One-Pot Facile Synthesis of a Cluster of ZnS Low-Dimensional Nanoparticles for High-Performance Supercapacitor Electrodes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Multiple Low-Dimensional ZnS Nanoparticles
2.3. Characterization Techniques
2.4. Electrode Fabrication and Electrochemical Measurements
3. Results and Discussion
3.1. Structural and Surface Composition Analysis
3.2. FE-SEM and TEM Analysis
3.3. Specific Area and Pore Size Distribution
3.4. Electrochemical Performance and Charge Transfer Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palanisamy, P.; Thangavel, K.; Murugesan, S.; Marappan, S.; Chavali, M.; Siril, P.F.; Perumal, D.V. Investigating the Synergistic Effect of Hybridized WO3-ZnS Nanocomposite Prepared by Microwave-Assisted Wet Chemical Method for Supercapacitor Application. J. Electroanal. Chem. 2019, 833, 93–104. [Google Scholar] [CrossRef]
- Maron, G.K.; Alano, J.H.; da Silveira Noremberg, B.; da Silva Rodrigues, L.; Stolojan, V.; Silva, S.R.P.; Villarreal Carreño, N.L. Electrochemical Supercapacitors Based on 3D Nanocomposites of Reduced Graphene Oxide/Carbon Nanotube and ZnS. J. Alloys Compd. 2020, 836, 155408. [Google Scholar] [CrossRef]
- Li, H.; Gong, Y.; Zhou, H.; Li, J.; Yang, K.; Mao, B.; Zhang, J.; Shi, Y.; Deng, J.; Mao, M.; et al. Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging. Nat. Commun. 2023, 14, 6407. [Google Scholar] [CrossRef]
- Zheng, Q.; Cai, Z.; Ma, Z.; Gong, S. Cellulose Nanofibril/Reduced Graphene Oxide/Carbon Nanotube Hybrid Aerogels for Highly Flexible and All-Solid-State Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263–3271. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, W.B.; Zhang, X.L.; Theint, M.M.; Yang, J.L.; Yang, Z.Q.; Li, J.J.; Liang, S.; Ma, X.J. Low-Dimensional High Entropy Oxide (FeCoCrMnNi)3O4 for Supercapacitor Applications. Dalton Trans. 2023, 52, 9005–9016. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Redondo, E.; Fevre, L.W.L.; Fields, R.; Todd, R.; Forsyth, A.J.; Dryfe, R.A.W. Enhancing Supercapacitor Energy Density by Mass-Balancing of Graphene Composite Electrodes. Electrochim. Acta 2020, 360, 136957. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Liu, X.; Chen, C.; Xu, Z.; Liu, P. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 2020, 157, 244–254. [Google Scholar] [CrossRef]
- Tian, G.; Zhao, Z.; Sarapulova, A.; Das, C.; Zhu, L.; Liu, S.; Missiul, A.; Welter, E.; Maibach, J.; Dsoke, S. Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. J. Mater. Chem. A 2019, 7, 15640–15653. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Z.; Zhou, H.; Li, S.; Wang, C.; Li, H.; Yan, Z.; Wang, F.; Kuang, Y. Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material. J. Alloy Compd. 2020, 816, 152633. [Google Scholar] [CrossRef]
- Hussain, I.; Mohapatra, D.; Dhakal, G.; Lamiel, C.; Sayed, M.S.; Sahoo, S.; Mohamed, S.G.; Kim, J.S.; Lee, Y.R.; Shim, J.J. Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 2021, 36, 102408. [Google Scholar] [CrossRef]
- Yi, T.F.; Li, Y.; Li, Y.M.; Luo, S.; Liu, Y.G. ZnS Nanoparticles as the Electrode Materials for High-Performance Supercapacitors. Solid State Ion. 2019, 343, 115074. [Google Scholar] [CrossRef]
- Javed, M.S.; Chen, J.; Chen, L.; Xi, Y.; Zhang, C.; Wan, B.; Hu, C. Flexible Full-Solid State Supercapacitors Based on Zinc Sulfide Spheres Growing on Carbon Textile with Superior Charge Storage. J. Mater. Chem. A 2015, 4, 667–674. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Shah, M.Z.U.; Arif, M.; Ullah, E.; ur Rahman, S.; Shah, M.S.U.; Eldin, S.M.; Song, P.; Sajjad, M.; Shah, A. High Power Aqueous Hybrid Asymmetric Supercapacitor Based on Zero-Dimensional ZnS Nanoparticles with Two-Dimensional Nanoflakes CuSe2 Nanostructures. Ceram. Int. 2023, 49, 20007–20016. [Google Scholar] [CrossRef]
- Fang, X.; Zhai, T.; Gautam, U.K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS Nanostructures: From Synthesis to Applications. Prog. Mater. Sci. 2011, 56, 175–287. [Google Scholar] [CrossRef]
- Hussain, I.; Mohapatra, D.; Dhakal, G.; Lamiel, C.; Mohamed, S.G.; Sayed, M.S.; Shim, J.J. Different Controlled Nanostructures of Mn-Doped ZnS for High-Performance Supercapacitor Applications. J. Energy Storage 2020, 32, 101767. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Feng, L.; Zhao, L.; Ye, L.; Zhang, W.; Duan, L. Cactus-like ZnS/Ni3S2 Hybrid with High Electrochemical Performance for Supercapacitors. J. Alloys Compd. 2018, 753, 508–516. [Google Scholar] [CrossRef]
- Hong, J.; Lee, Y.W.; Ahn, D.; Pak, S.; Lee, J.; Jang, A.R.; Lee, S.; Hou, B.; Cho, Y.; Morris, S.M.; et al. Highly Stable 3D Porous Heterostructures with Hierarchically-Coordinated Octahedral Transition Metals for Enhanced Performance Supercapacitors. Nano Energy 2017, 39, 337–345. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, B.S.; Hong, J.; Lee, J.; Pak, S.; Jang, H.S.; Whang, D.; Cha, S.; Sohn, J.I.; Kim, J.M. A Pseudo-Capacitive Chalcogenide-Based Electrode with Dense 1-Dimensional Nanoarrays for Enhanced Energy Density in Asymmetric Supercapacitors. J. Mater. Chem. A Mater. 2016, 4, 10084–10090. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Zhou, C.; Liu, J.; Zeng, H. Integrating Large Specific Surface Area and High Conductivity in Hydrogenated NiCo2O4 Double-Shell Hollow Spheres to Improve Supercapacitors. NPG Asia Mater. 2015, 7, e165. [Google Scholar] [CrossRef]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef]
- Cao, C.; Chu, Y.; Zhou, Y.; Zhang, C.; Qu, S. Recent Advances in Stretchable Supercapacitors Enabled by Low-Dimensional Nanomaterials. Small 2018, 14, 1803976. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Favier, F.; Pinna, N. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Adv. Energy Mater. 2017, 7, 1601301. [Google Scholar] [CrossRef]
- Guo, H.; Yeh, M.H.; Lai, Y.C.; Zi, Y.; Wu, C.; Wen, Z.; Hu, C.; Wang, Z.L. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. ACS Nano 2016, 10, 10580–10588. [Google Scholar] [CrossRef]
- Hu, J.; Odom, T.W.; Lieber, C.M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 1999, 32, 435–445. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.G. A Facile Two-Step Hydrothermal Route for the Synthesis of Low-Dimensional Structured Bi2Te3 Nanocrystals with Various Morphologies. J. Alloys Compd. 2010, 497, 57–61. [Google Scholar] [CrossRef]
- Suyana, P.; Kumar, S.N.; Kumar, B.S.D.; Nair, B.N.; Pillai, S.C.; Mohamed, A.P.; Warrier, K.G.K.; Hareesh, U.S. Antifungal Properties of Nanosized ZnS Particles Synthesised by Sonochemical Precipitation. RSC Adv. 2014, 4, 8439–8445. [Google Scholar] [CrossRef]
- Mishra, R.K.; Choi, G.J.; Choi, H.J.; Gwag, J.S. ZnS Quantum Dot Based Acetone Sensor for Monitoring Health-Hazardous Gases in Indoor/Outdoor Environment. Micromachines 2021, 12, 598. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, J.; Ngo, C.; Prikhodko, S.; Kodambaka, S.; Li, J.; Richards, R. Gram-Scale Wet Chemical Synthesis of Wurtzite-8H Nanoporous ZnS Spheres with High Photocatalytic Activity. Appl. Catal. B 2011, 106, 212–219. [Google Scholar] [CrossRef]
- Singh, A.; Geaney, H.; Laffir, F.; Ryan, K.M. Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. J. Am. Chem. Soc. 2012, 134, 2910–2913. [Google Scholar] [CrossRef]
- Dai, L.; Strelow, C.; Kipp, T.; Mews, A.; Benkenstein, I.; Eifler, D.; Vuong, T.H.; Rabeah, J.; McGettrick, J.; Lesyuk, R.; et al. Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties. Chem. Mater. 2021, 33, 275–284. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, X.; Wu, J.; Han, J.; Lan, Z.; Fan, J. In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity. Molecules 2022, 27, 8544. [Google Scholar] [CrossRef] [PubMed]
- Lonkar, S.P.; Pillai, V.V.; Alhassan, S.M. Facile and Scalable Production of Heterostructured ZnS-ZnO/Graphene Nano-Photocatalysts for Environmental Remediation. Sci. Rep. 2018, 8, 13401. [Google Scholar] [CrossRef]
- Rose, A.; Shunmugapriya, B.; Maiyalagan, T.; Vijayakumar, T. Investigation on the Electrochemical Properties of Hydrothermally Synthesized Pure and Nickel Doped Zinc Sulfide Microspheres for Supercapacitor Electrode Applications. J. Mater. Sci. Mater. Electron. 2020, 31, 19204–19212. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Liu, W.; Wang, G.; An, J.; Lian, J. Ni-Zn Binary System Hydroxide, Oxide and Sulfide Materials: Synthesis and High Supercapacitor Performance. J. Mater. Chem. A Mater. 2015, 3, 23333–23344. [Google Scholar] [CrossRef]
- Javed, M.S.; Najam, T.; Sajjad, M.; Saha, S.S.A.; Hussain, I.; Idrees, M.; Imran, M.; Assiri, M.A.; Siyal, S.H. Design and Fabrication of Highly Porous 2D Bimetallic Sulfide ZnS/FeS Composite Nanosheets as an Advanced Negative Electrode Material for Supercapacitors. Energy Fuels 2021, 35, 15185–15191. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Yuvakkumar, R.; Ravi, G.; Velauthapillai, D.; Pannipara, M.; Al-Sehemi, A.G. Superior Supercapacitive Performance of Cu2MnSnS4asymmetric Devices. Nanoscale Adv. 2021, 3, 486–498. [Google Scholar] [CrossRef]
- Lindstro, H.; So, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.-E. Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films. J. Phys. Chem. B 1997, 101, 7717–7722. [Google Scholar] [CrossRef]
- Liu, C.; Pell, W.G.; Conway, B.E.; Roberson, S.L. Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors Comparison with Ruthenium Oxide. J. Electrochem. Soc. 1998, 145, 1882–1888. [Google Scholar] [CrossRef]
- Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S.H. Templated Nanocrystal-Based Porous TiO2 Films for next-Generation Electrochemical Capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Saranya, M.; Kollu, P.; Raghupathy, B.P.C.; Jeong, S.K.; Grace, A.N. Solvothermal Synthesis of Zinc Sulfide Decorated Graphene (ZnS/G) Nanocomposites for Novel Supercapacitor Electrodes. Electrochim. Acta 2015, 178, 647–657. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, B.; Jiang, H.; Qu, F.; Umar, A.; Wu, X. Hybrid ZnO/ZnS Nanoforests as the Electrode Materials for High Performance Supercapacitor Application. Dalton Trans. 2015, 44, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Syedvali, P.; Rajeshkhanna, G.; Umeshbabu, E.; Kiran, G.U.; Rao, G.R.; Justin, P. In situ fabrication of graphene decorated microstructured globe artichokes of partial molar nickel cobaltite anchored on Ni foam as high performance supercapacitor electrode. RSC Adv. 2015, 5, 38407–38416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mane, S.M.; Wagh, K.S.; Teli, A.M.; Beknalkar, S.A.; Shin, J.C.; Lee, J. One-Pot Facile Synthesis of a Cluster of ZnS Low-Dimensional Nanoparticles for High-Performance Supercapacitor Electrodes. Micromachines 2024, 15, 251. https://doi.org/10.3390/mi15020251
Mane SM, Wagh KS, Teli AM, Beknalkar SA, Shin JC, Lee J. One-Pot Facile Synthesis of a Cluster of ZnS Low-Dimensional Nanoparticles for High-Performance Supercapacitor Electrodes. Micromachines. 2024; 15(2):251. https://doi.org/10.3390/mi15020251
Chicago/Turabian StyleMane, Sagar M., Komal S. Wagh, Aviraj M. Teli, Sonali A. Beknalkar, Jae Cheol Shin, and Jaewoong Lee. 2024. "One-Pot Facile Synthesis of a Cluster of ZnS Low-Dimensional Nanoparticles for High-Performance Supercapacitor Electrodes" Micromachines 15, no. 2: 251. https://doi.org/10.3390/mi15020251
APA StyleMane, S. M., Wagh, K. S., Teli, A. M., Beknalkar, S. A., Shin, J. C., & Lee, J. (2024). One-Pot Facile Synthesis of a Cluster of ZnS Low-Dimensional Nanoparticles for High-Performance Supercapacitor Electrodes. Micromachines, 15(2), 251. https://doi.org/10.3390/mi15020251