MEMS Switch Realities: Addressing Challenges and Pioneering Solutions
Abstract
:1. Introduction
2. Characteristics of MEMS Switches
2.1. Actuation Voltage
2.2. Transmission Performance
2.2.1. Insertion Loss
2.2.2. Return Loss
2.2.3. Isolation
2.3. Capacitance Ratio
2.4. Contact Resistance
2.5. Switching Time
2.6. Reliability
2.7. Power Handling/Self Actuation Voltage
3. Types of MEMS Switches
3.1. Geometric Constraints
3.2. Actuation Mechanisms
3.3. Resistive Series Switches
3.4. Capacitive Shunt Switches
4. Key Issues Related to MEMS Switches and Improvement Techniques
4.1. High Actuation Voltage
4.2. Dielectric Charging and Stiction Problem
4.3. Reducing Switching Time and Challenges
4.4. Fabrication Issues in MEMS Switches
4.4.1. Material Selection
4.4.2. Stiction and Wear
4.4.3. Process Variability
4.4.4. Packaging Challenges
4.4.5. Energy Consumption
4.4.6. Miniaturization Challenges
4.4.7. Process Integration
4.4.8. Reliability and Longevity
5. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Percy, J.J.; Kanthamani, S. Revolutionizing wireless communication: A review perspective on design and optimization of RF MEMS switches. Microelectron. J. 2023, 139, 105891. [Google Scholar] [CrossRef]
- Yazdani, F.; Mansour, R.R. High resolution MEMS-based switched delay lines. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1300–1302. [Google Scholar]
- Mirzajani, H.; Ilkhechi, A.K.; Zolfaghari, P.; Azadbakht, M.; Aghdam, E.N.; Ghavifekr, H.B. Power efficient, low loss and ultra-high isolation RF MEMS switch dedicated for antenna switch applications. Microelectron. J. 2017, 69, 64–72. [Google Scholar] [CrossRef]
- Pertin, O.; Kurmendra. Pull-in-voltage and RF analysis of MEMS based high performance capacitive shunt switch. Microelectron. J. 2018, 77, 5–15. [Google Scholar] [CrossRef]
- Tkachenko, A.; Lysenko, I.; Kovalev, A. Investigation and Research of High-Performance RF MEMS Switches for Use in the 5G RF Front-End Modules. Micromachines 2023, 14, 477. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Z.; Mansoor, M.; Habib, M.; Mehmood, Z. MEMS sensors for flow separation detection. Microsyst. Technol. 2023, 29, 1253–1280. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, R.; Zhao, H.; Li, J.; Zhang, R.; Wang, Y.; Zhou, Y. Oxygen vacancy-rich ZnO nanorods-based MEMS sensors for swift trace ethanol recognition. J. Am. Ceram. Soc. 2023, 106, 1050–1061. [Google Scholar] [CrossRef]
- Ghazali, F.A.M.; Hasan, M.N.; Rehman, T.; Nafea, M.; Ali, M.S.M.; Takahata, K. MEMS actuators for biomedical applications: A review. J. Micromechanics Microengineering 2020, 30, 073001. [Google Scholar] [CrossRef]
- Dahlan, N.A.; Thiha, A.; Ibrahim, F.; Milić, L.; Muniandy, S.; Jamaluddin, N.F.; Petrović, B.; Kojić, S.; Stojanović, G.M. Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. Nanomaterials 2022, 12, 4025. [Google Scholar] [CrossRef] [PubMed]
- Dusarlapudi, K.; Prathyusha, C.; Sani, S.R.; Sai, P.P.V. Modeling and Analysis of Novel 3-Axis MEMS Accelerometer for Biomedical Applications. In Proceedings of the 2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), Villupuram, India, 21–22 April 2023; pp. 1–6. [Google Scholar]
- Kim, S.; Lim, K.; Kim, J.; Kwon, Y.-W. Onsite Earthquake Alert and Safety Services Using Low-Cost MEMS Sensors. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4007–4010. [Google Scholar]
- Pachkawade, V.; Tse, Z. MEMS sensor for detection and measurement of ultra-fine particles. Eng. Res. Express 2022, 4, 022002. [Google Scholar] [CrossRef]
- Fanse, T.S. Micro-Electro-Mechanical System (MEMS) Application and Prospects in Automobile. IOSR J. Mech. Civ. Eng. 2022, 19, 17–21. [Google Scholar]
- Morcelli, A.; Ferri, S.; Hofmeister, A. MEMS: From a Bright Past Towards a Shining Future. In Silicon Sensors and Actuators: The Feynman Roadmap; Springer International Publishing: Cham, Switzerland, 2022; pp. 945–978. [Google Scholar]
- Kang, Q.; Lin, Y.; Tao, J. Reliability Analysis of A MEMS Flow Sensor with Accelerated Degradation Test. In Proceedings of the 2023 7th International Conference on System Reliability and Safety (ICSRS), Bologna, Italy, 22–24 November 2023. [Google Scholar]
- Stachiv, I.; Alarcon, E.; Lamac, M. Shape memory alloys and polymers for MEMS/NEMS applications: Review on recent findings and challenges in design, preparation, and characterization. Metals 2021, 11, 415. [Google Scholar] [CrossRef]
- Khan, F.; Younis, M.I. RF MEMS electrostatically actuated tunable capacitors and their applications: A review. J. Micromechanics Microengineering 2021, 32, 013002. [Google Scholar] [CrossRef]
- Koochaksaraie, R.A.; Barazandeh, F.; Barati, H. A novel design of capacitive MEMS multi-range accelerometer; FEM and numerical approach. Phys. Scr. 2023, 98, 115026. [Google Scholar] [CrossRef]
- Yang, X.; Xia, D.; Fu, B.; Li, J.; Zhao, J.; Chu, Q. High-Sensitivity MOEMS Gyroscope Based on Photonic Crystal Wavelength Modulation. IEEE Sens. J. 2024, 24, 9489–9497. [Google Scholar] [CrossRef]
- Majumder, T.; Patowari, P.K. A review on the use of microslit for various applications and its fabrication. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 106. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ahmadi, M.; Miller, W.C. Pull-in voltage calculations for MEMS sensors with cantilevered beams. In Proceedings of the 3rd International IEEE-NEWCAS Conference, Quebec, QC, Canada, 22 June 2005; pp. 143–146. [Google Scholar]
- Kurmendra; Kumar, R. Design and analysis of MEMS shunt capacitive switch with Si3N4 dielectric and Au beam material to improve actuation voltage and RF performance in consideration with and without circular perforations. Trans. Electr. Electron. Mater. 2019, 20, 299–308. [Google Scholar]
- Kaajakari, V. Closed form expressions for RF MEMS switch actuation and release time. Electron. Lett. 2009, 45, 1. [Google Scholar] [CrossRef]
- Guha, K.; Laskar, N.M.; Gogoi, H.J.; Baishnab, K.L.; Rao, K.S. A new analytical model for switching time of a perforated MEMS switch. Microsyst. Technol. 2020, 26, 3143–3152. [Google Scholar] [CrossRef]
- Van Spengen, W.M. Capacitive RF MEMS switch dielectric charging and reliability: A critical review with recommendations. J. Micromechanics Microengineering 2012, 22, 074001. [Google Scholar] [CrossRef]
- Rajasekhar, K.; GirijaSravani, K.; Rao, K.S. Design and performance analysis of ohmic contact based SPMT RF MEMS switch. Microsyst. Technol. 2023, 29, 1307–1318. [Google Scholar] [CrossRef]
- Lamhamdi, M.; Pons, P.; Zaghloul, U.; Boudou, L.; Coccetti, F.; Guastavino, J.; Segui, Y.; Papaioannou, G.; Plana, R. Voltage and temperature effect on dielectric charging for RF-MEMS capacitive switches reliability investigation. Microelectron. Reliab. 2008, 48, 1248–1252. [Google Scholar] [CrossRef]
- Rebeiz, G.M.; Muldavin, J.B. RF MEMS switches and switch circuits. IEEE Microw. Mag. 2001, 2, 59–71. [Google Scholar] [CrossRef]
- Qiao, Q.; Yazici, M.S.; Dong, B.; Liu, X.; Lee, C.; Zhou, G. Multifunctional mid-infrared photonic switch using a MEMS-based tunable waveguide coupler. Opt. Lett. 2020, 45, 5620–5623. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Shen, Y.; Luan, H.; Sun, C.; Huang, M.; Zhu, J.; Hu, S. Micropackaged compact switchable filters with high isolation in 3-D TSV-MEMS process. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 647–654. [Google Scholar] [CrossRef]
- Gilasgar, M.; Barlabé, A.; Pradell, L. High-efficiency reconfigurable dual-band class-F power amplifier with harmonic control network using MEMS. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 677–680. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir MH, M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Cestarollo, L.; Srinivasan, K.; Liang, Z.; Lim, M.X. Magnetic-Field Driven By-Stable Switching of Magnetic Cantilevers/Beams via Microscale Magnetic Controls. Available online: https://wwx.cnf.cornell.edu/sites/default/files/2023-RA/2023cnfRA_PG94.pdf (accessed on 4 February 2024).
- Benoit, R.R.; Rudy, R.Q.; Pulskamp, J.S.; Polcawich, R.G. Piezoelectric RF MEMS switches on Si-on-Sapphire substrates. J. Microelectromech. Syst. 2020, 29, 1087–1090. [Google Scholar] [CrossRef]
- Joshitha, C.; Santhosh, C.; Sreeja, B.S.; Rooban, S.; Rao, G.K. Bistable microdevice with electrothermal compliant mechanism. Trans. Electr. Electron. Mater. 2022, 23, 262–271. [Google Scholar] [CrossRef]
- Tissot-Daguette, L.; Schneegans, H.; Thalmann, E.; Henein, S. Analytical modeling and experimental validation of rotationally actuated pinned–pinned and fixed–pinned buckled beam bistable mechanisms. Mech. Mach. Theory 2022, 174, 104874. [Google Scholar] [CrossRef]
- Sano, C.; Ataka, M.; Hashiguchi, G.; Toshiyoshi, H. An electret-augmented low-voltage MEMS electrostatic out-of-plane actuator for acoustic transducer applications. Micromachines 2020, 11, 267. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. A review on RF micro-electro-mechanical-systems (MEMS) switch for radio frequency applications. Microsyst. Technol. 2021, 27, 2525–2542. [Google Scholar] [CrossRef]
- Wang, W.; Asci, C.; Zeng, W.; Owyeung, R.; Sonkusale, S. A frequency-adjustable helical antenna using shape memory alloy. Appl. Phys. Lett. 2023, 123, 041901. [Google Scholar] [CrossRef]
- Gangwar, K.; Gupta, D.; Anand, P.I. Parametric Investigation on laser annealing of polyimide on improving the characteristics of NiTi SMA-based bimorph towards the development of microactuators. Sens. Actuators A Phys. 2023, 360, 114536. [Google Scholar] [CrossRef]
- Ahmad Fuaad, M.R.; Hasan, M.N.; Ahmad Asri, M.I.; Mohamed Ali, M.S. Microactuators technologies for biomedical applications. Microsyst. Technol. 2023, 29, 953–984. [Google Scholar] [CrossRef]
- Zhang, H.; Marty, F.; Xia, X.; Zi, Y.; Bourouina, T.; Galayko, D.; Basset, P. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nat. Commun. 2020, 11, 3221. [Google Scholar] [CrossRef] [PubMed]
- Marukhin, N.V.; Uvarov, I.V. An improved design of a seesaw-type MEMS switch for increased contact force. J. Phys. Conf. Ser. 2020, 1695, 012157. [Google Scholar] [CrossRef]
- Lysenko, I.E.; Tkachenko, A.V.; Ezhova, O.A.; Konoplev, B.G.; Ryndin, E.A.; Sherova, E.V. The mechanical effects influencing on the design of RF MEMS switches. Electronics 2020, 9, 207. [Google Scholar] [CrossRef]
- Ma, T.; Yu, Z.; Song, A.; Zhao, J.; Zhang, H.; Lu, H.; Han, D.; Wang, X.; Wang, W. Intermittent failure mechanism and stabilization of microscale electrical contact. Friction 2023, 11, 538–545. [Google Scholar] [CrossRef]
- Saleh, H.; Bajwa, R.; Tekin, I.; Yapici, M.K. Wavy Cantilever RF-MEMS Switch based on Bidirectional Control of Intrinsic Stress. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; pp. 1–4. [Google Scholar]
- Coelho, C.; Machado, G., Jr.; Cabral, J.; Rocha, L. MEMS resonators with electrostatic actuation and piezoresistive readout for sensing applications. Micro Nano Eng. 2022, 16, 100158. [Google Scholar] [CrossRef]
- Tagliapietra, G.; Iannacci, J. RF-MEMS Technology and Beamforming in 5G: Challenges and Opportunities for a Pair with a Still Untapped Potential. In Micro and Nanoelectronics Devices, Circuits and Systems: Select Proceedings of MNDCS 2022; Springer: Singapore, 2022; pp. 437–453. [Google Scholar]
- Zamanzadeh, M.; Azizi, S. Static and dynamic characterization of micro-electro-mechanical system repulsive force actuators. J. Vib. Control 2020, 26, 1216–1231. [Google Scholar] [CrossRef]
- Kim, S.B.; Min, H.W.; Lee, Y.B.; Kim, S.H.; Choi, P.K.; Yoon, J.B. Utilizing mechanical adhesion force as a high contact force in a MEMS relay. Sens. Actuators A Phys. 2021, 331, 112894. [Google Scholar] [CrossRef]
- Perrin, Y.; Galisultanov, A.; Hutin, L.; Basset, P.; Fanet, H.; Pillonnet, G. Contact-Free MEMS Devices for Reliable and Low-Power Logic Operations. IEEE Trans. Electron Devices 2021, 68, 2938–2943. [Google Scholar] [CrossRef]
- Czarnecki, P.; Rottenberg, X.; Soussan, P.; Ekkels, P.; Muller, P.; Nolmans, P.; De Raedt, W.; Tilmans, H.; Puers, R.; Marchand, L.; et al. Effect of substrate charging on the reliability of capacitive RF MEMS switches. Sens. Actuators A Phys. 2009, 154, 261–268. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, Y.; Si, C.; Han, G.; Zhao, Y.; Lu, X.; Liu, J.; Ning, J.; Wei, T. A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy. Micromachines 2023, 14, 1098. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Li, P.; Yuan, L. Research and analysis of MEMS switches in different frequency bands. Micromachines 2018, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Iannacci, J. Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 2015, 37, 62–71. [Google Scholar] [CrossRef]
- Ma, Q.; Tran, Q.; Chou, T.-K.A.; Heck, J.; Bar, H.; Kant, R.; Rao, V. Metal contact reliability of RF MEMS switches. In Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VI; SPIE: Bellingham, WA, USA, 2007; Volume 6463, pp. 42–54. [Google Scholar]
- Tagliapietra, G.; Iannacci, J. A comprehensive overview of recent developments in RF-MEMS technology-based high-performance passive components for applications in the 5G and future telecommunications scenarios. Facta Univ.-Ser. Electron. Energetics 2021, 34, 333–366. [Google Scholar] [CrossRef]
- Li, H.; Ruan, Y.; You, Z.; Song, Z. Design and fabrication of a novel MEMS relay with low actuation voltage. Micromachines 2020, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Angira, M. An improved design based on a symmetrical toggle shunt capacitive RF-MEMS switch with multiple stable states and Off-state frequency tunability. J. Comput. Electron. 2023, 22, 497–503. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. Materials selection approaches and fabrication methods in RF MEMS switches. J. Electron. Mater. 2021, 50, 3149–3168. [Google Scholar]
- Garud, M.V.; Pratap, R. MEMS Audio Speakers. J. Micromech. Microeng. 2023, 34, 013001. [Google Scholar] [CrossRef]
- Pacheco, S.P.; Katehi, L.P.B.; Nguyen, C.T.-C. Design of low actuation voltage RF MEMS switch. In Proceedings of the 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), Boston, MA, USA, 11–16 June 2000; Volume 1, pp. 165–168. [Google Scholar]
- Jaafar, H.; Beh, K.S.; Yunus, N.A.M.; Hasan, W.Z.W.; Shafie, S.; Sidek, O. A comprehensive study on RF MEMS switch. Microsyst. Technol. 2014, 20, 2109–2121. [Google Scholar] [CrossRef]
- Narzary, T.; Kumar, R. An Electromechanical and Radio Frequency Analysis of RF Mems Switch Using Staircase Shaped Spring for 5G Telecommunication. Wirel. Pers. Commun. 2023; under review. [Google Scholar]
- Pandiyan, P.; Sujan, Y.; Raju, S.S. Design and simulation of piezoelectric MEMS logic gates. Ferroelectrics 2023, 602, 105–120. [Google Scholar] [CrossRef]
- Shuaibu, A.H.; Blaquière, Y.; Nabki, F. Toward a polysilicon-based electrostatically actuated DC MEMS switch. In Proceedings of the 2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), Edinburgh, UK, 26–28 June 2023; pp. 1–4. [Google Scholar]
- Pawar, A.S.; Chandrashekar, L.N.; Nithya, G.; Kumar, K.N.; Madhushankara, M.; Nayak, S. Multiphysics simulation and analysis of MEMS-based chevron shaped electro-thermal actuator for quad-way switching application. Mater. Today Proc. 2023, 80, 1177–1184. [Google Scholar] [CrossRef]
- Mousavi, M.; Alzgool, M.; Davaji, B.; Towfighian, S. Event-driven MEMS vibration sensor: Integration of triboelectric nanogenerator and low-frequency switch. Mech. Syst. Signal Process. 2023, 187, 109921. [Google Scholar] [CrossRef]
- Saleh, H.; Bajwa, R.; Tekin, I.; Yapici, M.K. Design and optimization of cantilever-based RF-MEMS shunt switch for 5G applications. In Proceedings of the 2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Montpellier, France, 28–30 June 2021; pp. 1–4. [Google Scholar]
- Ke, F.; Miao, J.; Wang, Z. A wafer-scale encapsulated RF MEMS switch with a stress-reduced corrugated diaphragm. Sens. Actuators A Phys. 2009, 151, 237–243. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. RF micro-electro-mechanical system (MEMS) capacitive switch performance parameters and improvement strategies. Microsyst. Technol. 2022, 28, 1765–1783. [Google Scholar] [CrossRef]
- Liu, B.; Lv, Z.; He, X.; Liu, M.; Hao, Y.; Li, Z. Improving performance of the metal-to-metal contact RF MEMS switch with a Pt–Au microspring contact design. J. Micromech.s Microeng. 2011, 21, 065038. [Google Scholar] [CrossRef]
- Kumari, R.; Angira, M. FEM simulation and material selection for enhancing the performance of a RF-MEMS capacitive switch. J. Comput. Electron. 2022, 21, 814–825. [Google Scholar] [CrossRef]
- Deng, Z.; Lai, C.; Zhou, J.; Wang, Y. Design and analysis of a novel low RF MEMS switch with low pull-in voltage and high capacitance ratio. Microsyst. Technol. 2023, 29, 809–821. [Google Scholar] [CrossRef]
- Sathuluri, M.R.; Sasikala, G. Reconfigurable antenna using RF MEMS switches issues and challenges: A survey. Adv. Smart Syst. Technol. Sel. Proc. ICFSST 2021, 2019, 119–134. [Google Scholar]
- Thachil, G.; Nair, D.R.; DasGupta, A. Design and fabrication of reliable power efficient bistable MEMS switch using single mask Process. J. Microelectromech. Syst. 2020, 29, 1225–1233. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Ma, B.; Deng, J.; Cui, W.; Liang, X.; Luo, X.; Wang, X. High Sensitivity Pressure Sensor Using Tandem Wheatstone Bridge for Low Pressures. IEEE Sens. J. 2024, 24, 9498–9505. [Google Scholar] [CrossRef]
- Shoaib, M.; Hamid, N.H.; Malik, A.F.; Ali, N.B.Z.; Jan, M.T. A review on key issues and challenges in devices level MEMS testing. J. Sens. 2016, 2016, 1639805. [Google Scholar] [CrossRef]
- Peng, Y.; Wen, Z.; Li, D.; Shang, Z. A low-G silicon inertial micro-switch with enhanced contact effect using squeeze-film damping. Sensors 2017, 17, 387. [Google Scholar] [CrossRef] [PubMed]
- Walraven, J.A. Future challenges for MEMS failure analysis. In Proceedings of the 2003 International Test Conference (ITC 2003), Charlotte, NC, USA, 30 September–2 October 2003; p. 850. [Google Scholar]
- De Wolf, I.; Czarnecki, P.; De Coster, J.; Pedreira, O.V.; Rottenberg, X.; Sangameswaran, S. 10—Reliability of RF MEMS. In Woodhead Publishing Series in Electronic and Optical Materials, Handbook of Mems for Wireless and Mobile Applications; Uttamchandani, D., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 291–342. ISBN 9780857092717. [Google Scholar] [CrossRef]
- Chu, C.; Liao, X.; Yan, H. Ka-band RF MEMS capacitive switch with low loss, high isolation, long-term reliability and high power handling based on GaAs MMIC technology. IET Microw. Antennas Propag. 2017, 11, 942–948. [Google Scholar] [CrossRef]
- Uvarov, I.V. Migration of adhesive material in electrostatically actuated MEMS switch. Microelectron. Reliab. 2021, 125, 114372. [Google Scholar] [CrossRef]
- Motta, M.; Fedrizzi, L.; Andreatta, F. Corrosion stiction in automotive braking systems. Materials 2023, 16, 3710. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Robust Fulcrum-Type Wafer-Level Packaged MEMS Switches Utilizing Al-Ru/AlCu Contacts Fabricated in a Commercial MEMS Foundry. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium (IMS 2023), San Diego, CA, USA, 11–16 June 2023; pp. 1120–1123. [Google Scholar]
- Ganesh, E.N.; Vistas, D. Reliability Study of RF MEMS Switch and its Metal contacts. In Proceedings of the ICCES 2021, Cairo, Egypt, 15–16 December 2021. [Google Scholar]
- Michalas, L.; Koutsoureli, M.; Papandreou, E.; Giacomozzi, F.; Papaioannou, G. Dielectric charging effects in floating electrode MEMS capacitive switches. Microelectron. Reliab. 2015, 55, 1891–1895. [Google Scholar] [CrossRef]
- Lucyszyn, S. (Ed.) Advanced RF Mems; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Huang, Q.W.; Li, X.G.; Wang, Y.H.; Jia, Y.B. The effect of dielectric charging on capacitive MEMS switch. Appl. Mech. Mater. 2014, 511, 732–736. [Google Scholar] [CrossRef]
- Papaioannou, G.J.; Papapolymerou, J. Dielectric charging mechanisms in RF-MEMS capacitive switches. In Proceedings of the 2007 European Microwave Integrated Circuit Conference, Munich, Germany, 8–10 October 2007; pp. 359–362. [Google Scholar]
- Ghassemiparvin, B.; Ghalichechian, N. Paraffin-based reconfigurable antenna operating at 100 GHz. J. Microelectromech. Syst. 2020, 29, 621–628. [Google Scholar] [CrossRef]
- Kim, D.; Yang, S.J.; Wainstein, N.; Skrzypczak, S.; Ducournau, G.; Pallecchi, E.; Happy, H.; Yalon, E.; Kim, M.; Akinwande, D. Emerging memory electronics for non-volatile radiofrequency switching technologies. Nat. Rev. Electr. Eng. 2024, 1, 10–23. [Google Scholar] [CrossRef]
- Shojaei-Asanjan, D.; Bakri-Kassem, M.; Mansour, R.R. Analysis of thermally actuated RF-MEMS switches for power limiter applications. J. Microelectromech. Syst. 2019, 28, 107–113. [Google Scholar] [CrossRef]
- Mulloni, V.; Sordo, G.; Margesin, B. An accelerated thermal cycling test for RF-MEMS switches. Microsyst. Technol. 2016, 22, 1585–1592. [Google Scholar] [CrossRef]
- Bansal, D.; Kumar, P.; Kumar, A.; Rangra, K. Contact area design of ohmic RF MEMS switch for enhanced power handling. In Proceedings of the 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018; pp. 91–95. [Google Scholar]
- Peng, Y.; Wen, Z.; Li, D.; Shang, Z. Simulation study of inertial micro-switch as influenced by squeeze-film damping and applied acceleration load. Micromachines 2016, 7, 237. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, Y.; Tan, Q. Closed-loop control of MEMS mirror for fast and precise beam steering. IEEE Trans. Ind. Electron. 2018, 65, 1591–1599. [Google Scholar]
- Chen, J.; Wang, H.; Yuan, Y. Recent Advances in MEMS-Based Optical Switching Technologies. Micromachines 2021, 12, 277. [Google Scholar]
- Liang, Z.; Zhang, W.; Zhu, Y. Topology optimization of microelectromechanical systems (MEMS) devices: A review. Acta Mater. 2020, 189, 207–227. [Google Scholar]
- Tang, Y.; Yan, G.; Chen, Z. Low-Voltage Actuation and High-Speed MEMS Switch Design for Millimeter-Wave Applications. Sensors 2022, 22, 501. [Google Scholar]
- Kageyama, T.; Shinozaki, K.; Zhang, L.; Lu, J.; Takaki, H.; Lee, S.S. Fabrication of an Au–Au/carbon nanotube-composite contacts RF-MEMS switch. Micro Nano Syst. Lett. 2018, 6, 6. [Google Scholar] [CrossRef]
- Cao, T.; Hu, T.; Zhao, Y. Research status and development trend of MEMS switches: A review. Micromachines 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Anitha, G.; Ayyadurai, M.; Ramkumar, G. Design of miniaturized single bit MEMS phase shifter using MEMS switches. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 235–239. [Google Scholar]
- Mafinejad, Y.; Ansari, H.R.; Khosroabadi, S. Development and optimization of RF MEMS switch. Microsyst. Technol. 2020, 26, 1253–1263. [Google Scholar] [CrossRef]
- Pal, J.; Zhu, Y.; Lu, J.; Dao, D.; Khan, F. High power and reliable SPST/SP3T RF MEMS switches for wireless applications. IEEE Electron Device Lett. 2016, 37, 1219–1222. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Soin, N.; Daut, M.H.M.; Hatta, S.F.W.M. Comprehensive study on RF-MEMS switches used for 5G scenario. IEEE Access 2019, 7, 107506–107522. [Google Scholar] [CrossRef]
- Dey, S.; Koul, S.K.; Poddar, A.K.; Rohde, U. RF MEMS switches, switching networks and phase shifters for microwave to millimeter wave applications. ISSS J. Micro Smart Syst. 2020, 9, 33–47. [Google Scholar] [CrossRef]
- Sharma, K.; Karmakar, A.; Prakash, K.; Chauhan, A.; Bansal, S.; Hooda, M.; Kumar, S.; Gupta, N.; Singh, A.K. Design and characterization of RF MEMS capacitive shunt switch for X, Ku, K and Ka band applications. Microelectron. Eng. 2020, 227, 111310. [Google Scholar] [CrossRef]
- Xi, Z.; Kong, N.; Nie, W.; Cao, Y.; Zheng, C. High g MEMS inertial switch capable of direction detection. Sens. Actuators A Phys. 2019, 296, 7–16. [Google Scholar] [CrossRef]
- Saleem, M.M.; Nawaz, H. A systematic review of reliability issues in RF-MEMS switches. Micro Nanosyst. 2019, 11, 11–33. [Google Scholar] [CrossRef]
- Bale, A.S.; Reddy, S.V.; Huddar, S.A. Electromechanical characterization of Nitinol based RF MEMS switch. Mater. Today Proc. 2020, 27, 443–445. [Google Scholar] [CrossRef]
- Goel, S.; Gupta, N. Design, optimization and analysis of reconfigurable antenna using RF MEMS switch. Microsyst. Technol. 2020, 26, 2829–2837. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, N.; Wang, L.; Huang, X. High-reliability circular-contact RF MEMS switches in silicon hermetic package. J. Micromech. Microeng. 2023, 33, 065004. [Google Scholar] [CrossRef]
- Feng, Y.; Tsao, H.-Y.; Barker, N.S. THz MEMS Switch Design. Micromachines 2022, 13, 745. [Google Scholar] [CrossRef] [PubMed]
- Shuaibu, A.H.; Nabki, F.; Blaquière, Y. A MEMS electrothermal actuator designed for a DC switch aimed at power switching applications and high voltage resilience. In Proceedings of the 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), Quebec City, QC, Canada, 19–22 June 2022; pp. 317–321. [Google Scholar]
- Giacomozzi, F.; Proietti, E.; Capoccia, G.; Sardi, G.M.; Bartolucci, G.; Iannacci, J.; Tagliapietra, G.; Margesin, B.; Marcelli, R. Design of U-Shaped Frequency Tunable Microwave Filters in MEMS Technology. Sensors 2023, 23, 466. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Kaur, M.; Kumar, P.; Kumar, A. Design of a wide bandwidth terahertz MEMS Ohmic switch for 6G communication applications. Microsyst. Technol. 2023, 29, 271–277. [Google Scholar] [CrossRef]
- Hong, M.S.; Kim, D.U.; Lim, M.G.; Choi, D.J.; Her, M.J.; Park, Y.J.; Jeong, Y.; Park, J.; Han, S.; Yu, K.; et al. Programmable MZI Based on Si Photonic MEMS Tunable Delay Line. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Sapporo, Japan, 31 August–5 September 2022; p. CThP8F_07. [Google Scholar]
- Macho, M.; Yoo, H.W.; Schroedter, R.; Schitter, G. Iterative Learning Control for Quasi-Static MEMS Mirror with Switching Operation. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 538–541. [Google Scholar]
- Feng, H.; Zhao, J.; Zhou, C.; Song, M. Design and Analysis of the Capacitive RF MEMS Switches with Support Pillars. Sensors 2022, 22, 8864. [Google Scholar] [CrossRef]
- Ke, F.; Miao, J.; Oberhammer, J. A ruthenium-based multimetal-contact RF MEMS switch with a corrugated diaphragm. J. Microelectromech. Syst. 2008, 17, 1447–1459. [Google Scholar]
- Uvarov, I.V.; Izyumov, M.O. Reliability issues for electrostatically actuated MEMS switch. In Proceedings of the International Conference on Micro- and Nano-Electronics 2021, Zvenigorod, Russia, 4–8 October 2021; Volume 12157, pp. 144–149. [Google Scholar]
- Millet, O.; Bernardoni, P.; Régnier, S.; Bidaud, P.; Tsitsiris, E.; Collard, D.; Buchaillot, L. Electrostatic actuated micro gripper using an amplification mechanism. Sens. Actuators A Phys. 2004, 114, 371–378. [Google Scholar] [CrossRef]
- Kanj, A.; Ferrari, P.; van der Zande, A.M.; Vakakis, A.F.; Tawfick, S. Ultra-Tuning of nonlinear drumhead MEMS resonators by Electro-Thermoelastic buckling. Mech. Syst. Signal Process. 2023, 196, 110331. [Google Scholar] [CrossRef]
- Deng, K.; Yang, F.; Deng, Z.; Wang, X.; Han, K. Analysis and design of a novel high capacitance ratio and low actuation voltage RF MEMS switch. Microsyst. Technol. 2021, 27, 2803–2813. [Google Scholar] [CrossRef]
- Feng, H.; Wang, X.; He, Z.; Li, M.; Liu, Y.; Chen, D. Uniform Serpentine Spring Design of THz MEMS Switch for a Low Driving Voltage. In Proceedings of the 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), Qingdao, China, 21–24 July 2023; pp. 363–368. [Google Scholar]
- Zhang, M.; Liu, Y.; Yu, J.; Wu, Q.; Li, M. Design of a graphene RF MEMS switch for X–V band. Microelectron. J. 2023, 141, 105955. [Google Scholar] [CrossRef]
- Bale, A.S.; Ghorpade, N.; Hamsalekha, R.; Pushpanjali, J.; Deepan, W.; Herial, J. Improved Shape Memory Alloy-based MEMS Perforated Switch for RF Applications. In Proceedings of the 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 8–9 April 2023; pp. 41–45. [Google Scholar]
- Zhu, Y.; Pal, J. Low-voltage and high-reliability RF MEMS switch with combined electrothermal and electrostatic actuation. Micromachines 2021, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Kasambe, P.V.; Bhole, K.S.; Raykar, N.R.; Oza, A.D.; Ramesh, R.; Bhoir, D.V. Mechanical modeling, numerical investigation and design of cantilever beam for low pull-in MEMS switch. Int. J. Interact. Des. Manuf. 2022, 1–10. [Google Scholar] [CrossRef]
- Ashok Kumar, P.; Karumuri, S.R.; Kondavitee, G.S.; Guha, K. Design and performance analysis of a low-pull-in-voltage RF MEMS shunt switch for millimeter-wave therapy, IoT, and 5G applications. J. Comput. Electron. 2022, 21, 522–529. [Google Scholar] [CrossRef]
- Deng, Y.; Tian, B.; Bai, J. A review on fabrication and application of MEMS switch devices. J. Micromech. Microeng. 2021, 31, 043001. [Google Scholar]
- Devakirubai, E.E.; Kannan, S.; Manivannan, M. Design and performance analysis of a dual channel RF MEMS switch with separate bias voltage and signal paths for aerospace applications. Int. J. Interact. Des. Manuf. 2023, 17, 1541–1550. [Google Scholar] [CrossRef]
- Sravani, K.G.; Guha, K.; Aditya, M.; Balaji, B.; Rao, K.S. Design, simulation and analysis of uniform and non-uniform serpentine step structure RF MEMS switch. Microsyst. Technol. 2022, 28, 855–865. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. Investigations on beam membrane and dielectric materials using Ashby’s methodology and their impact on the performance of a MEMS capacitive switch. Microsyst. Technol. 2021, 27, 4269–4289. [Google Scholar] [CrossRef]
- Dalal, K.; Singh, T.; Singh, P.K. Optimized vertical RF-MEMS switch design with a small actuation voltage. Analog. Integr. Circuits Signal Process. 2021, 108, 165–171. [Google Scholar] [CrossRef]
- Vashisth, A.K.; Singh, M.; Yadav, I.; Kumar, R.; Dutta, S. Influence of gold coating on design and performance of high-g SOI technology based MEMS inertial switch. Microsyst. Technol. 2024; under review. [Google Scholar] [CrossRef]
- Kumar, A.; Varghese, A.; Kalra, D.; Raunak, A.; Prasad, M.; Janyani, V.; Yadav, R.P. MEMS-based piezoresistive and capacitive microphones: A review on materials and methods. Mater. Sci. Semicond. Process. 2024, 169, 107879. [Google Scholar] [CrossRef]
- Ghasemi, S.; Sotoudeh, B.; Pazhooh, M. Design and simulation of a novel MEMS-based single proof mass three-axis piezo-capacitive accelerometer. Microsyst. Technol. 2024, 30, 279–289. [Google Scholar] [CrossRef]
- Hajizi, H.M.; Aris, H.; Norhaimi WM, W.; Nor NI, M.; Sauli, Z.; Aziz, A.A. Design and Simulation of Micro-Electro-Mechanical Systems (MEMS) Capacitive Pressure Sensor for Thermal Runaway Detection in the Electric Vehicle. Int. J. Nanoelectron. Mater. 2023, 16, 17–32. [Google Scholar]
- Singh, T.; Mansour, R.R. Investigation into self actuation limitation and current carrying capacity of chalcogenide phase change GeTe-based RF switches. IEEE Trans. Electron Devices 2020, 67, 5717–5722. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Sun, J.; Yao, X.; Liu, Q.; Li, X.; Zeng, S.; Zhu, M.; Deng, T. Status, Applications and Challenges of Flexible Pressure Sensors Based on 2D Materials: A Review. IEEE Sens. J. 2024, 24, 9251–9277. [Google Scholar] [CrossRef]
- Mamun, M.A.; Smith, B.; Horstmann, B.; Ding, K.; Atkinson, G.; Ozgur, U.; Avrutin, V. Measurement and control of stiction force in in-plane electrostatically actuated Si nanoelectromechanical cantilever relays with Pt contacts. J. Micromech. Microeng. 2023, 33, 085006. [Google Scholar] [CrossRef]
- Shuriji, M.A.; Thaher, R.H. A reconfigurable switching diode loaded patch antenna for S, C, X, Ku, and K bands applications. Bull. Electr. Eng. Inform. 2024, 13, 247–253. [Google Scholar] [CrossRef]
- Iannacci, J. An active heat-based restoring mechanism for high reliability RF-MEMS switches. Microsyst. Technol. 2021, 27, 183–187. [Google Scholar] [CrossRef]
- Theocharis, J.; Koutsoureli, M.; Gardelis, S.; Konstantinidis, G.; Papaioannou, G. Field emission induced-damage in the actuation paths of MEMS capacitive structures. Microelectron. Reliab. 2020, 114, 113760. [Google Scholar] [CrossRef]
- Yuan, X.; Cherepko, S.; Hwang, J.; Goldsmith, C.L.; Nordqusit, C.; Dyck, C. Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Fort Worth, TX, USA, 6–11 June 2004; Volume 3, pp. 1943–1946. [Google Scholar]
- Nawaz, H.; MMasood, U.; Saleem, M.M.; Iqbal, J.; Zubair, M. Surface roughness effects on electromechanical performance of RF-MEMS capacitive switches. Microelectron. Reliab. 2020, 104, 113544. [Google Scholar] [CrossRef]
- Herfst, R.W.; Steeneken, P.G.; Schmitz, J.; Mank, A.J.G.; Van Gils, M. Kelvin probe study of laterally inhomogeneous dielectric charging and charge diffusion in RF MEMS capacitive switches. In Proceedings of the 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008; pp. 492–495. [Google Scholar]
- Theocharis, J.; Birmpiliotis, D.; Gardelis, S.; Papaioannou, G. A study of field emission current in MEMS capacitors with bottom electrode covered by dielectric film. Microelectron. Reliab. 2023, 150, 115192. [Google Scholar] [CrossRef]
- Bansal, D.; Bajpai, A.; Mehta, K.; Kumar, P.; Kumar, A. Improved design of ohmic RF MEMS switch for reduced fabrication steps. IEEE Trans. Electron Devices 2019, 66, 4361–4366. [Google Scholar] [CrossRef]
- Slovin, G.; Xu, M.; Singh, R.; Schlesinger, T.E.; Paramesh, J.; Bain, J.A. Design criteria in sizing phase-change RF switches. IEEE Trans. Microw. Theory Tech. 2017, 65, 4531–4540. [Google Scholar] [CrossRef]
- Huang, C.M.; SarathiVasan, A.S.; Huang, Y.; Doraiswami, R.; Osterman, M.; Pecht, M. MEMS reliability. Mems. Packag. 2018, 12, 279–343. [Google Scholar]
- Molinero, D.; Aghaei, S.; Morris, A.S.; Cunningham, S. Linearity and RF power handling on capacitive RF MEMS switches. IEEE Trans. Microw. Theory Tech. 2019, 67, 4905–4913. [Google Scholar] [CrossRef]
- Molinero, D.; Cunningham, S.; Morris, A. New power handling characterization for RF MEMS capacitive switches. In Proceedings of the 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 10–12 October 2017; pp. 316–319. [Google Scholar]
- Wu, Q.; Guo, H.; Liu, Q.; Zhu, G.; Wang, J.; Cao, Y.; Li, M. Design and fabrication of a series contact RF MEMS switch with a novel top electrode. Nanotechnol. Precis. Eng. 2023, 6, 013006. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wang, Y. High-speed microelectromechanical systems: Current status and future prospects. Sci. China Technol. Sci. 2019, 62, 507–520. [Google Scholar]
- Olivieri, L.; Capellini, G.; Margesin, B. Design and optimization of a low-voltage electrostatic MEMS switch with enhanced reliability. Sens. Actuators A Phys. 2020, 310, 112031. [Google Scholar]
- Sharma, A.K.; Gupta, N. An improved design of MEMS switch for radio frequency applications. Int. J. Appl. Electromagn. Mech. 2015, 47, 11–19. [Google Scholar] [CrossRef]
- Yamazaki, H.; Kurui, Y.; Saito, T.; Ogawa, E.; Obara, K.; Gando, R.; Ono, D.; Ikehashi, T. CMOS-embedded high-power handling RF-MEMS tunable capacitor using quadruple series capacitor and slit with dielectric bridges structure. Jpn. J. Appl. Phys. 2018, 57, 1002B6. [Google Scholar] [CrossRef]
- Mita, Y.; Hirakawa, A.; Stefanelli, B.; Mori, I.; Okamoto, Y.; Morishita, S.; Kubota, M.; Lebrasseur, E.; Kaiser, A. Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS. Jpn. J. Appl. Phys. 2018, 57, 04FA05. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shu, L. Adaptive control strategy for improving the transient performance of MEMS sensors based on extreme learning machine. Sens. Actuators A Phys. 2021, 318, 112408. [Google Scholar]
- Gaikwad, M.; Deshmukh, N.; Sawant, V. Electromagnetic Modelling and Parameters Extraction of Metal Contact and Capacitive Type RF MEMS Switch. In Artificial Intelligence and Sustainable Computing: Proceedings of ICSISCET 2020; Springer: Singapore, 2022; pp. 143–153. [Google Scholar]
- Koul, S.K.; Dey, S. Radio Frequency Micromachined Switches, Switching Networks, and Phase Shifters; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Ramli, N.A.; Arslan, T.; Haridas, N.; Zhou, W. Design and simulation of a high tuning range MEMS digital varactor using SU-8. In Proceedings of the 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Budapest, Hungary, 30 May–2 June 2016; pp. 1–6. [Google Scholar]
- Singh, T.; Kaur, N. Layered axial force coupled membrane based metal contact single-pole quad-throw RF MEMS switch: Design, RF performance and mechanical modeling. Microsyst. Technol. 2016, 22, 2117–2123. [Google Scholar] [CrossRef]
- Harsha, C.S.; Prasanth, C.S.R.; Pratiher, B. Effect of squeeze film damping and AC actuation voltage on pull-in phenomenon of electrostatically actuated microswitch. Procedia Eng. 2016, 144, 891–899. [Google Scholar] [CrossRef]
Failure Modes | Solutions |
---|---|
Stiction or adhesion | Implementing anti-stiction coatings, optimizing materials, or employing release mechanisms like electrostatic actuation with pull-in and pull-out voltages. |
Contact wear and degradation | Using wear-resistant materials, exploring self-healing materials, and optimizing contact force to minimize mechanical wear. |
Dielectric breakdown | Employing high-quality dielectric materials, optimizing switch geometry, and incorporating protective coatings to mitigate breakdown risks. |
Residual stress | Designing with balanced stresses, utilizing stress-relief structures, or employing materials with tailored mechanical properties to minimize residual stress. |
Electrical overstress (EOS) | Implementing current limiting mechanisms, optimizing materials for electrical robustness, and incorporating protective circuits to prevent EOS-related failures. |
Thermal overstress (TOS) | Enhancing thermal management through efficient heat dissipation mechanisms, exploring advanced thermal materials, and optimizing switch design to minimize temperature rise. |
Material Fatigue | Investigating materials with high fatigue resistance, optimizing actuation parameters to minimize mechanical stress, and exploring innovative materials like shape memory alloys. |
Actuation Method | Electrostatic | Electromagnetic | Electrothermal | Piezoelectric | SMA |
---|---|---|---|---|---|
Size reduction | Small | Large | Medium | Medium | Medium |
Contact force | Generally Low | Moderate | Variable (depends on design) | Moderate | Moderate to high |
Operating voltages | Low | High | High | Low | High |
CMOS integrability | Easy | Difficult | Difficult | Difficult | Difficult to integrate |
Power consumption | Low to moderate | Variable (depending on design) | Moderate to high | Low to moderate | Moderate to high |
Switching speed | Fast | Medium | Slow | Fast | Medium |
Dimension L × W (μm2) | Actuation Mechanism | Contact Type | Actuation Voltage (V) | Power Consumption | Switching Time (ms) | Process Technology | Contact Resistance (Ω) | Reliability in Cycles | Application | Ref. with Year |
---|---|---|---|---|---|---|---|---|---|---|
540 × 330 | Electrostatic | ohmic | 8 V | — | 0.1 | Bulk-silicon micromachining process | 0.4 | 5 million | High-performance systems | Li, H. et al. (2020) [58] |
— | Thermal actuation | ohmic | — | 0.060 w | 0.43 | Compatible with CMOS technology | 100 | >5 million | — | Thachil, G. et al. (2020) [76] |
400 × 10 | Electrothermal and Electrostatic | ohmic | Electrothermal = 7 V electrostatic = 21 V | 1 w | 70 | SOIMUMPS process | 1.51–1.81 | 10 million | High-power applications | Zhu, Y. et al. (2021) [99] |
120 × 40 | Electrostatic | Capacitive | 3 | — | — | — | 0.15–0.3 | — | High-frequency applications | Dalal, K. et al. (2021) [136] |
100 × 60 | Electrostatic | Capacitive | 10.5 | — | 20 | Bulk-silicon micromachining process | — | — | RF applications | Kurmendra et al. (2022) [71] |
100 × 21 | Electrostatic | ohmic | 55 | — | — | Silicon-based MEMS switch fabrication | <1 | — | THz applications | Feng, Y. et al. (2022) [114] |
250 × 150 | Electrostatic | Capacitive | 9.9 | — | 33 | Micromachining process compatible with conventional IC processes | 17 | 109 switching cycles | — | Wu, Q. et al. (2023) [156] |
100 × 160 | Electrostatic | ohmic | 3.5 | — | 0.008 | Compatible with CMOS technology | — | — | RF signal routing applications | Rajasekhar et al. (2023) [36] |
— | Electrostatic | ohmic | 50–60 | 25 dBm | 25 μs | Compatible with CMOS technology | — | 2.6 billion | — | Jiang, L. et al. (2023) [113] |
1000 × 1000 | Electrothermal | ohmic | — | — | 230 μs | high-g SOI technology | 3.5 | — | Applications in defense, automobile, and aviation sectors | Vashisth, A. K. et al. (2024) [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurmendra; Agarwal, S. MEMS Switch Realities: Addressing Challenges and Pioneering Solutions. Micromachines 2024, 15, 556. https://doi.org/10.3390/mi15050556
Kurmendra, Agarwal S. MEMS Switch Realities: Addressing Challenges and Pioneering Solutions. Micromachines. 2024; 15(5):556. https://doi.org/10.3390/mi15050556
Chicago/Turabian StyleKurmendra, and Saurabh Agarwal. 2024. "MEMS Switch Realities: Addressing Challenges and Pioneering Solutions" Micromachines 15, no. 5: 556. https://doi.org/10.3390/mi15050556
APA StyleKurmendra, & Agarwal, S. (2024). MEMS Switch Realities: Addressing Challenges and Pioneering Solutions. Micromachines, 15(5), 556. https://doi.org/10.3390/mi15050556