Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed
Abstract
:1. Introduction
2. Results
2.1. Effects of Select Organic Acids and Essential Oils against A. flavus Growth on Potato Dextrose Media
2.2. Synergism between Organic Acids and Essential Oils to Inhibit A. flavus Growth on PDA
2.3. Effects of Select Organic Acids and Essential Oils agasint A. flavus on Corn Kernels
2.4. Synergism between Organic Acids and Essential Oils to Inhibit A. flavus Growth on Corn Kernels
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Strain and Growth Conditions
5.2. Minimal Inhibitory Concentration Determination of Organic Acids and Essential Oils
5.3. Synergy Testing on PDA
5.4. MIC and Synergy Testing on Corn Kernels
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control 2019, 106, 106731. [Google Scholar] [CrossRef]
- Alberts, J.F.; Lilly, M.; Rheeder, J.P.; Burger, H.M.; Shephard, G.S.; Gelderblom, W.C.A. Technological and community-based methods to reduce mycotoxin exposure. Food Control 2017, 73, 101–109. [Google Scholar] [CrossRef]
- Hajati, H. Application of organic acids in poultry nutrition. Int. J. Avian. Wildl. Biol. 2018, 3, 324–329. [Google Scholar] [CrossRef]
- Yun, J.; Lee, D.G. A novel fungal killing mechanism of propionic acid. FEMS Yeast Res. 2016, 16, fow089. [Google Scholar] [CrossRef] [PubMed]
- Humer, E.; Lucke, A.; Harder, H.; Metzler-Zebeli, B.U.; Böhm, J.; Zebeli, Q. Effects of citric and lactic acid on the reduction of deoxynivalenol and its derivatives in feeds. Toxins 2016, 8, 285. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Umar, M.; Hassan, F.; Alagawany, M.; Arif, M.; Taha, A.E.; Elnesr, S.S.; El-Tarabily, K.A.; Abd El-Hack, M.E. Applications of butyric acid in poultry production: The dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Anim. Health Res. Rev. 2022, 23, 136–146. [Google Scholar] [CrossRef]
- Hassan, R.A.; Sand, M.I.; El-Kadi, S.M. Effect of some organic acids on fungal growth and their toxins production. J. Agric. Chem. Biotechn. 2012, 3, 391–397. [Google Scholar] [CrossRef]
- Ghosh, J.; Häggblom, P. Effect of sublethal concentrations of propionic or butyric acid on growth and aflatoxin production by Aspergillus flavus. Int. J. Food Microbiol. 1985, 2, 323–330. [Google Scholar] [CrossRef]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A. Essential oils and their application in food safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Perczak, A.; Juś, K.; Gwiazdowska, D.; Marchwińska, K.; Waśkiewicz, A. The efficiency of deoxynivalenol degradation by essential oils under in vitro conditions. Foods 2019, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Uma, K.; Huang, X.; Kumar, B.A. Antifungal effect of plant extract and essential oil. Chin. J. Integr. Med. 2017, 23, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Ding, Y.; Hu, Y.; Yao, X.; He, Y.; Chen, J.; Wu, J.; Wu, S.; Zhang, H.; He, X.; Song, Z. Dietary essential oils improves the growth performance, antioxidant properties and intestinal permeability by inhibiting bacterial proliferation, and altering the gut microbiota of yellow-feather broilers. Poult. Sci. 2022, 101, 102087. [Google Scholar] [CrossRef] [PubMed]
- Bento, M.; Ouwehand, A.; Tiihonen, K.; Lahtinen, S.; Nurminen, P.; Saarinen, M.T.; Schulze, H.; Mygind, T.; Fischer, J. Essential oils and their use in animal feeds for monogastric animals—Effects on feed quality, gut microbiota, growth performance and food safety: A review. Vet. Med. 2013, 58, 449–458. [Google Scholar] [CrossRef]
- Franz, C.; Baser, K.; Windisch, W. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flavour Fragr. J. 2010, 25, 327–340. [Google Scholar] [CrossRef]
- Kurekci, C.; Al Jassim, R.; Hassan, E.; Bishop-Hurley, S.L.; Padmanabha, J.; Mcsweeney, C.S. Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens. Poult. Sci. 2014, 93, 2337–2346. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Kappert, H.; Frehner, M.; Losa, R.; Beynen, A. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef]
- O’Bryan, C.A.; Pendleton, S.J.; Crandall, P.G.; Ricke, S.C. Potential of plant essential oils and their components in animal agriculture-in vitro studies on antibacterial mode of action. Front. Vet. Sci. 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Williams, P.; Losa, R. The use of essential oils and their compounds in poultry nutrition. World. Poult. Sci. J. 2001, 17, 14–15. [Google Scholar] [CrossRef]
- Gong, J.; Yin, F.; Hou, R.; Yin, Y.L. Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: Potential and challenges in application. Can. J. Anim. Sci. 2014, 94, 223–241. [Google Scholar] [CrossRef]
- Xiang, F.; Zhao, Q.; Zhao, K.; Pei, H.; Tao, F. The efficacy of composite essential oils against aflatoxigenic fungus Aspergillus flavus in maize. Toxins 2020, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.; Abbas, W.; Huang, J.; He, Q.; Zhen, W.; Guo, Y.; Wang, Z. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poult. Sci. 2022, 101, 101563. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef]
- Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons; McGraw-Hill: New York, NY, USA, 2006; ISBN 978-007-147-051-3. [Google Scholar]
- Cox, N.A.; Cason, J.A.; Buhr, R.J.; Richardson, K.E.; Richardson, L.J.; Rigsby, L.L.; Fedorka-Cray, P.J. Variations in preenrichment pH of poultry feed and feed ingredients after incubation periods up to 48 hours. JARP 2013, 22, 190–195. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Ayres, J.C. Effect of initial ph on aflatoxin production. Appl. Microbiol. 1975, 30, 1050–1051. [Google Scholar] [CrossRef]
- Ehrlich, K.C.; Montalbano, B.G.; Cotty, P.J. Divergent regulation of aflatoxin production at acidic ph by two Aspergillus strains. Mycopathologia 2005, 159, 579–581. [Google Scholar] [CrossRef]
- Casquete, R.; Benito, M.J.; de Córdoba, M.; Ruiz-Moyano, S.; Martín, A. The growth and aflatoxin production of Aspergillus flavus strains on a cheese model system are influenced by physicochemical factors. JDS 2017, 100, 6987–6996. [Google Scholar] [CrossRef]
- Swaggerty, C.L.; Byrd, J.A.; Arsenault, R.J.; Perry, F.; Johnson, C.N.; Genovese, K.J.; He, H.; Kogut, M.H.; Piva, A.; Grilli, E. A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poult. Sci. 2022, 101, 101753. [Google Scholar] [CrossRef]
- van Immerseel, F.; Russell, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef]
- Soni, P.; Gangurde, S.S.; Ortega-Beltran, A.; Kumar, R.; Parmar, S.; Sudini, H.K.; Lei, Y.; Ni, X.; Huai, D.; Fountain, J.C.; et al. Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front. Microbiol. 2020, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aziz, A.R.; Mahmoud, M.A.; Al-Othman, M.R.; Al-Gahtani, M.F. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene. Sci. World J. 2015, 2015, 958192. [Google Scholar] [CrossRef] [PubMed]
- Esper, R.H.; Goncalez, E.; Marques, M.O.; Felicio, R.C.; Felicio, J.D. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus. Front. Microbiol. 2014, 5, 269. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.S.; Kim, H.M.; Chun, H.S.; Lee, S.E. Organic acids suppress aflatoxin production via lowering expression of aflatoxin biosynthesis-related genes in Aspergillus flavus. Food Control 2018, 88, 207–216. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Carvajal-Moreno, M.; Mercado-Ruaro, P.; Rojo-Callejas, F.; Correa, B. Essential oils trigger an antifungal and anti-aflatoxigenic effect on Aspergillus flavus via the induction of apoptosis-like cell death and gene regulation. Food Control 2020, 10, 107038. [Google Scholar] [CrossRef]
- Gallagher, R.T.; Wilson, B.J. Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus. Mycopathologia 1979, 66, 183–185. [Google Scholar] [CrossRef]
- Seidler, N.W.; Jona, I.; Vegh, M.; Martonosi, A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. JBC 1989, 264, 17816–17823. [Google Scholar] [CrossRef]
- Valde, J.J.; Cameron, J.E.; Cole, R.J. Aflatrem: A tremorgenic mycotoxin with acute neurotoxic effects. Environ. Health Perspect. 1985, 62, 459–463. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J.; Lomax, L.G.; Gosser, H.S.; Diener, U.L. Cyclopiazonic acid production by Aspergillus flavus and its effects on broiler chickens. AEM 1983, 46, 698–703. [Google Scholar] [CrossRef]
- Skinner, J.T.; Bauer, S.; Young, V.; Pauling, G.; Wilson, J. An economic analysis of the impact of subclinical (mild) necrotic enteritis in broiler chickens. Avian Dis. 2010, 54, 1237–1240. [Google Scholar] [CrossRef]
- Tsiouris, V. Poultry Management: A useful tool for the control of necrotic enteritis in poultry. Avian Pathol. 2016, 45, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Ismail, T.A.; Khalifa, E.; Abd El-Kader, S.A.; Mohamed, D.I.; Mohamed, D.T.; Shahin, S.E.; Abd El-Hamid, M.I. Supplementing garlic Nanohydrogel optimized growth, gastrointestinal integrity and economics and ameliorated necrotic enteritis in broiler chickens using a Clostridium perfringens challenge model. Animals 2021, 11, 2027. [Google Scholar] [CrossRef] [PubMed]
- Cravens, R.L.; Goss, G.R.; Chi, F.; De Boer, E.D.; Davis, S.W.; Hendrix, S.M.; Richardson, J.A.; Johnston, S.L. The effects of necrotic enteritis, aflatoxin B1, and virginiamycin on growth performance, necrotic enteritis lesion scores, and mortality in young broilers. Poult. Sci. 2013, 92, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Císarová, M.; Tančinová, D.; Medo, J.; Kačániová, M. The in-vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species. J. Environ. Sci. Health 2016, 51, 668–674. [Google Scholar] [CrossRef]
- Glenn, A.E.; Zitomer, N.C.; Zimeri, A.M.; Williams, L.D.; Riley, R.T.; Proctor, R.H. Transformation-mediated complementation of a fum gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol. Plant-Microbe Interact. 2008, 21, 87–97. [Google Scholar] [CrossRef]
Lemongrass Oil | |||||
---|---|---|---|---|---|
1/2 MIC | 1/4 MIC | 1/8 MIC | 1/16 MIC | ||
Acetic Acid | 1/2 MIC | ++ | ++ | ++ | + |
1/4 MIC | ++ | + | + | + | |
1/8 MIC | ++ | + | − | − | |
1/16 MIC | ++ | − | − | − | |
Butyric Acid | 1/2 MIC | ++ | ++ | ++ | + |
1/4 MIC | ++ | + | + | + | |
1/8 MIC | ++ | + | − | − | |
1/16 MIC | ++ | + | − | − | |
Propionic Acid | 1/2 MIC | ++ | ++ | ++ | + |
1/4 MIC | ++ | ++ | + | + | |
1/8 MIC | ++ | ++ | + | + | |
1/16 MIC | ++ | + | + | + |
Cinnamon Oil | |||||
---|---|---|---|---|---|
1/2 MIC | 1/4 MIC | 1/8 MIC | 1/16 MIC | ||
Acetic Acid | 1/2 MIC | ++ | ++ | + | + |
1/4 MIC | ++ | + | + | + | |
1/8 MIC | ++ | + | + | + | |
1/16 MIC | ++ | + | + | + | |
Butyric Acid | 1/2 MIC | ++ | ++ | ++ | + |
1/4 MIC | ++ | + | + | + | |
1/8 MIC | ++ | + | + | + | |
1/16 MIC | ++ | + | + | + | |
Propionic Acid | 1/2 MIC | ++ | ++ | ++ | + |
1/4 MIC | ++ | + | + | + | |
1/8 MIC | ++ | + | + | + | |
1/16 MIC | ++ | + | + | + |
Cinnamon | 8000 µL/L air | 4000 µL/L air | 2000 µL/L air | 1000 µL/L air |
++ | + | + | + | |
Lemongrass | 8000 µL/L air | 4000 µL/L air | 2000 µL/L air | 1000 µL/L air |
+ | + | + | − | |
Acetic Acid | 3000 mg/kg | 1500 mg/kg | 750 mg/kg | 375 mg/kg |
++ | ++ | + | − | |
Butyric Acid | 1760 mg/kg | 880 mg/kg | 440 mg/kg | 220 mg/kg |
++ | + | + | + | |
Propionic Acid | 2222 mg/kg | 1111 mg/kg | 556 mg/kg | 278 mg/kg |
++ | + | + | + |
Cinnamon Oil | ||||
---|---|---|---|---|
1/2 MIC | 1/4 MIC | 1/8 MIC | ||
Acetic Acid | 1/2 MIC | ++ | ++ | ++ |
1/4 MIC | ++ | + | + | |
1/8 MIC | ++ | + | − | |
Butyric Acid | 1/2 MIC | ++ | ++ | ++ |
1/4 MIC | ++ | + | + | |
1/8 MIC | ++ | + | − | |
Propionic Acid | 1/2 MIC | ++ | ++ | ++ |
1/4 MIC | ++ | ++ | + | |
1/8 MIC | ++ | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satterlee, T.; McDonough, C.M.; Gold, S.E.; Chen, C.; Glenn, A.E.; Pokoo-Aikins, A. Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed. Toxins 2023, 15, 635. https://doi.org/10.3390/toxins15110635
Satterlee T, McDonough CM, Gold SE, Chen C, Glenn AE, Pokoo-Aikins A. Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed. Toxins. 2023; 15(11):635. https://doi.org/10.3390/toxins15110635
Chicago/Turabian StyleSatterlee, Tim, Callie Megan McDonough, Scott E. Gold, Chongxiao Chen, Anthony E. Glenn, and Anthony Pokoo-Aikins. 2023. "Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed" Toxins 15, no. 11: 635. https://doi.org/10.3390/toxins15110635
APA StyleSatterlee, T., McDonough, C. M., Gold, S. E., Chen, C., Glenn, A. E., & Pokoo-Aikins, A. (2023). Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed. Toxins, 15(11), 635. https://doi.org/10.3390/toxins15110635