Previous Issue
Volume 17, May
 
 

Toxins, Volume 17, Issue 6 (June 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 2251 KiB  
Review
Unveiling the Neurotoxic Effects of Ochratoxin A and Its Impact on Neuroinflammation
by María Ángeles García-Esparza, Eva María Mateo, José Antonio Robles, Michela Capoferri, Misericordia Jiménez and José Miguel Soria
Toxins 2025, 17(6), 264; https://doi.org/10.3390/toxins17060264 - 23 May 2025
Abstract
Ochratoxin A (OTA), a toxic compound generated by Aspergillus and Penicillium fungi, is a common contaminant in different food and animal feed sources, thereby posing possible dangers to human well-being. Although OTA is widely recognized for its kidney-damaging properties, new findings have also [...] Read more.
Ochratoxin A (OTA), a toxic compound generated by Aspergillus and Penicillium fungi, is a common contaminant in different food and animal feed sources, thereby posing possible dangers to human well-being. Although OTA is widely recognized for its kidney-damaging properties, new findings have also indicated its potential to harm the nervous system. Current research trends have increasingly examined the part played by environmental poisons, such as mycotoxins, in the development of diseases. This systematic review gathers and assesses the features of OTA along with the insights acquired from studies on its neurotoxicity. This work presents recent research that demonstrates some mechanisms by which OTA crosses the intestinal and blood–brain barriers, penetrating neural structures. In addition, it discusses the effect of OTA on several types of neural cells and its roles in apoptosis, neuroinflammation, and neurogenesis defects, while also determining the effects of antioxidant systems that neutralize the effects of OTA. This paper identifies crucial gaps in the research and highlights the necessity for further in-depth studies into how OTA affects the processes underlying neurodegeneration. Filling these knowledge gaps could provide valuable insights into the neurotoxic potential of OTA and its relevance to neurological disorders. Full article
17 pages, 2819 KiB  
Article
Isolation and Mechanistic Investigation of the Efficient Zearalenone-Removing Strain Bacillus licheniformis YJ25
by Yuting Wu, Feina Wu, Pan Zhao, Yan Gao, Mengyao Li, Mengjiao Luo, Qian Zhou, Siyuan Zhou, Xinhui Li, Yaling Hong, Yang Wu, Zhaorong Zhou, Yang Liu, Yandong Xia, Lijun Zou and Jia Yin
Toxins 2025, 17(6), 263; https://doi.org/10.3390/toxins17060263 - 23 May 2025
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin produced by Fusarium graminearum species, poses a significant threat to both human food safety and animal feed quality. In this study, we isolated a strain, designated as Bacillus licheniformis YJ25, from a contaminated moldy corn sample, demonstrating [...] Read more.
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin produced by Fusarium graminearum species, poses a significant threat to both human food safety and animal feed quality. In this study, we isolated a strain, designated as Bacillus licheniformis YJ25, from a contaminated moldy corn sample, demonstrating substantial effectiveness in removing ZEN. Our findings revealed that YJ25’s ZEN removal occurs primarily through cell wall adsorption, with enzymatic degradation representing a potential mechanism. In practical applications, enzymatic degradation may yield metabolites with heightened toxicity. However, liquid chromatography–mass spectrometry (LC–MS) analysis revealed that ZEN was not converted into α-/β-zearalenol (α-/β-ZEL) or α-/β-zearalanol (α-/β-ZAL) by YJ25, substantiating the safety profile of YJ25 in the removal of ZEN. Our mechanistic investigations revealed that the cell wall components peptidoglycan and teichoic acid serve as the primary binding sites for ZEN adsorption. Fourier-transform infrared spectroscopy (FTIR) analysis identified O-H, C-H, C=O, and C-O as the principal functional groups participating in the cell wall adsorption process. These investigations establish a scientific foundation for the prospective application of this strain as an efficient biological detoxification agent in food and feed safety management systems. Full article
Show Figures

Graphical abstract

28 pages, 5963 KiB  
Article
Computational Modeling of Low-Abundance Proteins in Venom Gland Transcriptomes: Bothrops asper and Bothrops jararaca
by Joseph Espín-Angulo and Doris Vela
Toxins 2025, 17(6), 262; https://doi.org/10.3390/toxins17060262 - 22 May 2025
Abstract
Snake venoms contain numerous toxic proteins, but low-abundance proteins often remain uncharacterized due to identification challenges. This study employs a bioinformatics approach to identify and structurally model low-abundance proteins from the venom gland transcriptomes of Bothrops asper and Bothrops jararaca. Using tools [...] Read more.
Snake venoms contain numerous toxic proteins, but low-abundance proteins often remain uncharacterized due to identification challenges. This study employs a bioinformatics approach to identify and structurally model low-abundance proteins from the venom gland transcriptomes of Bothrops asper and Bothrops jararaca. Using tools such as tblastn, Jalview, and CHIMERA, we analyzed sequences and structural features of proteins including arylsulfatase, CRISP (Cysteine-Rich Secretory Protein), von Willebrand factor type D (vWFD), and dihydroorotate dehydrogenase (DHODH), and identified potential new isoforms of SVMP-PIIIb (Ba_1) and botrocetin in B. asper. Protein models were generated with AlphaFold2, compared with crystallized structures from the Protein Data Bank (PDB), and validated using Procheck, ERRAT, and Verify3D. Conserved motifs and domains were annotated through Pfam and InterPro, revealing structural elements that suggest possible roles in venom physiology and toxicity. These findings emphasize the potential of computational biology to characterize structurally relevant but experimentally inaccessible venom proteins, and to lay the groundwork for future functional validation. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

22 pages, 685 KiB  
Review
Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety
by Ramona Maria Olariu, Nicodim Iosif Fiţ, Cosmina Maria Bouari and George Cosmin Nadăş
Toxins 2025, 17(6), 261; https://doi.org/10.3390/toxins17060261 - 22 May 2025
Abstract
Mycotoxins are secondary fungal metabolites that frequently contaminate poultry feed, posing significant risks to animal health, productivity, and food safety. In broiler production, mycotoxins such as aflatoxins, trichothecenes, fumonisins, ochratoxin A, deoxynivalenol, and zearalenone have been shown to impair growth performance, damage key [...] Read more.
Mycotoxins are secondary fungal metabolites that frequently contaminate poultry feed, posing significant risks to animal health, productivity, and food safety. In broiler production, mycotoxins such as aflatoxins, trichothecenes, fumonisins, ochratoxin A, deoxynivalenol, and zearalenone have been shown to impair growth performance, damage key organs, and disrupt immune function. This review explores the multifaceted impact of mycotoxin exposure in broilers, with particular emphasis on immunosuppression, decreased vaccine efficacy, and increased vulnerability to infectious diseases, including coccidiosis, salmonellosis, E. coli, and viral infections like infectious bursal disease and infectious laryngotracheitis. Mycotoxin contamination in poultry feed can lead to direct economic losses through reduced feed conversion efficiency, increased mortality, and reproductive disorders, while also resulting in the transfer of toxic residues into meat and eggs, thereby threatening consumer health. The review further examines the synergistic interactions between mycotoxins and pathogens, the physiological and histopathological changes in exposed birds, and the implications for public health. Finally, it discusses current mitigation strategies, including mycotoxin binders, probiotics, and regulatory approaches to reduce exposure. An integrated management strategy combining feed hygiene, monitoring, and targeted nutritional interventions is essential to safeguard poultry health, enhance vaccine responses, and ensure the safety of poultry-derived food products. This review offers actionable insights for veterinarians, nutritionists, and policymakers, reinforcing the importance of mycotoxin mitigation strategies within a One Health framework. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

16 pages, 4520 KiB  
Article
StingReady: A Novel Device for Controlled Insect Sting Challenge—From Field Capture to Clinical Application
by Xesús Feás, Margarita Armisén, Sara López-Freire, Manuela Alonso-Sampedro and Carmen Vidal
Toxins 2025, 17(6), 260; https://doi.org/10.3390/toxins17060260 - 22 May 2025
Viewed by 94
Abstract
Reliable assessment of protection in venom immunotherapy (VIT) patients remains a clinical challenge, especially due to the limitations of conventional sting challenge tests (SCTs), which require complex insect handling and may compromise test accuracy. This study introduces StingReady, a novel, user-friendly device designed [...] Read more.
Reliable assessment of protection in venom immunotherapy (VIT) patients remains a clinical challenge, especially due to the limitations of conventional sting challenge tests (SCTs), which require complex insect handling and may compromise test accuracy. This study introduces StingReady, a novel, user-friendly device designed to streamline the SCT process by enabling safe, efficient, and minimally manipulative exposure to hymenopteran stings. For the first time, StingReady was applied to conduct SCTs with Vespa velutina, an invasive hornet species of increasing clinical relevance. The device was tested in a real-world setting at Belvís Park in Santiago de Compostela, Spain, where hornets were successfully captured and transported to the hospital without anesthesia or limb removal. The design features adjustable mesh sizes, allowing compatibility with various hymenopteran taxa. Using StingReady, nine patients underwent SCTs with no need for direct insect handling during the hospital procedure. The process improved patient safety and comfort while preserving the insect’s natural stinging behavior, thereby enhancing test reliability. This study demonstrates that StingReady significantly improves SCT methodology, offering a practical, reproducible, and ethically sound alternative for evaluating VIT efficacy across diverse hymenopteran species. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

Previous Issue
Back to TopTop