Evaluation of Objective Functions for the Optimal Design of an Assistive Robot
Abstract
:1. Introduction
2. Design Considerations
2.1. Description of the Assistive Robot
2.2. Inverse Kinematics
2.3. Jacobian Matrix
2.4. Assistive Robot Model
2.5. ADLs Workspace
- Maneuvering spoon/fork to take food from bowl to plate,
- Holding/maneuvering spoon/fork to put food in the mouth,
- Holding cup near the mouth, and gradual upward positioning of the cup during drinking,
- Holding medicine,
- Opening/closing the refrigerator or oven door,
- Push–pull, swing open–close, automatic door opener button for doors,
- Picking/placing objects from/on a table,
- Opening and closing drawers,
- Picking/placing objects from the upper shelf,
- Picking up an object from the ground,
- Opening/closing the lid of a jar, box, paper box, or cap of bottles,
- Holding printed books or turning pages,
- Removing a hanger from the closet,
- Holding credit cards, swiping credit cards at the market, or ATM booth,
- Holding a pen, maneuvering on paper or surfaces,
- Holding the phone near the ear, or putting in a speakerphone,
- Brushing teeth,
- Applying makeup.
3. Algorithm for Torque Computation within the Workspace
3.1. Inputs
3.2. Discretization of the Workspace
3.3. Workspace Sweeping
3.4. Local Torque Measures
3.4.1. Quadratic Average Torque (QAT)
3.4.2. Weighted Root Mean Square (WRMS)
3.4.3. The Absolute Sum of Torques (AST)
3.5. Global Torque Index Computation
3.6. Penalization
4. Optimization of a 6DOF Assistive Robot
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Coefficients Equation (2)
Appendix A.2. Coefficients Equation (4)
References
- Reeve Foundation. Stats about Paralysis. Available online: https://www.christopherreeve.org/living-with-paralysis/stats-about-paralysis (accessed on 11 December 2022).
- Salminen, A.L.; Brandt, Å.; Samuelsson, K.; Töytäri, O.; Malmivaara, A. Mobility devices to promote activity and participation: A systematic review. J. Rehabil. Med. 2009, 41, 697–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zondervan, D.K.; Smith, B.; Reinkensmeyer, D.J. Lever-actuated resonance assistance (LARA): A wheelchair-based method for upper extremity therapy and overground ambulation for people with severe arm impairment. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, X.; Tong, K.; Song, R.; Zheng, X.; Lui, K.; Leung, W.; Ng, S.; Au-Yeung, S. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J. Electromyogr. Kinesiol. 2009, 19, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H. NSF: I-Corps: Award#1848912, Customer Discovery: Wheelchair Mounted Robotic Assistive Arm (R2A). 2018. Available online: https://nsf.gov/awardsearch/showAward?AWD_ID=1848912&HistoricalAwards=false (accessed on 11 December 2022).
- Mackay, J.; Mensah, G.A. The Atlas of Heart Disease and Stroke; World Health Organization: Geneva, Switzerland, 2004. Available online: https://apps.who.int/iris/handle/10665/43007 (accessed on 11 December 2022).
- Robot Care Systems. Care Robot Lea. 2018. Available online: https://robots.nu/en/robot/lea-robot (accessed on 11 December 2022).
- Udupa, S.; Kamat, V.R.; Menassa, C.C. Shared autonomy in assistive mobile robots: A review. Disabil. Rehabil. Assist. Technol. 2021, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Mukai, T.; Hirano, S.; Nakashima, H.; Kato, Y.; Sakaida, Y.; Guo, S.; Hosoe, S. Development of a nursing-care assistant robot RIBA that can lift a human in its arms. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5996–6001. [Google Scholar] [CrossRef]
- OBI. Meet OBI. 2021. Available online: https://meetobi.com/ (accessed on 11 December 2022).
- Kinova Inc. Kinova Jaco Assistive Robotic Arm. 2021. Available online: https://www.kinovarobotics.com/en/assistive-technologies/column-a1/kinova-assistive-robotic-arm (accessed on 11 December 2022).
- Vogel, J.; Haddadin, S.; Jarosiewicz, B.; Simeral, J.D.; Bacher, D.; Hochberg, L.R.; Donoghue, J.P.; van der Smagt, P. An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. Int. J. Robot. Res. 2015, 34, 763–780. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Javed, A. Synthesis and performance evaluation of manipulator-link using improved weighted density matrix approach with topology optimization method. Eng. Sci. Technol. Int. J. 2021, 24, 1239–1252. [Google Scholar] [CrossRef]
- Yin, H.; Huang, S.; He, M.; Li, J. An overall structure optimization for a light-weight robotic arm. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 1765–1770. [Google Scholar] [CrossRef]
- Yao, P.; Zhou, K.; Lin, Y.; Tang, Y. Light-weight topological optimization for upper arm of an industrial welding robot. Metals 2019, 9, 1020. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Ye, W.; Li, Q. Review of the performance optimization of parallel manipulators. Mech. Mach. Theory 2022, 170, 104725. [Google Scholar] [CrossRef]
- Katrantzis, E.F.; Aspragathos, N.A.; Valsamos, C.D.; Moulianitis, V.C. Anatomy optimization and experimental verification of a metamorphic manipulator. In Proceedings of the 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Delft, The Netherlands, 20–22 June 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Eden, J.; Lau, D.; Tan, Y.; Oetomo, D. Unilateral manipulability quality indices: Generalized manipulability measures for unilaterally actuated robots. J. Mech. Des. 2019, 141, 092305. [Google Scholar] [CrossRef]
- Nektarios, A.; Aspragathos, N.A. Optimal location of a general position and orientation end-effector’s path relative to manipulator’s base, considering velocity performance. Robot. Comput. Integr. Manuf. 2010, 26, 162–173. [Google Scholar] [CrossRef]
- Jin, L.; Li, S.; La, H.M.; Luo, X. Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 2017, 64, 4710–4720. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, Z.; Du, Z. Global performance index system for kinematic optimization of robotic mechanism. J. Mech. Des. 2014, 136, 031001. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, C. Hybrid algorithm for multi-objective optimization design of parallel manipulators. Appl. Math. Model. 2021, 98, 245–265. [Google Scholar] [CrossRef]
- Dastjerdi, A.H.; Sheikhi, M.M.; Masouleh, M.T. A complete analytical solution for the dimensional synthesis of 3-DOF delta parallel robot for a prescribed workspace. Mech. Mach. Theory 2020, 153, 103991. [Google Scholar] [CrossRef]
- Shiakolas, P.; Koladiya, D.; Kebrle, J. Optimum robot design based on task specifications using evolutionary techniques and kinematic, dynamic, and structural constraints. Inverse Probl. Eng. 2002, 10, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Carbone, G.; Ottaviano, E.; Ceccarelli, M. An optimum design procedure for both serial and parallel manipulators. Proc. Inst. Mech. Eng. Part J. Mech. Eng. Sci. 2007, 221, 829–843. [Google Scholar] [CrossRef]
- Kim, S.G.; Ryu, J. New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators. IEEE Trans. Robot. Autom. 2003, 19, 731–736. [Google Scholar] [CrossRef]
- Merlet, J.P. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots. J. Mech. Des. 2005, 128, 199–206. [Google Scholar] [CrossRef]
- Vidussi, F.; Boscariol, P.; Scalera, L.; Gasparetto, A. Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators. J. Mech. Robot. 2021, 13, 021018. [Google Scholar] [CrossRef]
- Rout, B.; Mittal, R. Simultaneous selection of optimal parameters and tolerance of manipulator using evolutionary optimization technique. Struct. Multidiscip. Optim. 2010, 40, 513–528. [Google Scholar] [CrossRef]
- Sihag, N.; Sangwan, K.S. A systematic literature review on machine tool energy consumption. J. Clean. Prod. 2020, 275, 123125. [Google Scholar] [CrossRef]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. In Motion and Operation Planning of Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–27. [Google Scholar] [CrossRef]
- Arakelian, V. Inertia forces and moments balancing in robot manipulators: A review. Adv. Robot. 2017, 31, 717–726. [Google Scholar] [CrossRef]
- Allison, J.T. Plant-limited co-design of an energy-efficient counterbalanced robotic manipulator. J. Mech. Des. 2013, 135, 101003. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Qian, Z.; Lin, Y.; Zhang, W. Design and rapid construction of a cost-effective virtual haptic device. IEEE/ASME Trans. Mechatronics 2020, 26, 66–77. [Google Scholar] [CrossRef]
- Al-Dois, H.; Jha, A.; Mishra, R. Task-based design optimization of serial robot manipulators. Eng. Optim. 2013, 45, 647–658. [Google Scholar] [CrossRef]
- Rao, C.V.; Rawlings, J.B. Linear programming and model predictive control. J. Process Control 2000, 10, 283–289. [Google Scholar] [CrossRef]
- Gupta, V.; Saha, S.K.; Chaudhary, H. Optimum Design of Serial Robots. J. Mech. Des. 2019, 141. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Boscariol, P.; Caracciolo, R.; Richiedei, D.; Trevisani, A. Energy optimization of functionally redundant robots through motion design. Appl. Sci. 2020, 10, 3022. [Google Scholar] [CrossRef]
- Rahman, M.H.; Kittel-Ouimet, T.; Saad, M.; Kenné, J.P.; Archambault, P.S. Dynamic modeling and evaluation of a robotic exoskeleton for upper-limb rehabilitation. Int. J. Inf. Acquis. 2011, 8, 83–102. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, Z.; Guan, Y.; Shao, Z.; Zhang, Q.; Wang, G. Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418818297. [Google Scholar] [CrossRef] [Green Version]
- Lauretti, C.; Grasso, T.; de Marchi, E.; Grazioso, S.; di Gironimo, G. A Geometric Approach to Inverse Kinematics of Hyper-Redundant Manipulators for tokamaks maintenance. Mech. Mach. Theory 2022, 176, 104967. [Google Scholar] [CrossRef]
- Sinha, A.; Chakraborty, N. Geometric search-based inverse kinematics of 7-dof redundant manipulator with multiple joint offsets. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5592–5598. [Google Scholar] [CrossRef]
- Fang, G.; Matte, C.D.; Scharff, R.B.; Kwok, T.H.; Wang, C.C. Kinematics of soft robots by geometric computing. IEEE Trans. Robot. 2020, 36, 1272–1286. [Google Scholar] [CrossRef]
- Guzmán-Giménez, J.; Valera Fernández, Á.; Mata Amela, V.; Díaz-Rodríguez, M.Á. Synthesis of the Inverse Kinematic Model of non-redundant open-chain robotic systems using Groebner Basis theory. Appl. Sci. 2020, 10, 2781. [Google Scholar] [CrossRef]
- Huete, A.J.; Victores, J.G.; Martinez, S.; Giménez, A.; Balaguer, C. Personal autonomy rehabilitation in home environments by a portable assistive robot. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2011, 42, 561–570. [Google Scholar] [CrossRef]
- Bedaf, S.; Gelderblom, G.J.; de Witte, L.; Syrdal, D.; Lehmann, H.; Amirabdollahian, F.; Dautenhahn, K.; Hewson, D. Selecting services for a service robot: Evaluating the problematic activities threatening the independence of elderly persons. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Ufactory. xArm Product Page. 2021. Available online: https://www.ufactory.cc/pages/xarm-product-page (accessed on 11 December 2022).
- Maaroof, O.W.; Dede, M.İ.C.; Aydin, L. A Robot Arm Design Optimization Method by Using a Kinematic Redundancy Resolution Technique. Robotics 2021, 11, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, B.; Wang, C.; Cheng, X. Analysis of Singular Configuration of Robotic Manipulators. Electronics 2021, 10, 2189. [Google Scholar] [CrossRef]
- Joseph, S.B.; Dada, E.G.; Abidemi, A.; Oyewola, D.O.; Khammas, B.M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon 2022, 8, e09399. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zeng, D.; Yao, J.; Kang, K.; Lu, L.; Zhao, Y. Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms. Mechatronics 2009, 19, 199–204. [Google Scholar] [CrossRef]
- Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V.S. Choosing mutation and crossover ratios for genetic algorithms—A review with a new dynamic approach. Information 2019, 10, 390. [Google Scholar] [CrossRef]
Joint 1 | 0 | 0 | ||
Joint 2 | 0 | 0 | ||
Joint 3 | 0 | 0 | ||
Joint 4 | 0 | |||
Joint 5 | 0 | 0 | ||
Joint 6 | 0 |
ADLs Tasks | |
---|---|
Workspace | Holding/maneuvering spoon/fork to put food in the mouth; Holding cup near the mouth and gradual upward positioning of the cup during drinking; Holding the phone near the ear, or putting in speakerphone; Brushing teeth; Applying makeup |
Workspace | Push–pull, swing open–close, automatic door opener button doors; Holding Pen, maneuvering on paper or surfaces; Maneuvering spoon/fork to take food from bowl to plate; Picking/placing objects from the upper shelf |
Workspace | Picking up an object from the ground |
0 | 0 | 470 | 330 | 800 | ||
550 | 650 | 0 | 430 | 90 | 0 | |
140 | 500 | 0 | 500 |
Required Constants | Values |
---|---|
200 | |
10 | |
200 | |
150 | |
limits | |
limits | |
limits | |
limits | |
limits | |
limits | |
40 |
Torque Measure | Optimum Lengths | Torque Measure Values | |||
---|---|---|---|---|---|
(mm) | QAT | WRMS | AST | ||
QAT | 211.437 | 5.16 | |||
458.9443 | |||||
154.4477 | |||||
114.0762 | |||||
133.9785 | |||||
152.0528 | |||||
WRMS | 217.5953 | 4.9865 | |||
412.4145 | |||||
233.1378 | |||||
117.2043 | |||||
130 | |||||
150 | |||||
AST | 239.8827 | 5.0207 | |||
412.4145 | |||||
192.4242 | |||||
135.5816 | |||||
130 | |||||
150 |
Index | Joints | (Nm) | (NM) | Maximum | Workspace Coverage |
---|---|---|---|---|---|
QAT | joint 1 | 0 | 0 | 0 | 93.10% |
joint 2 | 6.7918771 | 4.809291138 | 16.4754774 | ||
joint 3 | 4.531285416 | 3.059260467 | 14.7946312 | ||
joint 4 | 3.889101148 | 2.808458665 | 8.01195021 | ||
joint 5 | 3.865609749 | 2.7771379 | 8.01195127 | ||
joint 6 | 0 | 0 | 0 | ||
WRMS | joint 1 | 0 | 0 | 0 | 96.02% |
joint 2 | 7.118705693 | 4.805923665 | 16.5240628 | ||
joint 3 | 5.910992298 | 3.326024889 | 16.5792462 | ||
joint 4 | 3.665542598 | 2.807587818 | 7.85134041 | ||
joint 5 | 3.883523338 | 2.802911663 | 7.85138995 | ||
joint 6 | 0 | 0 | 0 | ||
AST | joint 1 | 0 | 0 | 0 | 96.20% |
joint 2 | 7.150709607 | 4.817382775 | 16.5092107 | ||
joint 3 | 6.357707317 | 3.441201661 | 17.3769848 | ||
joint 4 | 3.474306559 | 2.739109293 | 7.85134994 | ||
joint 5 | 4.115075621 | 2.8968119 | 7.85138995 | ||
joint 6 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjuan De Caro, J.D.; Sunny, M.S.H.; Muñoz, E.; Hernandez, J.; Torres, A.; Brahmi, B.; Wang, I.; Ghommam, J.; Rahman, M.H. Evaluation of Objective Functions for the Optimal Design of an Assistive Robot. Micromachines 2022, 13, 2206. https://doi.org/10.3390/mi13122206
Sanjuan De Caro JD, Sunny MSH, Muñoz E, Hernandez J, Torres A, Brahmi B, Wang I, Ghommam J, Rahman MH. Evaluation of Objective Functions for the Optimal Design of an Assistive Robot. Micromachines. 2022; 13(12):2206. https://doi.org/10.3390/mi13122206
Chicago/Turabian StyleSanjuan De Caro, Javier Dario, Md Samiul Haque Sunny, Elias Muñoz, Jaime Hernandez, Armando Torres, Brahim Brahmi, Inga Wang, Jawhar Ghommam, and Mohammad H. Rahman. 2022. "Evaluation of Objective Functions for the Optimal Design of an Assistive Robot" Micromachines 13, no. 12: 2206. https://doi.org/10.3390/mi13122206
APA StyleSanjuan De Caro, J. D., Sunny, M. S. H., Muñoz, E., Hernandez, J., Torres, A., Brahmi, B., Wang, I., Ghommam, J., & Rahman, M. H. (2022). Evaluation of Objective Functions for the Optimal Design of an Assistive Robot. Micromachines, 13(12), 2206. https://doi.org/10.3390/mi13122206