Ultra-Processed Food Consumption and the Risk of Psoriasis: A Large Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of UPF Consumption
2.3. Ascertainment of Psoriasis
2.4. Measurement of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. UPF Intake and Elevated BMI
4.2. UPF-Associated Chronic Low-Grade Inflammation
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
CI | confidence interval |
HR | hazard ratio |
INFLA-score | inflammation score |
PRS | polygenic risk score |
TDI | Townsend Deprivation Index |
UPF | ultra-processed food |
References
- Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Bragazzi, N.L.; Karimkhani Aksut, C.; Wu, D.; Alicandro, G.; McGonagle, D.; Guo, C.; Dellavalle, R.; Grada, A.; Wong, P.; et al. The global, regional, and national burden of psoriasis: Results and insights from the global burden of disease 2019 study. Front. Med. 2021, 8, 743180. [Google Scholar] [CrossRef]
- Armstrong, E.J.; Harskamp, C.T.; Armstrong, A.W. Psoriasis and major adverse cardiovascular events: A systematic review and meta-analysis of observational studies. J. Am. Heart Assoc. 2013, 2, e000062. [Google Scholar] [CrossRef]
- Eppinga, H.; Poortinga, S.; Thio, H.B.; Nijsten, T.E.C.; Nuij, V.; van der Woude, C.J.; Vodegel, R.M.; Fuhler, G.M.; Peppelenbosch, M.P. Prevalence and phenotype of concurrent psoriasis and inflammatory bowel disease. Inflamm. Bowel Dis. 2017, 23, 1783–1789. [Google Scholar] [CrossRef]
- Singh, S.; Taylor, C.; Kornmehl, H.; Armstrong, A.W. Psoriasis and suicidality: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2017, 77, 425–440.e422. [Google Scholar] [CrossRef]
- Dowlatshahi, E.A.; Wakkee, M.; Arends, L.R.; Nijsten, T. The prevalence and odds of depressive symptoms and clinical depression in psoriasis patients: A systematic review and meta-analysis. J. Investig. Dermatol. 2014, 134, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- Dalgard, F.J.; Gieler, U.; Tomas-Aragones, L.; Lien, L.; Poot, F.; Jemec, G.B.E.; Misery, L.; Szabo, C.; Linder, D.; Sampogna, F.; et al. The psychological burden of skin diseases: A cross-sectional multicenter study among dermatological out-patients in 13 european countries. J. Investig. Dermatol. 2015, 135, 984–991. [Google Scholar] [CrossRef]
- Katsimbri, P.; Korakas, E.; Kountouri, A.; Ikonomidis, I.; Tsougos, E.; Vlachos, D.; Papadavid, E.; Raptis, A.; Lambadiari, V. The effect of antioxidant and anti-inflammatory capacity of diet on psoriasis and psoriatic arthritis phenotype: Nutrition as therapeutic tool? Antioxidants 2021, 10, 157. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-grade inflammation and ultra-processed foods consumption: A review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Kong, W.; Xie, Y.; Zhong, J.; Cao, C. Ultra-processed foods and allergic symptoms among children and adults in the united states: A population-based analysis of nhanes 2005–2006. Front. Public Health 2022, 10, 1038141. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Martínez Steele, E.; Du, M.; Pomeranz, J.L.; O’Connor, L.E.; Herrick, K.A.; Luo, H.; Zhang, X.; Mozaffarian, D.; Zhang, F.F. Trends in consumption of ultraprocessed foods among us youths aged 2–19 years, 1999–2018. JAMA 2021, 326, 519–530. [Google Scholar] [CrossRef]
- Popkin, B.M.; Barquera, S.; Corvalan, C.; Hofman, K.J.; Monteiro, C.; Ng, S.W.; Swart, E.C.; Taillie, L.S. Towards unified and impactful policies to reduce ultra-processed food consumption and promote healthier eating. Lancet Diabetes Endocrinol. 2021, 9, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef]
- Chen, X.; Chu, J.; Hu, W.; Sun, N.; He, Q.; Liu, S.; Feng, Z.; Li, T.; Han, Q.; Shen, Y. Associations of ultra-processed food consumption with cardiovascular disease and all-cause mortality: Uk biobank. Eur. J. Public Health 2022, 32, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.B.; Rauber, F.; Chang, K.; Louzada, M.; Monteiro, C.A.; Millett, C.; Vamos, E.P. Ultra-processed food consumption and type 2 diabetes incidence: A prospective cohort study. Clin. Nutr. 2021, 40, 3608–3614. [Google Scholar] [CrossRef]
- Lo, C.H.; Khandpur, N.; Rossato, S.L.; Lochhead, P.; Lopes, E.W.; Burke, K.E.; Richter, J.M.; Song, M.; Ardisson Korat, A.V.; Sun, Q.; et al. Ultra-processed foods and risk of crohn’s disease and ulcerative colitis: A prospective cohort study. Clin. Gastroenterol. Hepatol. 2022, 20, e1323–e1337. [Google Scholar] [CrossRef]
- Hawkins, P.; Earl, K.; Tektonidis, T.G.; Fallaize, R. The role of diet in the management of psoriasis: A scoping review. Nutr. Res. Rev. 2024, 37, 296–330. [Google Scholar] [CrossRef]
- Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Bradbury, K.E.; Carter, M.; Elliott, P.; Evans, C.E.L.; Ford, H.E.; Hancock, N.; et al. Validation of the oxford webq online 24-h dietary questionnaire using biomarkers. Am. J. Epidemiol. 2019, 188, 1858–1867. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Pounis, G.; Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; de Curtis, A.; Persichillo, M.; Sieri, S.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; et al. Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the moli-sani study. Thromb. Haemost. 2016, 115, 344–352. [Google Scholar] [CrossRef]
- Thompson, D.J.; Wells, D.; Selzam, S.; Peneva, I.; Moore, R.; Sharp, K.; Tarran, W.A.; Beard, E.J.; Riveros-Mckay, F.; Giner-Delgado, C. Uk biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. medRxiv 2022. [Google Scholar] [CrossRef]
- Beslay, M.; Srour, B.; Mejean, C.; Alles, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-processed food intake in association with bmi change and risk of overweight and obesity: A prospective analysis of the french nutrinet-sante cohort. PLoS Med. 2020, 17, e1003256. [Google Scholar] [CrossRef]
- Shi, Z.; Wu, X.; Yu, S.; Huynh, M.; Jena, P.K.; Nguyen, M.; Wan, Y.Y.; Hwang, S.T. Short-term exposure to a western diet induces psoriasiform dermatitis by promoting accumulation of il-17a-producing gammadelta t cells. J. Investig. Dermatol. 2020, 140, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wu, X.; Santos Rocha, C.; Rolston, M.; Garcia-Melchor, E.; Huynh, M.; Nguyen, M.; Law, T.; Haas, K.N.; Yamada, D.; et al. Short-term western diet intake promotes il-23–mediated skin and joint inflammation accompanied by changes to the gut microbiota in mice. J. Investig. Dermatol. 2021, 141, 1780–1791. [Google Scholar] [CrossRef]
- Barros, G.; Duran, P.; Vera, I.; Bermúdez, V. Exploring the links between obesity and psoriasis: A comprehensive review. Int. J. Mol. Sci. 2022, 23, 7499. [Google Scholar] [CrossRef] [PubMed]
- Paroutoglou, K.; Papadavid, E.; Christodoulatos, G.S.; Dalamaga, M. Deciphering the association between psoriasis and obesity: Current evidence and treatment considerations. Curr. Obes. Rep. 2020, 9, 165–178. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell. Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef]
- Chassaing, B.; Compher, C.; Bonhomme, B.; Liu, Q.; Tian, Y.; Walters, W.; Nessel, L.; Delaroque, C.; Hao, F.; Gershuni, V.; et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 2022, 162, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Bancil, A.S.; Sandall, A.M.; Rossi, M.; Chassaing, B.; Lindsay, J.O.; Whelan, K. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: Mechanistic insights in inflammatory bowel disease. J. Crohns. Colitis. 2021, 15, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Gulati, M.; Rani, P.; Gupta, R. Psoriasis: Interplay between dysbiosis and host immune system. Autoimmun. Rev. 2022, 21, 103169. [Google Scholar] [CrossRef] [PubMed]
Quartile of UPF Consumption | p Value | |||||
---|---|---|---|---|---|---|
Overall | Q1 | Q2 | Q3 | Q4 | ||
121,019 | 30,434 | 30,366 | 30,356 | 29,863 | ||
Proportion of UPF in total diet, % (g/day) | <0.001 | |||||
Mean (SD) | 21.0 (12.3) | 8.0 (2.5) | 15.0 (1.9) | 22.8 (2.6) | 38.4 (9.3) | |
Age, year | <0.001 | |||||
Mean (SD) | 56.2 (7.8) | 56.3 (7.6) | 56.4 (7.7) | 56.4 (7.9) | 55.5 (8.0) | |
Sex, n (%) | <0.001 | |||||
Male | 52,731 (43.5) | 11,739 (38.6) | 12,964 (42.7) | 13,775 (45.4) | 14,253 (47.7) | |
Female | 68,288 (56.5) | 18,695 (61.4) | 17,402 (57.3) | 16,581 (54.6) | 15,610 (52.3) | |
Ethnicity, n (%) | <0.001 | |||||
White | 116,865 (96.6) | 29,073 (95.5) | 29,249 (96.3) | 29,451 (97.0) | 29,092 (97.4) | |
Others | 4154 (3.4) | 1343 (4.5) | 1110 (3.7) | 900 (3.0) | 765 (2.6) | |
BMI, kg/m2 | <0.001 | |||||
Mean (SD) | 26.7 (4.6) | 25.9 (4.2) | 26.2 (4.3) | 26.8 (4.5) | 27.8 (5.0) | |
Total energy, kj/d | <0.001 | |||||
Mean (SD) | 8703.4 (2032.6) | 8224.5 (1955.6) | 8788.1 (1987.6) | 8952.0 (2018.0) | 8852.7 (2088.6) | |
Smoking status, n (%) | <0.001 | |||||
Never | 69,484 (57.4) | 17,044 (56.0) | 17,882 (58.9) | 17,872 (58.9) | 16,686 (55.9) | |
Former | 43,044 (35.6) | 11,478 (37.7) | 10,687 (35.2) | 10,489 (34.5) | 10,390 (34.8) | |
Current | 8232 (6.8) | 1837 (6.0) | 1740 (5.7) | 1941 (6.4) | 2714 (9.1) | |
Drinking status, n (%) | <0.001 | |||||
Never | 3466 (2.9) | 740 (2.4) | 820 (2.7) | 898 (3.0) | 1008 (3.4) | |
Former | 3413 (2.8) | 743(2.4) | 814 (2.7) | 787 (2.6) | 1069 (3.5) | |
Current | 114,057 (94.2) | 28,920 (95.1) | 28,712 (94.6) | 28,656 (94.3) | 27,769 (93.0) | |
Physical activity, MET-min/wk | <0.001 | |||||
Median (IQR) | 1678 (933, 2844) | 1824 (1040, 2991) | 1713 (970, 2862) | 1662 (933, 2817) | 1506 (813, 2679) | |
TDI | <0.001 | |||||
Median (IQR) | −2.4 (−3.8, −0.1) | −2.0 (−3.6, 0.5) | −2.4 (−3.8, −0.2) | −2.6 (−3.9, −0.4) | −2.4 (−3.8, −0.2) | |
INFLA-score | <0.001 | |||||
Mean (SD) | 4.5 (6.1) | 4.1 (6.1) | 4.4 (6.1) | 4.6 (6.0) | 5.0 (6.2) |
Continuous a | Quartile of UPF Consumption | p for Trend b | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||
Number of cases/non-cases | 1043/119,976 | 277/30,207 | 241/30,125 | 276/30,080 | 299/29,564 | |
Model 1 | 1.09 (1.04, 1.14) | Ref. | 1.06 (0.88, 1.27) | 1.20 (1.01, 1.43) | 1.34 (1.13, 1.60) | <0.001 |
p-value | <0.001 | 0.565 | 0.042 | <0.001 | ||
Model 2 | 1.08 (1.03, 1.13) | Ref. | 1.07 (0.89, 1.28) | 1.21 (1.01, 1.44) | 1.34 (1.13, 1.60) | <0.001 |
p-value | 0.001 | 0.463 | 0.035 | <0.001 | ||
Model 3 | 1.06 (1.01, 1.11) | Ref. | 1.08 (0.90, 1.29) | 1.20 (1.00, 1.44) | 1.28 (1.07, 1.52) | 0.004 |
p-value | 0.015 | 0.419 | 0.045 | 0.006 |
Subgroup | Number of Participants | Hazard Ratio (95%CI) | p Value | p Interaction |
---|---|---|---|---|
Sex | 0.374 | |||
Female | 68,267 | 1.07 (1.01, 1.14) | 0.048 | |
Male | 52,716 | 1.02 (0.96, 1.10) | 0.506 | |
Age, years | 0.051 | |||
<60 | 71,693 | 1.08 (1.02, 1.15) | 0.012 | |
≥60 | 49,290 | 0.98 (0.91, 1.06) | 0.672 | |
BMI, kg/m2 | 0.068 | |||
<25 | 48,122 | 0.98 (0.89, 1.08) | 0.675 | |
≥25 | 72,861 | 1.09 (1.03, 1.15) | 0.002 | |
Smoking status | 0.768 | |||
Never | 69,484 | 1.07 (0.99, 1.15) | 0.091 | |
Former | 43,044 | 1.03 (0.96, 1.11) | 0.427 | |
Current | 8231 | 1.04 (0.93, 1.17) | 0.523 | |
Drinking status | 0.727 | |||
Never | 3466 | 0.94 (0.72, 1.22) | 0.623 | |
Former | 3413 | 1.06 (0.88, 1.27) | 0.531 | |
Current | 114,057 | 1.05 (1.00, 1.10) | 0.063 | |
Physical Activity | 0.350 | |||
<600 | 19,047 | 1.06 (0.95, 1.17) | 0.300 | |
≥600 | 101,936 | 1.04 (0.99, 1.10) | 0.136 | |
TDI | 0.163 | |||
<−2.37 | 60,544 | 1.06 (0.98, 1.14) | 0.137 | |
≥−2.37 | 60,439 | 1.04 (0.97, 1.10) | 0.279 |
Subgroup | Cases/Total | Adjusted HRs (95% CI) | p-Value |
---|---|---|---|
Low genetic risk | |||
UPF-Q1 | 37/7291 | 1 (Reference) | |
UPF-Q2 | 27/7284 | 0.74 (0.45, 1.22) | 0.236 |
UPF-Q3 | 46/7385 | 1.19 (0.77, 1.84) | 0.430 |
UPF-Q4 | 58/7465 | 1.45 (0.96, 2.2) | 0.076 |
Medium genetic risk | |||
UPF-Q1 | 110/14,736 | 1.46 (1.01, 2.12) | 0.046 |
UPF-Q2 | 119/14,859 | 1.59 (1.10, 2.30) | 0.014 |
UPF-Q3 | 126/14,812 | 1.65 (1.14, 2.39) | 0.008 |
UPF-Q4 | 133/14,293 | 1.72 (1.19, 2.47) | 0.004 |
High genetic risk | |||
UPF-Q1 | 76/7520 | 2.03 (1.37, 3.01) | <0.001 |
UPF-Q2 | 86/7296 | 2.34 (1.59, 3.45) | <0.001 |
UPF-Q3 | 98/7245 | 2.59 (1.77, 3.80) | <0.001 |
UPF-Q4 | 105/7168 | 2.73 (1.87, 3.98) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Li, X.; He, J.; He, M.; Ning, N.; Chen, L.; Yao, P.; Tang, Y.; Li, Y. Ultra-Processed Food Consumption and the Risk of Psoriasis: A Large Prospective Cohort Study. Nutrients 2025, 17, 1473. https://doi.org/10.3390/nu17091473
Peng X, Li X, He J, He M, Ning N, Chen L, Yao P, Tang Y, Li Y. Ultra-Processed Food Consumption and the Risk of Psoriasis: A Large Prospective Cohort Study. Nutrients. 2025; 17(9):1473. https://doi.org/10.3390/nu17091473
Chicago/Turabian StylePeng, Xinxing, Xiangzi Li, Jiayu He, Min He, Ning Ning, Li Chen, Ping Yao, Yuhan Tang, and Yanyan Li. 2025. "Ultra-Processed Food Consumption and the Risk of Psoriasis: A Large Prospective Cohort Study" Nutrients 17, no. 9: 1473. https://doi.org/10.3390/nu17091473
APA StylePeng, X., Li, X., He, J., He, M., Ning, N., Chen, L., Yao, P., Tang, Y., & Li, Y. (2025). Ultra-Processed Food Consumption and the Risk of Psoriasis: A Large Prospective Cohort Study. Nutrients, 17(9), 1473. https://doi.org/10.3390/nu17091473