. Am. J. Epidemiol. 1998, 147, 147–154. [Google Scholar] [CrossRef]
- Guessous, I.; Gaspoz, J.M.; Theler, J.M.; Kayser, B. Eleven-year physical activity trends in a Swiss urban area. Prev. Med. 2014, 59, 25–30. [Google Scholar] [CrossRef]
- Ozdemir, M.; Motmain, Z.; Ekinci, K.; Saygılı, E. Associations Between BLG, CSN3, DGAT1, GH, PIT1, and PRL Gene Polymorphisms and Milk Production Traits in Holstein Dairy Cows: A Meta-Analysis. Biochem. Genet. 2024, 63, 1–21. [Google Scholar] [CrossRef]
- Wang, C.J.; Chen, C.J.; Lin, S.A.; Lin, J.N. Work-related flow and its correlates among frontline nurses during the COVID-19 pandemic. Int. Nurs. Rev. 2024, 71, 949–959. [Google Scholar] [CrossRef]
- Rousseau, M.; Guénard, F.; Garneau, V.; Allam-Ndoul, B.; Lemieux, S.; Pérusse, L.; Vohl, M.C. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients 2019, 11, 173. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef]
- Hamaya, R.; Mora, S.; Lawler, P.R.; Cook, N.R.; Buring, J.E.; Lee, I.M.; Manson, J.E.; Tobias, D.K. Association of Modifiable Lifestyle Factors with Plasma Branched-Chain Amino Acid Metabolites in Women. J. Nutr. 2022, 152, 1515–1524. [Google Scholar] [CrossRef]
- Sawicki, C.M.; Livingston, K.A.; Obin, M.; Roberts, S.B.; Chung, M.; McKeown, N.M. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology. Nutrients 2017, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Guasch-Ferré, M.; Toledo, E.; Clish, C.B.; Razquin, C.; Liang, L.; Wang, D.D.; Corella, D.; Estruch, R.; Hernáez, Á.; et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: Case-cohort study within the PREDIMED Trial. Diabetologia 2018, 61, 1560–1571. [Google Scholar] [CrossRef]
- Floegel, A.; von Ruesten, A.; Drogan, D.; Schulze, M.B.; Prehn, C.; Adamski, J.; Pischon, T.; Boeing, H. Variation of serum metabolites related to habitual diet: A targeted metabolomic approach in EPIC-Potsdam. Eur. J. Clin. Nutr. 2013, 67, 1100–1108. [Google Scholar] [CrossRef]
- Chatelan, A.; Beer-Borst, S.; Randriamiharisoa, A.; Pasquier, J.; Blanco, J.M.; Siegenthaler, S.; Paccaud, F.; Slimani, N.; Nicolas, G.; Camenzind-Frey, E.; et al. Major Differences in Diet across Three Linguistic Regions of Switzerland: Results from the First National Nutrition Survey menuCH. Nutrients 2017, 9, 1163. [Google Scholar] [CrossRef]
Women | Men | p-Value | |
---|---|---|---|
Sample size | 1257 | 902 | |
Age (years) | 54.3 ± 8.8 | 52.2 ± 8.2 | <0.001 |
Born in Switzerland (%) | 814 (64.8) | 557 (61.8) | 0.153 |
Living in a couple (%) | 643 (51.2) | 604 (67.0) | <0.001 |
Educational level (%) | <0.001 | ||
High | 300 (23.9) | 300 (33.3) | |
Medium | 376 (29.9) | 236 (26.2) | |
Low | 581 (46.2) | 365 (40.5) | |
Smoking categories (%) | 0.833 | ||
Never | 541 (43.0) | 377 (41.8) | |
Former | 430 (34.2) | 318 (35.3) | |
Current | 286 (22.8) | 207 (23.0) | |
On a diet § (%) | 316 (25.1) | 160 (17.7) | <0.001 |
Sedentary (%) | 704 (56.0) | 378 (41.9) | <0.001 |
Body mass index (kg/m2) | 23.3 ± 3.0 | 24.9 ± 2.5 | <0.001 |
BMI categories (%) | <0.001 | ||
Normal | 894 (71.1) | 452 (50.1) | |
Overweight | 363 (28.9) | 450 (49.9) | |
BCAA (µmol/L) | |||
Valine | 207.9 ± 36.1 | 250.2 ± 45.2 | <0.001 |
Leucine | 106.3 ± 17.4 | 136.0 ± 24.4 | <0.001 |
Isoleucine | 48.1 ± 9.2 | 63.6 ± 13.0 | <0.001 |
Leucine | Isoleucine | Valine | ||||
---|---|---|---|---|---|---|
Food Groups, gr/day | Beta | p-Value | Beta | p-Value | Beta | p-Value |
All | ||||||
Dairy | −0.037 | 0.029 | −0.063 | <0.001 | −0.041 | 0.028 |
Meat | 0.026 | 0.140 | 0.018 | 0.303 | 0.032 | 0.096 |
Processed meat | 0.022 | 0.200 | 0.022 | 0.213 | 0.028 | 0.143 |
Fish | 0.000 | 0.978 | −0.008 | 0.625 | 0.013 | 0.501 |
Vegetables | −0.029 | 0.088 | −0.051 | 0.003 | −0.038 | 0.043 |
Fruits | −0.031 | 0.084 | −0.039 | 0.030 | −0.041 | 0.034 |
Women | ||||||
Dairy | −0.074 | 0.019 | −0.065 | 0.019 | −0.082 | 0.010 |
Meat | 0.032 | 0.312 | 0.019 | 0.501 | 0.031 | 0.340 |
Processed meat | 0.026 | 0.415 | 0.012 | 0.675 | 0.042 | 0.189 |
Fish | 0.032 | 0.321 | −0.028 | 0.320 | 0.040 | 0.207 |
Vegetables | −0.032 | 0.323 | −0.064 | 0.022 | −0.035 | 0.277 |
Fruits | −0.022 | 0.496 | −0.076 | 0.007 | −0.023 | 0.484 |
Men | ||||||
Dairy | −0.023 | 0.419 | −0.095 | 0.003 | −0.020 | 0.479 |
Meat | 0.026 | 0.348 | 0.022 | 0.499 | 0.045 | 0.107 |
Processed meat | 0.024 | 0.384 | 0.033 | 0.307 | 0.012 | 0.665 |
Fish | −0.038 | 0.177 | 0.003 | 0.934 | −0.017 | 0.555 |
Vegetables | −0.039 | 0.163 | −0.063 | 0.050 | −0.047 | 0.091 |
Fruits | −0.053 | 0.063 | −0.015 | 0.643 | −0.064 | 0.024 |
Leucine | Isoleucine | Valine | ||||
---|---|---|---|---|---|---|
Nutrients | Beta | p-Value | Beta | p-Value | Beta | p-Value |
All | ||||||
Total protein, gr/day | −0.015 | 0.405 | −0.041 | 0.023 | −0.007 | 0.717 |
Vegetal protein, gr/day | −0.053 | 0.003 | −0.068 | <0.001 | −0.041 | 0.001 |
Animal protein, gr/day | 0.004 | 0.841 | −0.021 | 0.238 | 0.017 | 0.384 |
Total carbohydrates, gr/day | −0.063 | <0.001 | −0.041 | <0.001 | −0.041 | <0.001 |
Monosaccharides, gr/day | −0.057 | 0.001 | −0.072 | <0.001 | −0.041 | <0.001 |
Polysaccharides, gr/day | −0.045 | 0.012 | −0.056 | 0.002 | −0.051 | 0.010 |
Total fat, gr/day | −0.019 | 0.274 | −0.030 | 0.087 | −0.024 | 0.211 |
Saturated fat (SFA), gr/day | −0.027 | 0.135 | −0.042 | 0.020 | −0.031 | 0.109 |
Monounsaturated fat (MUFA), gr/day | −0.010 | 0.563 | −0.018 | 0.293 | −0.012 | 0.535 |
Polyunsaturated fat (PUFA), gr/day | −0.011 | 0.545 | −0.011 | 0.539 | −0.025 | 0.200 |
Total non-digestible fiber, gr/day | −0.042 | 0.016 | −0.060 | 0.001 | −0.055 | 0.004 |
Cholesterol, mg/day | −0.004 | 0.822 | −0.018 | 0.300 | 0.004 | 0.839 |
Alcohol, mL/day | 0.027 | 0.132 | 0.027 | 0.136 | −0.014 | 0.492 |
Calcium, mg/day | −0.031 | 0.068 | −0.058 | 0.001 | −0.024 | 0.199 |
Iron, mg/day | −0.017 | 0.319 | −0.040 | 0.020 | −0.032 | 0.093 |
Women | ||||||
Total protein, gr/day | −0.019 | 0.549 | −0.055 | 0.084 | −0.012 | 0.700 |
Vegetal protein, gr/day | −0.071 | 0.025 | −0.097 | 0.002 | −0.065 | 0.042 |
Animal protein, gr/day | 0.004 | 0.898 | −0.030 | 0.355 | 0.010 | 0.757 |
Total carbohydrates, gr/day | −0.085 | 0.008 | −0.104 | 0.001 | −0.088 | 0.006 |
Monosaccharides, gr/day | −0.084 | 0.008 | −0.086 | 0.007 | −0.096 | 0.003 |
Polysaccharides, gr/day | −0.060 | 0.059 | −0.090 | 0.005 | −0.053 | 0.095 |
Total fat, gr/day | −0.042 | 0.188 | −0.059 | 0.066 | −0.048 | 0.129 |
Saturated fat (SFA), gr/day | −0.044 | 0.164 | −0.069 | 0.031 | −0.051 | 0.110 |
Monounsaturated fat (MUFA), gr/day | −0.035 | 0.266 | −0.045 | 0.158 | −0.037 | 0.242 |
Polyunsaturated fat (PUFA), gr/day | −0.029 | 0.357 | −0.037 | 0.253 | −0.050 | 0.118 |
Total non-digestible fiber, gr/day | −0.057 | 0.079 | −0.071 | 0.030 | −0.045 | 0.163 |
Cholesterol, mg/day | −0.004 | 0.902 | −0.031 | 0.333 | −0.001 | 0.976 |
Alcohol, mL/day | 0.026 | 0.434 | 0.026 | 0.436 | −0.014 | 0.663 |
Calcium, mg/day | −0.058 | 0.069 | −0.090 | 0.005 | −0.049 | 0.127 |
Iron, mg/day | −0.015 | 0.630 | −0.043 | 0.175 | −0.021 | 0.507 |
Men | ||||||
Total protein, gr/day | −0.021 | 0.459 | −0.041 | 0.139 | −0.005 | 0.858 |
Vegetal protein, gr/day | −0.046 | 0.099 | −0.055 | 0.051 | −0.067 | 0.018 |
Animal protein, gr/day | −0.005 | 0.853 | −0.026 | 0.351 | 0.022 | 0.437 |
Total carbohydrates, gr/day | −0.058 | 0.040 | −0.072 | 0.010 | −0.083 | 0.003 |
Monosaccharides, gr/day | −0.056 | 0.045 | −0.088 | 0.002 | −0.083 | 0.003 |
Polysaccharides, gr/day | −0.035 | 0.216 | −0.026 | 0.357 | −0.048 | 0.089 |
Total fat, gr/day | 0.002 | 0.947 | −0.002 | 0.930 | −0.001 | 0.975 |
Saturated fat (SFA), gr/day | −0.012 | 0.675 | −0.016 | 0.555 | −0.014 | 0.630 |
Monounsaturated fat (MUFA), gr/day | 0.014 | 0.613 | 0.007 | 0.789 | 0.012 | 0.660 |
Polyunsaturated fat (PUFA), gr/day | 0.011 | 0.687 | 0.023 | 0.419 | 0.003 | 0.912 |
Total non-digestible fiber, gr/day | −0.049 | 0.081 | −0.079 | 0.005 | −0.077 | 0.006 |
Cholesterol, mg/day | −0.008 | 0.781 | −0.013 | 0.643 | 0.009 | 0.736 |
Alcohol, mL/day | 0.050 | 0.075 | 0.047 | 0.091 | −0.003 | 0.904 |
Calcium, mg/day | −0.025 | 0.372 | −0.056 | 0.043 | −0.014 | 0.621 |
Iron, mg/day | −0.030 | 0.290 | −0.057 | 0.042 | −0.050 | 0.077 |
Leucine | Isoleucine | Valine | ||||
---|---|---|---|---|---|---|
Beta | p-Value | Beta | p-Value | Beta | p-Value | |
All | ||||||
Mediterranean diet score (Trichopoulou) | −0.011 | 0.516 | −0.016 | 0.362 | −0.020 | 0.299 |
Mediterranean diet score (Vormund) | 0.001 | 0.974 | −0.019 | 0.283 | −0.008 | 0.657 |
Alternate healthy eating index (Version 1) | −0.025 | 0.153 | −0.042 | 0.017 | −0.040 | 0.040 |
Alternate healthy eating index (Version 2) | −0.026 | 0.146 | −0.043 | 0.016 | −0.040 | 0.041 |
Women | ||||||
Mediterranean diet score (Trichopoulou) | −0.032 | 0.325 | −0.035 | 0.281 | −0.032 | 0.322 |
Mediterranean diet score (Vormund) | −0.006 | 0.862 | −0.031 | 0.334 | −0.008 | 0.797 |
Alternate healthy eating index (Version 1) | −0.038 | 0.253 | −0.059 | 0.074 | −0.038 | 0.250 |
Alternate healthy eating index (Version 2) | −0.038 | 0.251 | −0.058 | 0.078 | −0.038 | 0.255 |
Men | ||||||
Mediterranean diet score (Trichopoulou) | 0.007 | 0.801 | −0.001 | 0.982 | −0.007 | 0.803 |
Mediterranean diet score (Vormund) | 0.005 | 0.855 | −0.016 | 0.569 | −0.008 | 0.791 |
Alternate healthy eating index (Version 1) | −0.020 | 0.476 | −0.043 | 0.134 | −0.044 | 0.125 |
Alternate healthy eating index (Version 2) | −0.022 | 0.433 | −0.045 | 0.117 | −0.045 | 0.117 |
Leucine | Isoleucine | Valine | |||||||
---|---|---|---|---|---|---|---|---|---|
Gender/Guideline | Non Complier | Complier | p-Value | Non Complier | Complier | p-Value | Non Complier | Complier | p-Value |
All | |||||||||
Fruits ≥ 2/day | 119.1 ± 0.6 | 118.1 ± 0.7 | 0.281 | 54.9 ± 0.3 | 54.3 ± 0.4 | 0.201 | 226.5 ± 1.1 | 224.1 ± 1.3 | 0.174 |
Vegetables ≥ 3/day | 118.8 ± 0.4 | 117.2 ± 1.6 | 0.337 | 54.8 ± 0.2 | 53.1 ± 0.9 | 0.071 | 225.9 ± 0.9 | 220.8 ± 3.2 | 0.129 |
Meat ≤ 5/week | 120.0 ± 0.7 | 117.9 ± 0.6 | 0.020 | 54.9 ± 0.4 | 54.5 ± 0.3 | 0.430 | 227.6 ± 1.4 | 224.2 ± 1.1 | 0.056 |
Fish all ≥ 1/week | 118.8 ± 0.7 | 118.7 ± 0.5 | 0.917 | 55.0 ± 0.4 | 54.5 ± 0.3 | 0.318 | 225.0 ± 1.5 | 225.8 ± 1.0 | 0.651 |
Fish not fried ≥ 1/week | 118.5 ± 0.6 | 119.0 ± 0.7 | 0.592 | 54.7 ± 0.3 | 54.5 ± 0.4 | 0.574 | 224.9 ± 1.1 | 226.4 ± 1.3 | 0.378 |
Dairy ≥ 3/day | 119.0 ± 0.4 | 115.7 ± 1.5 | 0.031 | 54.9 ± 0.2 | 52.0 ± 0.8 | <0.001 | 226.1 ± 0.9 | 219.1 ± 2.9 | 0.019 |
At least 3 guidelines a | 119.2 ± 0.5 | 117.0 ± 0.9 | 0.029 | 55.0 ± 0.3 | 53.5 ± 0.5 | 0.005 | 226.8 ± 1.0 | 221.5 ± 1.8 | 0.010 |
At least 3 guidelines b | 119.0 ± 0.5 | 117.2 ± 1.0 | 0.122 | 54.9 ± 0.3 | 53.4 ± 0.6 | 0.014 | 226.3 ± 0.9 | 221.9 ± 2.0 | 0.048 |
Women | |||||||||
Fruits ≥ 2/day | 106.6 ± 0.7 | 105.8 ± 0.7 | 0.429 | 48.5 ± 0.4 | 47.7 ± 0.4 | 0.123 | 209.3 ± 1.4 | 206.3 ± 1.5 | 0.148 |
Vegetables ≥ 3/day | 106.2 ± 0.5 | 105.9 ± 1.6 | 0.865 | 48.2 ± 0.3 | 47.2 ± 0.8 | 0.276 | 208.3 ± 1.1 | 204.1 ± 3.4 | 0.239 |
Meat ≤ 5/week | 106.8 ± 0.9 | 105.9 ± 0.6 | 0.400 | 48.2 ± 0.5 | 48.1 ± 0.3 | 0.829 | 208.7 ± 1.8 | 207.6 ± 1.2 | 0.602 |
Fish all ≥ 1/week | 106.3 ± 0.8 | 106.2 ± 0.6 | 0.878 | 48.4 ± 0.4 | 47.9 ± 0.3 | 0.421 | 208.2 ± 1.7 | 207.8 ± 1.2 | 0.840 |
Fish not fried ≥ 1/week | 106.1 ± 0.7 | 106.3 ± 0.7 | 0.826 | 48.2 ± 0.3 | 48.0 ± 0.4 | 0.714 | 207.7 ± 1.4 | 208.2 ± 1.5 | 0.778 |
Dairy ≥ 3/day | 106.2 ± 0.5 | 106.2 ± 1.6 | 0.975 | 48.2 ± 0.3 | 46.6 ± 0.9 | 0.061 | 207.9 ± 1.1 | 208.2 ± 3.4 | 0.925 |
At least 3 guidelines a | 106.4 ± 0.6 | 105.7 ± 0.9 | 0.493 | 48.4 ± 0.3 | 47.4 ± 0.5 | 0.072 | 208.7 ± 1.2 | 206.0 ± 1.9 | 0.226 |
At least 3 guidelines b | 106.3 ± 0.5 | 105.8 ± 1.0 | 0.693 | 48.3 ± 0.3 | 47.3 ± 0.5 | 0.097 | 208.4 ± 1.1 | 206.3 ± 2.2 | 0.407 |
Men | |||||||||
Fruits ≥ 2/day | 136.0 ± 0.9 | 135.1 ± 1.4 | 0.585 | 63.6 ± 0.5 | 63.5 ± 0.7 | 0.900 | 249.9 ± 1.7 | 249.0 ± 2.5 | 0.775 |
Vegetables ≥ 3/day | 136.0 ± 0.8 | 130.4 ± 3.9 | 0.159 | 63.7 ± 0.4 | 60.0 ± 2.1 | 0.074 | 249.9 ± 1.5 | 242.8 ± 7.2 | 0.332 |
Meat ≤ 5/week | 137.4 ± 1.1 | 134.1 ± 1.1 | 0.033 | 63.9 ± 0.6 | 63.3 ± 0.6 | 0.470 | 252.6 ± 2.0 | 246.7 ± 2.0 | 0.044 |
Fish all ≥ 1/week | 135.8 ± 1.3 | 135.7 ± 0.9 | 0.955 | 63.9 ± 0.7 | 63.4 ± 0.5 | 0.554 | 248.1 ± 2.5 | 250.3 ± 1.7 | 0.470 |
Fish not fried ≥ 1/week | 135.5 ± 1.0 | 136.1 ± 1.3 | 0.721 | 63.7 ± 0.5 | 63.3 ± 0.7 | 0.613 | 248.8 ± 1.8 | 251.0 ± 2.4 | 0.450 |
Dairy ≥ 3/day | 136.4 ± 0.8 | 128.2 ± 2.7 | 0.004 | 64.0 ± 0.4 | 59.2 ± 1.4 | 0.002 | 251.1 ± 1.5 | 232.5 ± 5.0 | <0.001 |
At least 3 guidelines a | 136.6 ± 0.8 | 131.6 ± 1.9 | 0.018 | 64.0 ± 0.4 | 61.6 ± 1.0 | 0.038 | 251.3 ± 1.6 | 241.3 ± 3.5 | 0.011 |
At least 3 guidelines b | 136.3 ± 0.8 | 131.7 ± 2.3 | 0.067 | 63.9 ± 0.4 | 61.4 ± 1.2 | 0.068 | 250.7 ± 1.5 | 240.8 ± 4.3 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Borreggine, R.; Gallart-Ayala, H.; Ivanisevic, J.; Marques-Vidal, P. Circulating Levels of Branched-Chain Amino Acids Are Associated with Diet: A Cross-Sectional Analysis. Nutrients 2025, 17, 1471. https://doi.org/10.3390/nu17091471
Liu K, Borreggine R, Gallart-Ayala H, Ivanisevic J, Marques-Vidal P. Circulating Levels of Branched-Chain Amino Acids Are Associated with Diet: A Cross-Sectional Analysis. Nutrients. 2025; 17(9):1471. https://doi.org/10.3390/nu17091471
Chicago/Turabian StyleLiu, Keyuan, Rebecca Borreggine, Hector Gallart-Ayala, Julijana Ivanisevic, and Pedro Marques-Vidal. 2025. "Circulating Levels of Branched-Chain Amino Acids Are Associated with Diet: A Cross-Sectional Analysis" Nutrients 17, no. 9: 1471. https://doi.org/10.3390/nu17091471
APA StyleLiu, K., Borreggine, R., Gallart-Ayala, H., Ivanisevic, J., & Marques-Vidal, P. (2025). Circulating Levels of Branched-Chain Amino Acids Are Associated with Diet: A Cross-Sectional Analysis. Nutrients, 17(9), 1471. https://doi.org/10.3390/nu17091471