Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic HRMS Conditions
2.2. Establishment of the Multiplexing Method
- (I)
- Spectrum multiplexing capability of the QExactive Plus instrument provides the accumulation of more than three precursors in one scan event. Owing to the PRM acquisition mode, all fragments of the isolated precursors are simultaneously detected; therefore, selection of the characteristic fragment ions of the precursors in the same scan event is mandatory for reliable qualitative and quantitative analysis.
- (II)
- The target compounds are small molecular weight mycotoxins and some of them generate product ions with nearly the same m/z values. These compounds cannot participate in the same scan event.
- (III)
- The minimum mass difference between two fragment ions in one scan event is determined to be 50 ppm.
- (IV)
- As the narrowest isolation window of the quadrupole is 0.4 m/z, precursor ions with similar mass-to-charge ratio are filtered together. Consequently, these compounds have to be placed in the same scan event.
- (V)
- Polarity switching is discarded during method development. Although polarity switching is relatively fast (around 500 ms in QExactive Plus instrument [34] compared to other HRMS instruments [35]), in polarity switching mode the positive and negative acquisition modes alternate; thus, the time of the polarity switches added to the total cycle time results in an excessive total cycle time, which prevents collection of the required data points for quantitation.
2.3. Validation of the FIA-MSX-MS/MS Method
2.3.1. Selectivity
2.3.2. LOD, LOQ, and Linearity
2.3.3. Evaluation of Matrix Effects
2.3.4. Recovery Studies
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Standard Solutions and Validation Samples
4.3. Sample Preparations
4.4. Instruments and Analytical Parameters
4.4.1. General Instrumental Parameters
4.4.2. Optimization of Mass Spectrometric Conditions
4.4.3. Development of the Rapid FIA-MSX-MS/MS Method
4.4.4. UHPLC-MS/MS Method
4.5. Validation Parameters
4.5.1. Selectivity
4.5.2. LOD, LOQ, and Linearity
4.5.3. Evaluation of Matrix Effects
4.5.4. Recovery Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nanita, S.C.; Kaldon, L.G. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis. Anal. Bioanal. Chem. 2016, 408, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Panuwet, P.; Hunter, R.E., Jr.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: Advancing biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Alagandula, R.; Zhou, X.; Guo, B. A dilute-and-shoot flow-injection tandem mass spectrometry method for quantification of phenobarbital in urine. Rapid. Commun. Mass. Spectrom. 2017, 31, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Gachumi, G.; Demelenne, A.; Poudel, A.; Dallal Bashi, Z.; El-Aneed, A. Novel fast chromatography-tandem mass spectrometric quantitative approach for the determination of plant-extracted phytosterols and tocopherols. Molecules 2021, 26, 1402. [Google Scholar] [CrossRef]
- Kaufmann, A. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS. J. Mass. Spectrom. 2018, 53, 725–738. [Google Scholar] [CrossRef]
- Wu, I.; Turnipseed, S.B.; Storey, J.M.; Andersen, W.C.; Madson, M.R. Comparison of data acquisition modes with Orbitrap high-resolution mass spectrometry for targeted and non-targeted residue screening in aquaculturedeel. Rapid. Commun. Mass. Spectrom. 2020, 34, e8642. [Google Scholar] [CrossRef]
- Zubarev, R.A.; Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef]
- Egertson, J.D.; Kuehn, A.; Merrihew, G.E.; Bateman, N.W.; MacLean, B.X.; Ting, Y.S.; Canterbury, J.D.; Marsh, D.M.; Kellmann, M.; Zabrouskov, V.; et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Methods 2013, 10, 744–746. [Google Scholar] [CrossRef]
- Sidoli, S.; Fujiwara, R.; Garcia, B.A. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides. Proteomics 2016, 16, 2095–2105. [Google Scholar] [CrossRef]
- Gallien, S.; Duriez, E.; Crone, C.; Kellmann, M.; Moehring, T.; Domon, B. Targeted proteomic quantification on quadrupole-Orbitrap mass spectrometer. Mol. Cell Proteom. 2012, 11, 1709–1723. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chow, W.; Chang, J.; Wong, J.W. Development and validation of a qualitative method for target screening of 448 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap based on data-independent acquisition and compound database. J. Agric. Food Chem. 2017, 65, 473–493. [Google Scholar] [PubMed]
- Wang, J.; Leung, D.; Chow, W.; Chang, J.; Wong, J.W. Target screening of 105 veterinary drug residues in milk using UHPLC/ESI Q-Orbitrap multiplexing data independent acquisition. Anal. Bioanal. Chem. 2018, 410, 5373–5389. [Google Scholar] [CrossRef]
- Jia, W.; Shi, L.; Zhang, F.; Fan, C.; Chang, J.; Chu, X. Multiplexing data independent untargeted workflows for mycotoxins screening on a quadrupole-Orbitrap high resolution mass spectrometry platform. Food Chem. 2019, 278, 67–76. [Google Scholar] [CrossRef]
- Liew, W.P.; Mohd-Redzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell Infect. Microbiol. 2018, 8, 60. [Google Scholar] [CrossRef]
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Curr. Op. Food Sci. 2021, 39, 36–42. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Xu, Z.; Liu, X.; Chen, L.; Dai, J.; Karrow, N.A.; Sun, L. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Aranega, J.P.R.B.; Oliveira, C.A. Occurrence of mycotoxins in pastures: A systematic review. Qual. Assur. Saf. Crop Foods 2022, 14, 135–144. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. L 2006, 364, 5–24.
- Adunphatcharaphon, S.; Elliott, C.T.; Sooksimuang, T.; Charlermroj, R.; Petchkongkaew, A.; Karoonuthaisiri, N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. J. Hazard. Mater. 2022, 432, 128706. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Szablewski, T.; Buśko, M.; Perkowski, J. Changes in contents of trichothecenes during commercial grain milling. LWT—Food Sci. Technol. 2016, 69, 55–58. [Google Scholar] [CrossRef]
- Escrivá, L.; Manyes, L.; Font, G.; Berrada, H. Analysis of trichothecenes in laboratory rat feed by gas chromatography-tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk. Assess. 2016, 33, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.N.; Skendi, A.; Papageorgiou, M.D. HPLC-DAD-FLD method for simultaneous determination of mycotoxins in wheat bran. J. Chromatogr. Sci. 2017, 55, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Solano, B.; González-Peñas, E. Mycotoxin determination in animal feed: An LC-FLD method for simultaneous quantification of aflatoxins, ochratoxins and zearelanone in this matrix. Toxins 2020, 12, 374. [Google Scholar] [CrossRef]
- Sulyok, M.; Krska, R.; Schuhmacher, R. Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem. 2010, 119, 408–416. [Google Scholar] [CrossRef]
- Romera, D.; Mateo, E.M.; Mateo-Castro, R.; Gómez, J.V.; Gimeno-Adelantado, J.V.; Jiménez, M. Determination of multiple mycotoxins in feedstuffs by combined use of UPLC-MS/MS and UPLC-QTOF-MS. Food Chem. 2018, 267, 140–148. [Google Scholar] [CrossRef]
- Jo, H.W.; Park, M.K.; Heo, H.; Jeon, H.J.; Choi, S.D.; Lee, S.E.; Moon, J.K. Simultaneous determination of 13 mycotoxins in feedstuffs using QuEChERS extraction. Appl. Biol. Chem. 2021, 64, 34. [Google Scholar] [CrossRef]
- De Girolamo, A.; Lippolis, V.; Pascale, M. Overview of recent liquid chromatography mass spectrometry-based methods for natural toxins detection in food products. Toxins 2022, 14, 328. [Google Scholar] [CrossRef]
- Tolosa, J.; Graziani, G.; Gaspari, A.; Chianese, D.; Ferrer, E.; Mañes, J.; Ritieni, A. Multi-mycotoxin analysis in durum wheat pasta by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Toxins 2017, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.Y.; Lin, H.Y.; Chen, Y.C.; Su, W.T.; Wang, S.C.; Chiueh, L.C.; Shin, Y.C. Development of a Quantitative multi-mycotoxin method in rice, maize, wheat and peanut using UPLC-MS/MS. Food Anal. Meth. 2013, 6, 727–736. [Google Scholar] [CrossRef]
- Zhou, S.; Hamburger, M. Effects of solvent composition of molecular ion response in electrospray mass spectrometry: Investigation of the ionization processes. Rapid. Commun. Mass. Spectrom. 1995, 9, 1516–1521. [Google Scholar] [CrossRef]
- Breitkopf, S.B.; Ricoult, S.J.H.; Yuan, M.; Xu, Y.; Peake, D.A.; Manning, B.D.; Asara, J.M. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 2017, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elwafa Abdallah, M.; Nguyen, K.H.; Ebele, A.J.; Atia, N.N.; Ali, H.R.H.; Harrad, S. A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using Q-Exactive Orbitrap high resolution accurate mass spectrometry. J. Chrom. A 2019, 1588, 68–76. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Sonego, E.; Mazzilli, G.; Buiarelli, F.; Ferri, F.; Giorgi Rossi, P.; Collini, G.; Brera, C. Biomonitoring Data for Assessing Aflatoxins and Ochratoxin A Exposure by Italian Feedstuffs Workers. Toxins 2019, 11, 351. [Google Scholar] [CrossRef]
- Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Ritieni, A. Ultra-high-performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry for multi-residue analysis of mycotoxins and pesticides in botanical nutraceuticals. Toxins 2020, 12, 114. [Google Scholar] [CrossRef]
- García-López, M.; Canosa, P.; Rodríguez, I. Trends and recent applications of matrix solid-phase dispersion. Anal. Bioanal. Chem. 2008, 391, 963–974. [Google Scholar] [CrossRef]
- Ferrer Amate, C.; Unterluggauer, H.; Fischer, R.J.; Fernández-Alba, A.R.; Masselter, S. Development and validation of a LC–MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices. Anal. Bioanal. Chem. 2010, 397, 93–107. [Google Scholar] [CrossRef]
- Bonfiglio, R.; King, R.C.; Olah, T.V.; Merkle, K. The effects of sample preparation methods on variability of the electrospray ionization response for model drug compounds. Rapid. Commun. Mass. Spectrom. 1999, 13, 1175–1185. [Google Scholar] [CrossRef]
- Fernandes, P.J.; Barros, N.; Santo, J.L.; Câmara, J.S. High-throughput analytical strategy based on modified QuEChERS extraction and dispersive solid-phase extraction clean-up followed by liquid chromatography-triple-quadrupole tandem mass spectrometry for quantification of multiclass mycotoxins in cereals. Food Anal. Met. 2015, 8, 841–856. [Google Scholar] [CrossRef]
- Pantano, L.; La Scala, L.; Olibrio, F.; Galluzzo, F.G.; Bongiorno, C.; Buscemi, M.D.; Macaluso, A.; Vella, A. QuEChERS LC-MS/MS screening method for mycotoxin detection in cereal products and spices. Int. J. Environ. Res. Public Health 2021, 18, 3774. [Google Scholar] [CrossRef] [PubMed]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chrom. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.Y.; Ryu, S.Y.; Tian, F.; Lee, S.Y.; Park, S.B.; Chun, H.S. Simultaneous determination of twenty mycotoxins in the Korean soybean paste doenjang by LC-MS/MS with immunoaffinity cleanup. Toxins 2019, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.T.; Danzer, K.; Townshend, A. Use of the term “recovery” and “apparent recovery” in analytical procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 2002, 74, 2201–2205. [Google Scholar]
- Commission Regulation (EU) 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. L 2006, 70, 12–34.
- Zhang, S.; Lu, J.; Wang, S.; Mao, D.; Miao, S.; Ji, S. Multi-mycotoxins analysis in pheretima using ultra-high-performance liquid chromatography tandem mass spectrometry based on a modified QuEChERS method. J. Chrom. B 2016, 1035, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, P.; Hrynko, I.; Lozowicka, B. Evolution of novel sorbents for effective clean-up of honeybee matrix in highly toxic insecticide LC/MS/MS analysis. Ecotoxicol. Environ. Saf. 2017, 139, 124–131. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | Abbrev. | Precursor Ion | Theoretical Mass (m/z) | Target Ion Mass (m/z) | 1st/2nd Confirming Ion Masses (m/z) | NCE 1 | MSX Group 2 |
---|---|---|---|---|---|---|---|
Aflatoxin B1 | AFB1 | [M+H]+ | 313.0707 | 241.0488 | 269.0436/242.0566 | 60 | 3 |
Aflatoxin B2 | AFB2 | [M+H]+ | 315.0863 | 259.0593 | 287.0909/243.0645 | 60 | 4 |
Aflatoxin G1 | AFG1 | [M+H]+ | 329.0656 | 215.0694 | 200.0461/214.0617 | 60 | 1 |
Aflatoxin G2 | AFG2 | [M+H]+ | 331.0812 | 245.0799 | 217.0851/189.0541 | 60 | 2 |
Deoxynivalenol | DON | [M+H]+ | 297.1333 | 175.0752 | 105.0706/79.0545 | 50 | 4 |
Fumonizin B1 | FB1 | [M+H]+ | 722.3958 | 334.3111 | 95.0861/74.0602 | 40 | 4 |
Fumonizin B2 | FB2 | [M+H]+ | 706.4008 | 336.3269 | 318.3164/159.029 | 40 | 1 |
HT2 toxin | HT2 | [M+NH4]+ | 442.2435 | 169.1010 | 157.1012/197.0956 | 40 | 3 |
Ochratoxin | OTA | [M+H]+ | 404.0895 | 257.0209 | 358.0843/239.0102 | 20 | 2 |
T2 toxin | T2 | [M+NH4]+ | 484.2541 | 169.1008 | 154.0776/215.1061 | 50 | 2 |
Verrucarol (IS) | VOL | [M+H]+ | 267.1591 | 185.1321 | 157.1012/175.1115 | 50 | 1 |
Zearalenone | ZEA | [M+H]+ | 319.1540 | 69.0700 | 205.0854/283.1326 | 40 | 3 |
Mycotoxin | FIA-MSX-MS/MS | UHPLC-MS/MS | MRL 2 (μg/kg) | |||
---|---|---|---|---|---|---|
LOD (μg/kg) | LOQ (μg/kg) | Corr. LOQ (μg/kg) 3 | LOD (μg/kg) | LOQ (μg/kg) | ||
AFB1 | 1.5 | 2.8 | 3.3 | 0.125 1 | 0.2 | 5 |
AFB2 | 1.1 | 2.4 | 3.0 | 0.125 1 | 0.3 | 5 |
AFG1 | 1.4 | 2.8 | 3.7 | 0.125 1 | 0.2 | 5 |
AFG2 | 2.1 | 2.8 | 3.8 | 0.125 1 | 0.3 | 5 |
DON | 533 | 640 | 752.9 | 105 | 128 | 1750 |
FB1 | 14.4 | 20 | 28.2 | 22 | 30 | 1000 |
FB2 | 9.6 | 20 | 26.7 | 21 | 30 | 1000 |
HT2 | 43 | 64 | 68.8 | 42 | 61 | 100 |
OTA | 2.4 | 3.5 | 4.7 | 0.3 | 1 | 5 |
T2 | 4.8 | 10 | 11.0 | 1.25 | 4 | 100 |
ZEA | 41.6 | 64 | 73.6 | 1.75 | 4 | 200 |
Mycotoxin | FIA-MSX-MS/MS | UHPLC-MS/MS | MRL 2 (μg/kg) | |||
---|---|---|---|---|---|---|
LOD (μg/kg) | LOQ (μg/kg) | Corr. LOQ (μg/kg) 3 | LOD (μg/kg) | LOQ (μg/kg) | ||
AFB1 | 1.05 | 1.5 | 1.8 | 0.125 1 | 0.3 | 2 |
AFB2 | 0.4 | 1 | 1.2 | 0.15 | 0.5 | 2 |
AFG1 | 0.9 | 1.5 | 1.8 | 0.125 1 | 0.3 | 2 |
AFG2 | 0.6 | 5 | 1.9 | 0.15 | 0.5 | 2 |
DON | 355 | 480 | 619.2 | 280 | 320 | 1250 |
HT2 | 14.5 | 20 | 25.8 | 20 | 40 | 50 |
OTA | 1.35 | 2 | 2.6 | 3.1 | 5 | 5 |
T2 toxin | 11 | 15 | 17.0 | 8 | 16 | 50 |
ZEA | 45.5 | 60 | 71.4 | 0.5 | 2.5 | 100 |
Mycotoxin | FIA-MSX-MS/MS | UHPLC-MS/MS | ||||||
---|---|---|---|---|---|---|---|---|
Corn | Wheat | Corn | Wheat | |||||
R2 | Range (μg/kg) | R2 | Range (μg/kg) | R2 | Range (μg/kg) | R2 | Range (μg/kg) | |
AFB1 | 0.9989 | 2.8–600 | 0.9977 | 1.5–350 | 0.9990 | 0.2–100 | 0.9988 | 0.3–100 |
AFB2 | 0.9956 | 2.4–600 | 0.9967 | 1–350 | 0.9981 | 0.3–100 | 0.9975 | 0.5–100 |
AFG1 | 0.9977 | 2.8–600 | 0.9983 | 1.5–350 | 0.9985 | 0.2–100 | 0.9981 | 0.3–100 |
AFG2 | 0.9973 | 2.8–600 | 0.9969 | 2–350 | 0.9982 | 0.3–100 | 0.9984 | 0.5–100 |
DON | 0.9937 | 640–9600 | 0.9937 | 480–2400 | 0.9991 | 128–3500 | 0.9982 | 320–9600 |
FB1 | 0.9971 | 20–1200 | - 1 | - 1 | 0.9997 | 30–3500 | - 1 | - 1 |
FB2 | 0.9931 | 20–1500 | - 1 | - 1 | 0.9998 | 30–3500 | - 1 | - 1 |
HT2 | 0.9931 | 64–5200 | 0.9943 | 20–350 | 0.9993 | 61–3500 | 0.9978 | 40–240 |
OTA | 0.9986 | 4.7–600 | 0.9973 | 2–350 | 0.9972 | 1–1000 | 0.9999 | 8–1400 |
T2 | 0.9986 | 10–800 | 0.9958 | 15–600 | 0.9985 | 4–250 | 0.9953 | 16–480 |
ZEA | 0.9971 | 64–4800 | 0.9962 | 60–600 | 0.9981 | 4–500 | 0.9984 | 2.5–240 |
Mycotoxin | FIA-MSX-MS/MS | UHPLC-MS/MS | ||||||
---|---|---|---|---|---|---|---|---|
Corn | Wheat | Corn | Wheat | |||||
Matrix Factor | RSD% | Matrix Factor | RSD% | Matrix Factor | RSD% | Matrix Factor | RSD% | |
AFB1 | 0.25 | 17.1 | 0.14 | 14 | 0.78 | 5.0 | 0.68 | 7.6 |
AFB2 | 0.18 | 18.5 | 0.19 | 14.8 | 0.80 | 5.2 | 0.71 | 6.5 |
AFG1 | 0.14 | 18.5 | 0.16 | 12.2 | 0.81 | 11.5 | 0.69 | 7.1 |
AFG2 | 0.12 | 19.9 | 0.07 | 17.2 | 0.83 | 8.4 | 0.65 | 7.0 |
DON | 0.28 | 17.3 | 0.28 | 18.6 | 0.64 | 13.8 | 0.68 | 14.2 |
FB1 | 0.51 | 14.6 | - 1 | - 1 | 0.78 | 8.6 | - 1 | - 1 |
FB2 | 0.96 | 9.4 | - 1 | - 1 | 0.81 | 13.7 | - 1 | - 1 |
HT2 | 0.35 | 14.7 | 0.79 | 14.4 | 0.72 | 6.8 | 0.79 | 9.2 |
OTA | 1.11 | 8.4 | 0.92 | 14.6 | 0.74 | 6.9 | 0.86 | 8.7 |
T2 | 0.34 | 15.9 | 0.42 | 19.1 | 0.86 | 9.2 | 0.81 | 11.2 |
ZEA | 0.64 | 15.6 | 1.21 | 9.3 | 0.80 | 7.8 | 0.79 | 8.9 |
Mycotoxin | FIA-MSX-MS/MS | UHPLC-MS/MS | ||||||
---|---|---|---|---|---|---|---|---|
Corn | Wheat | Corn | Wheat | |||||
Recovery | RSD% | Recovery | RSD% | Recovery | RSD% | Recovery | RSD% | |
AFB1 | 0.86 | 13.8 | 0.78 | 9.2 | 0.87 | 12.7 | 0.81 | 11.13 |
AFB2 | 0.81 | 7.4 | 0.83 | 8.3 | 0.82 | 11.4 | 0.79 | 8.81 |
AFG1 | 0.76 | 6.8 | 0.79 | 8.6 | 0.86 | 9.9 | 0.88 | 13.81 |
AFG2 | 0.74 | 6.9 | 0.78 | 8.5 | 0.84 | 7.8 | 0.81 | 6.51 |
DON | 0.85 | 4.9 | 0.71 | 11.8 | 0.82 | 6.8 | 0.79 | 9.15 |
FB1 | 0.71 | 12.1 | - 1 | - 1 | 0.79 | 7.9 | - 1 | - 1 |
FB2 | 0.75 | 7.9 | - 1 | - 1 | 0.76 | 8.7 | - 1 | - 1 |
HT2 | 0.93 | 6.1 | 0.71 | 11.3 | 0.88 | 11.8 | 0.81 | 9.15 |
OTA | 0.74 | 7.2 | 0.71 | 8.4 | 0.81 | 6.8 | 0.76 | 7.88 |
T2 | 0.91 | 7.2 | 0.87 | 16.5 | 0.79 | 5.8 | 0.81 | 9.18 |
ZEA | 0.87 | 8.2 | 0.81 | 11.4 | 0.91 | 6.8 | 0.87 | 12.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakk, D.; Kukolya, J.; Škrbić, B.D.; Vágvölgyi, C.; Varga, M.; Szekeres, A. Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis. Toxins 2023, 15, 134. https://doi.org/10.3390/toxins15020134
Rakk D, Kukolya J, Škrbić BD, Vágvölgyi C, Varga M, Szekeres A. Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis. Toxins. 2023; 15(2):134. https://doi.org/10.3390/toxins15020134
Chicago/Turabian StyleRakk, Dávid, József Kukolya, Biljana D. Škrbić, Csaba Vágvölgyi, Mónika Varga, and András Szekeres. 2023. "Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis" Toxins 15, no. 2: 134. https://doi.org/10.3390/toxins15020134
APA StyleRakk, D., Kukolya, J., Škrbić, B. D., Vágvölgyi, C., Varga, M., & Szekeres, A. (2023). Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis. Toxins, 15(2), 134. https://doi.org/10.3390/toxins15020134