Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death
Abstract
:1. Introduction
2. Viral Pro-Death Anti-Cancer Proteins
2.1. Apoptin
2.2. NS1
2.3. E1A
2.4. E4orf4
3. Cancer Cell Death Induction Mechanisms
3.1. Activation of Classical Cell Death Pathways
3.1.1. Importance of Caspases
3.1.2. Mitochondrial Cell Death
3.1.3. Death Receptor-Mediated Toxicity
3.1.4. P53-Independence
3.2. Non-Canonical Modes of Cell Death
3.2.1. Perturbations of The Cell Cycle
3.2.2. Cytoskeleton Remodelling
3.2.3. Hijack of Growth Factor Signalling Pathways
3.2.4. DNA Interactions
4. Investigating the Therapeutic Potential of Viral Proteins in Cancer
5. Conclusive Remarks
- Which protein domains are required for selective anti-cancer toxicity or do several of these need to co-operate to achieve this effect?
- Is the intrinsically disordered nature of these proteins essential for their function?
- Is the multimeric characteristic vital for their function? Does this multimerization occur in the nucleus of transformed cells?
- Do the frequently observed PTMs of viral proteins drive cancer-selective toxicity? Are additional, currently unknown PTMs involved?
- Do all the proteins discussed exploit the same mechanism of action? Are these mechanisms cell-type specific?
- Which is the most effective and safest way of delivering cancer-selective toxic proteins to tumours?
- If only single protein domains are absolutely required for cancer toxicity, would it be possibly to develop artificial mini-proteins or peptides which mimic the cancer selectivity of the viral proteins?
- Can cancer-selective viral proteins be used in combination with already FDA approved therapies?
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, H.H.; Lemoine, N.; Wang, Y. Oncolytic Viruses for Cancer Therapy: Overcoming the Obstacles. Viruses 2010, 2, 78–106. [Google Scholar] [CrossRef] [PubMed]
- Grimm, S.; Noteborn, M. Anticancer Genes: Inducers of Tumour-Specific Cell Death Signalling. Trends Mol. Med. 2010, 16, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, N.; Taniguchi, T.; Yoshida, I. Isolation and Some Characteristics of an Agent Inducing Anemia in Chicks. Avian Dis. 1979, 23, 366. [Google Scholar] [CrossRef]
- Sauvage, V.; Cheval, J.; Foulongne, V.; Gouilh, M.A.; Pariente, K.; Manuguerra, J.C.; Richardson, J.; Dereure, O.; Lecuit, M.; Burguiere, A.; et al. Identification of the First Human Gyrovirus, a Virus Related to Chicken Anemia Virus. J. Virol. 2011, 85, 7948–7950. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, T.; Okamoto, H.; Konishi, K.; Yoshizawa, H.; Miyakawa, Y.; Mayumi, M. A Novel DNA Virus (TTV) Associated with Elevated Transaminase Levels in Posttransfusion Hepatitis of Unknown Etiology. Biochem. Biophys. Res. Commun. 1997, 241, 92–97. [Google Scholar] [CrossRef]
- Toolan, H.W.; Dalldore, G.; Barclay, M.; Chandra, S.; Moore, A.E. An unidentified, filtrable agent isolated from transplanted human tumors. Proc. Natl. Acad. Sci. USA 1960, 46, 1256–1258. [Google Scholar] [CrossRef] [Green Version]
- Crawford, L.V. A Minute Virus of Mice. Virology 1966, 29, 605–612. [Google Scholar] [CrossRef]
- Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a Cytopathogenic Agent from Human Adenoids Undergoing Spontaneous Degeneration in Tissue Culture. Proc. Soc. Exp. Biol. Med. 1953, 84, 570–573. [Google Scholar] [CrossRef]
- Danen-Van Oorschot, A.A.A.M.; Fischer, D.F.; Grimbergen, J.M.; Klein, B.; Zhuang, S.-M.; Falkenburg, J.H.F.; Backendorf, C.; Quax, P.H.A.; Van der Eb, A.J.; Noteborn, M.H.M.; et al. Apoptin Induces Apoptosis in Human Transformed and Malignant Cells but Not in Normal Cells. Proc. Natl. Acad. Sci. USA 1997, 94, 5843–5847. [Google Scholar] [CrossRef] [Green Version]
- Adair, B. Immunopathogenesis of Chicken Anemia Virus Infection. Dev. Comp. Immunol. 2000, 24, 247–255. [Google Scholar] [CrossRef]
- Zhuang, S.M.; Landegent, J.E.; Verschueren, C.A.; Falkenburg, J.H.; van Ormondt, H.; van der Eb, A.J.; Noteborn, M.H. Apoptin, a Protein Encoded by Chicken Anemia Virus, Induces Cell Death in Various Human Hematologic Malignant Cells in Vitro. Leukemia 1995, 9, 118–120. [Google Scholar]
- Zhuang, S.M.; Shvarts, A.; van Ormondt, H.; Jochemsen, A.G.; van der Eb, A.J.; Noteborn, M.H. Apoptin, a Protein Derived from Chicken Anemia Virus, Induces P53-Independent Apoptosis in Human Osteosarcoma Cells. Cancer Res. 1995, 55, 486–489. [Google Scholar] [PubMed]
- Danen-Van Oorschot, A.A.A.M.; Zhang, Y.-H.; Leliveld, S.R.; Rohn, J.L.; Seelen, M.C.M.J.; Bolk, M.W.; Van Zon, A.; Erkeland, S.J.; Abrahams, J.-P.; Mumberg, D.; et al. Importance of Nuclear Localization of Apoptin for Tumor-Specific Induction of Apoptosis. J. Biol. Chem. 2003, 278, 27729–27736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilman, D.W.; Teodoro, J.G.; Green, M.R. Apoptin Nucleocytoplasmic Shuttling Is Required for Cell Type-Specific Localization, Apoptosis, and Recruitment of the Anaphase-Promoting Complex/Cyclosome to PML Bodies. J. Virol. 2006, 80, 7535–7545. [Google Scholar] [CrossRef] [Green Version]
- Leliveld, S.R.; Zhang, Y.-H.; Rohn, J.L.; Noteborn, M.H.M.; Abrahams, J.P. Apoptin Induces Tumor-Specific Apoptosis as a Globular Multimer. J. Biol. Chem. 2003, 278, 9042–9051. [Google Scholar] [CrossRef] [Green Version]
- Rohn, J.L.; Zhang, Y.-H.; Aalbers, R.I.J.M.; Otto, N.; Den Hertog, J.; Henriquez, N.V.; Van De Velde, C.J.H.; Kuppen, P.J.K.; Mumberg, D.; Donner, P.; et al. A Tumor-Specific Kinase Activity Regulates the Viral Death Protein Apoptin. J. Biol. Chem. 2002, 277, 50820–50827. [Google Scholar] [CrossRef] [Green Version]
- Bullenkamp, J.; Gäken, J.; Festy, F.; Chong, E.Z.; Ng, T.; Tavassoli, M. Apoptin Interacts with and Regulates the Activity of Protein Kinase C Beta in Cancer Cells. Apoptosis 2015, 20, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Rohn, J.L.; Zhang, Y.-H.; Leliveld, S.R.; Danen-Van Oorschot, A.A.A.M.; Henriquez, N.V.; Abrahams, J.P.; Noteborn, M.H.M. Relevance of Apoptin’s Integrity for Its Functional Behavior. J. Virol. 2005, 79, 1337–1338. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, T.J.; Ng, T.F.; Sharon, D.M.; Navid-Azarbaijani, P.; Tavassoli, M.; Teodoro, J.G. Activation of the Chicken Anemia Virus Apoptin Protein by Chk1/2 Phosphorylation Is Required for Apoptotic Activity and Efficient Viral Replication. J. Virol. 2016, 90, 9433–9445. [Google Scholar] [CrossRef] [Green Version]
- Poon, I.K.H.; Oro, C.; Dias, M.M.; Zhang, J.-P.; Jans, D.A. A Tumor Cell-Specific Nuclear Targeting Signal within Chicken Anemia Virus VP3/Apoptin. J. Virol. 2005, 79, 1339–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggi, F.; Macera, L.; Focosi, D.; Vatteroni, M.L.; Boggi, U.; Antonelli, G.; Eloit, M.; Pistello, M. Human Gyrovirus DNA in Human Blood, Italy. Emerg. Infect. Dis. 2012, 18, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Bullenkamp, J.; Cole, D.; Malik, F.; Alkhatabi, H.; Kulasekararaj, A.; Odell, E.W.; Farzaneh, F.; Gäken, J.; Tavassoli, M. Human Gyrovirus Apoptin Shows a Similar Subcellular Distribution Pattern and Apoptosis Induction as the Chicken Anaemia Virus Derived VP3/Apoptin. Cell Death Dis. 2012, 3, e296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.; Lefkowitz, E.; Adams, M.; Carstens, E. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Hino, S.; Miyata, H. Torque Teno Virus (TTV): Current Status. Rev. Med. Virol. 2007, 17, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Pifferi, M.; Tempestini, E.; Fornai, C.; Lanini, L.; Andreoli, E.; Vatteroni, M.; Presciuttini, S.; Pietrobelli, A.; Boner, A.; et al. TT Virus Loads and Lymphocyte Subpopulations in Children with Acute Respiratory Diseases. J. Virol. 2003, 77, 9081–9083. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.Y.; Wu, Y.H.; Ho, Y.P.; Tsao, K.C.; Yeh, C.T.; Liaw, Y.F. High Prevalence of TT Virus Infection in Healthy Children and Adults and in Patients with Liver Disease in Taiwan. J. Clin. Microbiol. 1999, 37, 1829–1831. [Google Scholar]
- Hafez, M.M.; Shaarawy, S.M.; Hassan, A.A.; Salim, R.F.; Abd El Salam, F.M.; Ali, A.E. Prevalence of Transfusion Transmitted Virus (TTV) Genotypes among HCC Patients in Qaluobia Governorate. Virol. J. 2007, 4, 135. [Google Scholar] [CrossRef] [Green Version]
- Hino, S.; Prasetyo, A.A. Relationship of Torque Teno Virus to Chicken Anemia Virus. Curr. Top. Microbiol. Immunol. 2009, 331, 117–130. [Google Scholar] [CrossRef]
- Kooistra, K.; Zhang, Y.-H.; Henriquez, N.V.; Weiss, B.; Mumberg, D.; Noteborn, M.H.M. TT Virus-Derived Apoptosis-Inducing Protein Induces Apoptosis Preferentially in Hepatocellular Carcinoma-Derived Cells. J. Gen. Virol. 2004, 85, 1445–1450. [Google Scholar] [CrossRef]
- Ninomiya, M.; Nishizawa, T.; Takahashi, M.; Lorenzo, F.R.; Shimosegawa, T.; Okamoto, H. Identification and Genomic Characterization of a Novel Human Torque Teno Virus of 3.2 Kb. J. Gen. Virol. 2007, 88, 1939–1944. [Google Scholar] [CrossRef]
- Geletneky, K.; Kiprianova, I.; Ayache, A.; Koch, R.; Herrero Y Calle, M.; Deleu, L.; Sommer, C.; Thomas, N.; Rommelaere, J.; Schlehofer, J.R. Regression of Advanced Rat and Human Gliomas by Local or Systemic Treatment with Oncolytic Parvovirus H-1 in Rat Models. Neuro Oncol. 2010, 12, 804–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geletneky, K.; Hartkopf, A.D.; Krempien, R.; Rommelaere, J.; Schlehofer, J.R. Improved Killing of Human High-Grade Glioma Cells by Combining Ionizing Radiation with Oncolytic Parvovirus H-1 Infection. J. Biomed. Biotechnol. 2010, 2010, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.G. Natural Pathogens of Laboratory Mice, Rats, and Rabbits and Their Effects on Research. Clin. Microbiol. Rev. 1998, 11, 231–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuesch, J.P.F.; Lacroix, J.; Marchini, A.; Rommelaere, J. Molecular Pathways: Rodent Parvoviruses--Mechanisms of Oncolysis and Prospects for Clinical Cancer Treatment. Clin. Cancer Res. 2012, 18, 3516–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caillet-Fauquet, P.; Perros, M.; Brandenburger, A.; Spegelaere, P.; Rommelaere, J. Programmed Killing of Human Cells by Means of an Inducible Clone of Parvoviral Genes Encoding Non-Structural Proteins. EMBO J. 1990, 9, 2989–2995. [Google Scholar] [CrossRef] [PubMed]
- Mousset, S.; Ouadrhiri, Y.; Caillet-Fauquet, P.; Rommelaere, J. The Cytotoxicity of the Autonomous Parvovirus Minute Virus of Mice Nonstructural Proteins in FR3T3 Rat Cells Depends on Oncogene Expression. J. Virol. 1994, 68, 6446–6453. [Google Scholar]
- Christensen, J.; Tattersall, P. Parvovirus Initiator Protein NS1 and RPA Coordinate Replication Fork Progression in a Reconstituted DNA Replication System. J. Virol. 2002, 76, 6518–6531. [Google Scholar] [CrossRef] [Green Version]
- Tewary, S.K.; Liang, L.; Lin, Z.; Lynn, A.; Cotmore, S.F.; Tattersall, P.; Zhao, H.; Tang, L. Structures of Minute Virus of Mice Replication Initiator Protein N-Terminal Domain: Insights into DNA Nicking and Origin Binding. Virology 2015, 476, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Nam, H.-J.; Govindasamy, L.; Vogel, M.; Dinsart, C.; Salome, N.; McKenna, R.; Agbandje-McKenna, M. Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids. J. Virol. 2013, 87, 5128–5140. [Google Scholar] [CrossRef] [Green Version]
- Nüesch, J. Regulation of Non-Structural Protein Functions by Differential Synthesis, Modification and Trafficking. Parvoviruses 2005, 275–289. [Google Scholar] [CrossRef]
- Pujol, A.; Deleu, L.; Nüesch, J.P.F.; Cziepluch, C.; Jauniaux, J.C.; Rommelaere, J. Inhibition of Parvovirus Minute Virus of Mice Replication by a Peptide Involved in the Oligomerization of Nonstructural Protein NS1. J. Virol. 1997, 71, 7393–7403. [Google Scholar]
- Legendre, D.; Rommelaere, J. Targeting of Promoters for Trans Activation by a Carboxy-Terminal Domain of the NS-1 Protein of the Parvovirus Minute Virus of Mice. J. Virol. 1994, 68, 7974–7985. [Google Scholar] [PubMed]
- Liu, P.; Chen, S.; Wang, M.; Cheng, A. The Role of Nuclear Localization Signal in Parvovirus Life Cycle. Virol. J. 2017, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Corbau, R.; Duverger, V.; Rommelaere, J.; Nüesch, J.P.F. Regulation of MVM NS1 by Protein Kinase C: Impact of Mutagenesis at Consensus Phosphorylation Sites on Replicative Functions and Cytopathic Effects. Virology 2000, 278, 151–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettwiler, S.; Rommelaere, J.; Nüesch, J.P. DNA Unwinding Functions of Minute Virus of Mice NS1 Protein Are Modulated Specifically by the Lambda Isoform of Protein Kinase C. J. Virol. 1999, 73, 7410–7420. [Google Scholar]
- Daeffler, L.; Horlein, R.; Rommelaere, J.; Nuesch, J.P.F. Modulation of Minute Virus of Mice Cytotoxic Activities through Site-Directed Mutagenesis within the NS Coding Region. J. Virol. 2003, 77, 12466–12478. [Google Scholar] [CrossRef] [Green Version]
- Corbau, R.; Salom, N.; Rommelaere, J.; Nüesch, J.P. Phosphorylation of the Viral Nonstructural Protein NS1 during MVMp Infection of A9 Cells. Virology 1999, 259, 402–415. [Google Scholar] [CrossRef]
- Nüesch, J.P.; Christensen, J.; Rommelaere, J. Initiation of Minute Virus of Mice DNA Replication Is Regulated at the Level of Origin Unwinding by Atypical Protein Kinase C Phosphorylation of NS1. J. Virol. 2001, 75, 5730–5739. [Google Scholar] [CrossRef] [Green Version]
- Nüesch, J.P.F.; Rommelaere, J. Tumor Suppressing Properties of Rodent Parvovirus NS1 Proteins and Their Derivatives. Adv. Exp. Med. Biol. 2014, 818, 99–124. [Google Scholar] [CrossRef]
- Lachmann, S.; Rommeleare, J.; Nüesch, J.P.F. Novel PKCeta Is Required to Activate Replicative Functions of the Major Nonstructural Protein NS1 of Minute Virus of Mice. J. Virol. 2003, 77, 8048–8060. [Google Scholar] [CrossRef] [Green Version]
- Nüesch, J.P.F.; Lachmann, S.; Corbau, R.; Rommelaere, J. Regulation of Minute Virus of Mice NS1 Replicative Functions by Atypical PKClambda in Vivo. J. Virol. 2003, 77, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nüesch, J.P.F.; Tattersall, P. Nuclear Targeting of the Parvoviral Replicator Molecule NS1: Evidence for Self-Association Prior to Nuclear Transport. Virology 1993, 196, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J.; Benko, M.; Harrach, B. Genetic Content and Evolution of Adenoviruses. J. Gen. Virol. 2003, 84, 2895–2908. [Google Scholar] [CrossRef] [PubMed]
- Ghebremedhin, B. Human Adenovirus: Viral Pathogen with Increasing Importance. Eur. J. Microbiol. Immunol. 2014, 4, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, H.G.; Kelly, B. Dose-Response Curves of Toxic and Infective Actions of Adenovirus in HeLa Cell Cultures. J. Gen. Microbiol. 1957, 17, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.R.; Huebner, R.J.; Rowe, W.P.; Schatten, W.E.; Thomas, L.B. Studies on the Use of Viruses in the Treatment of Carcinoma of the Cervix. Cancer 1956, 9, 1211–1218. [Google Scholar] [CrossRef]
- Frisch, S.M.; Mymryk, J.S. Adenovirus-5 E1A: Paradox and Paradigm. Nat. Rev. Mol. Cell Biol. 2002, 3, 441–452. [Google Scholar] [CrossRef]
- Frisch, S.M. Antioncogenic Effect of Adenovirus E1A in Human Tumor Cells. Proc. Natl. Acad. Sci. USA 1991, 88, 9077–9081. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.T.; Broker, T.R.; Lewis, J.B. Complex Splicing Patterns of RNAs from the Early Regions of Adenovirus-2. J. Mol. Biol. 1979, 134, 265–303. [Google Scholar] [CrossRef]
- Perricaudet, M.; Akusjärvi, G.; Virtanen, A.; Pettersson, U. Structure of Two Spliced MRNAs from the Transforming Region of Human Subgroup C Adenoviruses. Nature 1979, 281, 694–696. [Google Scholar] [CrossRef]
- Pelka, P.; Ablack, J.N.G.; Fonseca, G.J.; Yousef, A.F.; Mymryk, J.S. Intrinsic Structural Disorder in Adenovirus E1A: A Viral Molecular Hub Linking Multiple Diverse Processes. J. Virol. 2008, 82, 7252–7263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clements, A.; Johnston, K.; Mazzarelli, J.M.; Ricciardi, R.P.; Marmorstein, R. Oligomerization Properties of the Viral Oncoproteins Adenovirus E1A and Human Papillomavirus E7 and Their Complexes with the Retinoblastoma Protein. Biochemistry 2000, 39, 16033–16045. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.J.; King, C.R.; Dikeakos, J.D.; Mymryk, J.S. Functional Analysis of the C-Terminal Region of Human Adenovirus E1A Reveals a Misidentified Nuclear Localization Signal. Virology 2014, 468, 238–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standiford, D.M.; Richter, J.D. Analysis of a Developmentally Regulated Nuclear Localization Signal in Xenopus. J. Cell Biol. 1992, 118, 991–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, K.S.; Cohen, M.J.; Fonseca, G.J.; Todorovic, B.; King, C.R.; Yousef, A.F.; Zhang, Z.; Mymryk, J.S. Identification and Characterization of Multiple Conserved Nuclear Localization Signals within Adenovirus E1A. Virology 2014, 454–455, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, M.; Görlich, D.; Hartmann, E.; Franke, J. Adenoviral E1A Protein Nuclear Import Is Preferentially Mediated by Importin A3 in Vitro. Virology 2001, 289, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D.T.; Graham, F.L.; Branton, P.E. Intracellular Localization of Adenovirus Type 5 Tumor Antigens in Productively Infected Cells. Virology 1983, 129, 456–468. [Google Scholar] [CrossRef]
- Whalen, S.G.; Marcellus, R.C.; Whalen, A.; Ahn, N.G.; Ricciardi, R.P.; Branton, P.E. Phosphorylation within the Transactivation Domain of Adenovirus E1A Protein by Mitogen-Activated Protein Kinase Regulates Expression of Early Region 4. J. Virol. 1997, 71, 3545–3553. [Google Scholar]
- Tremblay, M.L.; McGlade, C.J.; Gerber, G.E.; Branton, P.E. Identification of the Phosphorylation Sites in Early Region 1A Proteins of Adenovirus Type 5 by Amino Acid Sequencing of Peptide Fragments. J. Biol. Chem. 1988, 263, 6375–6383. [Google Scholar]
- Mal, A.; Piotrkowski, A.; Harter, M.L. Cyclin-Dependent Kinases Phosphorylate the Adenovirus E1A Protein, Enhancing Its Ability to Bind PRb and Disrupt PRb-E2F Complexes. J. Virol. 1996, 70, 2911–2921. [Google Scholar]
- Whalen, S.G.; Marcellus, R.C.; Barbeau, D.; Branton, P.E. Importance of the Ser-132 Phosphorylation Site in Cell Transformation and Apoptosis Induced by the Adenovirus Type 5 E1A Protein. J. Virol. 1996, 70, 5373–5383. [Google Scholar] [PubMed]
- Marcellus, R.C.; Teodoro, J.G.; Wu, T.; Brough, D.E.; Ketner, G.; Shore, G.C.; Branton, P.E. Adenovirus Type 5 Early Region 4 Is Responsible for E1A-Induced P53-Independent Apoptosis. J. Virol. 1996, 70, 6207–6215. [Google Scholar] [PubMed]
- Marcellus, R.C.; Lavoie, J.N.; Boivin, D.; Shore, G.C.; Branton, P.E.; Ketner, G. The Early Region 4 Orf4 Protein of Human Adenovirus Type 5 Induces P53- Independent Cell Death by Apoptosis. J. Virol. 1998, 72, 7144–7153. [Google Scholar] [PubMed]
- Shtrichman, R.; Sharf, R.; Barr, H.; Dobner, T.; Kleinberger, T. Induction of Apoptosis by Adenovirus E4orf4 Protein Is Specific to Transformed Cells and Requires an Interaction with Protein Phosphatase 2A. Proc. Natl. Acad. Sci. USA 1999, 96, 10080–10085. [Google Scholar] [CrossRef] [Green Version]
- Marcellus, R.C.; Chan, H.; Paquette, D.; Thirlwell, S.; Boivin, D.; Branton, P.E. Induction of P53-Independent Apoptosis by the Adenovirus E4orf4 Protein Requires Binding to the Balpha Subunit of Protein Phosphatase 2A. J. Virol. 2000, 74, 7869–7877. [Google Scholar] [CrossRef] [Green Version]
- Miron, M.-J.; Gallouzi, I.-E.; Lavoie, J.N.; Branton, P.E. Nuclear Localization of the Adenovirus E4orf4 Protein Is Mediated through an Arginine-Rich Motif and Correlates with Cell Death. Oncogene 2004, 23, 7458–7468. [Google Scholar] [CrossRef] [Green Version]
- Gingras, M.-C.; Champagne, C.; Roy, M.; Lavoie, J.N. Cytoplasmic Death Signal Triggered by Src-Mediated Phosphorylation of the Adenovirus E4orf4 Protein. Mol. Cell. Biol. 2002, 22, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Sen, B.; Johnson, F.M. Regulation of Src Family Kinases in Human Cancers. J. Signal Transduct. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Robert, A.; Miron, M.J.; Champagne, C.; Gingras, M.C.; Branton, P.E.; Lavoie, J.N. Distinct Cell Death Pathways Triggered by the Adenovirus Early Region 4 ORF 4 Protein. J. Cell Biol. 2002, 158, 519–528. [Google Scholar] [CrossRef]
- Horowitz, B.; Sharf, R.; Avital-Shacham, M.; Pechkovsky, A.; Kleinberger, T. Structure- and Modeling-Based Identification of the Adenovirus E4orf4 Binding Site in the Protein Phosphatase 2A B55α Subunit. J. Biol. Chem. 2013, 288, 13718–13727. [Google Scholar] [CrossRef] [Green Version]
- Lockshin, R.A.; Williams, C.M. Programmed Cell Death—I. Cytology of Degeneration in the Intersegmental Muscles of the Pernyi Silkmoth. J. Insect Physiol. 1965, 11, 123–133. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; et al. Classification of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef] [PubMed]
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Kepp, O.; Kroemer, G. Mitochondrial Regulation of Cell Death: A Phylogenetically Conserved Control. Microb. Cell 2016, 3, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnemri, E.S.; Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Wang, X. Cytochrome c and DATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade. Cell 1997, 91, 479–489. [Google Scholar]
- Fu, Q.; Fu, T.-M.; Cruz, A.C.; Sengupta, P.; Thomas, S.K.; Wang, S.; Siegel, R.M.; Wu, H.; Chou, J.J. Structural Basis and Functional Role of Intramembrane Trimerization of the Fas/CD95 Death Receptor. Mol. Cell 2016, 61, 602–613. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.-M.; Li, Y.; Lu, A.; Li, Z.; Vajjhala, P.R.; Cruz, A.C.; Srivastava, D.B.; DiMaio, F.; Penczek, P.A.; Siegel, R.M.; et al. Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Mol. Cell 2016, 64, 236–250. [Google Scholar] [CrossRef] [Green Version]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. 2013, 5, 1–28. [Google Scholar] [CrossRef]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019, 50, 1352–1364. [Google Scholar] [CrossRef]
- Burek, M.; Maddika, S.; Burek, C.J.; Daniel, P.T.; Schulze-Osthoff, K.; Los, M. Apoptin-Induced Cell Death Is Modulated by Bcl-2 Family Members and Is Apaf-1 Dependent. Oncogene 2006, 25, 2213–2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaabane, W.; Cieślar-Pobuda, A.; El-Gazzah, M.; Jain, M.V.; Rzeszowska-Wolny, J.; Rafat, M.; Stetefeld, J.; Ghavami, S.; Łos, M.J. Human-Gyrovirus-Apoptin Triggers Mitochondrial Death Pathway-Nur77 Is Required for Apoptosis Triggering. Neoplasia 2014, 16, 679–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, G.; Kramer, M.; Li, J.; El-Andaloussi, N.; Mora, R.; Daeffler, L.; Zentgraf, H.; Rommelaere, J.; Marchini, A. Through Its Nonstructural Protein NS1, Parvovirus H-1 Induces Apoptosis via Accumulation of Reactive Oxygen Species. J. Virol. 2010, 84, 5909–5922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pützer, B.M.; Stiewe, T.; Parssanedjad, K.; Rega, S.; Esche, H. E1A Is Sufficient by Itself to Induce Apoptosis Independent of P53 and Other Adenoviral Gene Products. Cell Death Differ. 2000, 7, 177–188. [Google Scholar] [CrossRef]
- Lavoie, J.N.; Nguyen, M.; Marcellus, R.C.; Branton, P.E.; Shore, G.C. E4orf4, a Novel Adenovirus Death Factor That Induces P53-Independent Apoptosis by a Pathway That Is Not Inhibited by ZVAD-Fmk. J. Cell Biol. 1998, 140, 637–645. [Google Scholar] [CrossRef]
- Livne, A.; Shtrichman, R.; Kleinberger, T. Caspase Activation by Adenovirus E4orf4 Protein Is Cell Line Specific and Is Mediated by the Death Receptor Pathway. J. Virol. 2001, 75, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Danen-Van Oorschot, A.A.A.M.; van Der Eb, A.J.; Noteborn, M.H.M. The Chicken Anemia Virus-Derived Protein Apoptin Requires Activation of Caspases for Induction of Apoptosis in Human Tumor Cells. J. Virol. 2000, 74, 7072–7078. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, H.; Ma, Z.; Fan, W.; Li, Y.; Han, B.; Zhang, Z.; Wang, J. TAT-Apoptin Induces Apoptosis in the Human Bladder Cancer EJ Cell Line and Regulates Bax, Bcl-2, Caspase-3 and Survivin Expression. Exp. Ther. Med. 2012, 3, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Elojeimy, S.; El-Zawahry, A.M.; Holman, D.H.; Bielawska, A.; Bielawski, J.; Rubinchik, S.; Guo, G.W.; Dong, J.Y.; Keane, T.; et al. Modulation of Ceramide Metabolism Enhances Viral Protein Apoptin’s Cytotoxicity in Prostate Cancer. Mol. Ther. 2006, 14, 637–646. [Google Scholar] [CrossRef]
- Radke, J.R.; Siddiqui, Z.K.; Figueroa, I.; Cook, J.L. E1A Enhances Cellular Sensitivity to DNA-Damage-Induced Apoptosis through PIDD-Dependent Caspase-2 Activation. Cell Death Discov. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, B.; Ramirez, A.; Carrillo, E.; Jimenez, G.; Griñán-Lisón, C.; López-Ruiz, E.; Jiménez-Martínez, Y.; Marchal, J.; Boulaiz, H. Deciphering the Mechanism of Action Involved in Enhanced Suicide Gene Colon Cancer Cell Killer Effect Mediated by Gef and Apoptin. Cancers 2019, 11, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddika, S.; Booy, E.P.; Johar, D.; Gibson, S.B.; Ghavami, S.; Los, M. Cancer-Specific Toxicity of Apoptin Is Independent of Death Receptors but Involves the Loss of Mitochondrial Membrane Potential and the Release of Mitochondrial Cell-Death Mediators by a Nur77-Dependent Pathway. J. Cell Sci. 2005, 118, 4485–4493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danen-Van Oorschot, A.A.A.M.; Zhang, Y.; Erkeland, S.; Fischer, D.; van der Eb, A.; Noteborn, M. The Effect of Bcl-2 on Apoptin in “normal” vs Transformed Human Cells. Leukemia 1999, 13, 75–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danen-Van Oorschot, A.A.A.M.; Van Der Eb, A.J.; Noteborn, M.H.M. BCL-2 Stimulates Apoptin-Induced Apoptosis. Adv. Exp. Med. Biol. 1999, 457, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Debbas, M.; Sabbatini, P.; Hockenbery, D.; Korsmeyer, S.; White, E. The Adenovirus E1A Proteins Induce Apoptosis, Which Is Inhibited by the E1B 19-KDa and Bcl-2 Proteins. Proc. Natl. Acad. Sci. USA 1992, 89, 7742–7746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajpal, A.; Cho, Y.A.; Yelent, B.; Koza-Taylor, P.H.; Li, D.; Chen, E.; Whang, M.; Kang, C.; Turi, T.G.; Winoto, A. Transcriptional Activation of Known and Novel Apoptotic Pathways by Nur77 Orphan Steroid Receptor. EMBO J. 2003, 22, 6526–6536. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.D.; Yoon, K.; Chintharlapalli, S.; Abdelrahim, M.; Lei, P.; Hamilton, S.; Khan, S.; Ramaiah, S.K.; Safe, S. Nur77 Agonists Induce Proapoptotic Genes and Responses in Colon Cancer Cells through Nuclear Receptor-Dependent and Nuclear Receptor-Independent Pathways. Cancer Res. 2007, 67, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Lindenboim, L.; Borner, C.; Stein, R. Nuclear Proteins Acting on Mitochondria. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 584–596. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Chen, L. Characteristics of Nur77 and Its Ligands as Potential Anticancer Compounds (Review). Mol. Med. Rep. 2018, 18, 4793–4801. [Google Scholar] [CrossRef]
- Banta, K.L.; Wang, X.; Das, P.; Winoto, A. B Cell Lymphoma 2 (Bcl-2) Residues Essential for Bcl-2’s Apoptosis-Inducing Interaction with Nur77/Nor-1 Orphan Steroid Receptors. J. Biol. Chem. 2018, 293, 4724–4734. [Google Scholar] [CrossRef] [Green Version]
- Sohn, Y.C.; Kwak, E.; Na, Y.; Lee, J.W.; Lee, S.K. Silencing Mediator of Retinoid and Thyroid Hormone Receptors and Activating Signal Cointegrator-2 as Transcriptional Coregulators of the Orphan Nuclear Receptor Nur77. J. Biol. Chem. 2001, 276, 43734–43739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guelen, L.; Paterson, H.; Gäken, J.; Meyers, M.; Farzaneh, F.; Tavassoli, M. TAT-Apoptin Is Efficiently Delivered and Induces Apoptosis in Cancer Cells. Oncogene 2004, 23, 1153–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, D.; White, E. E1A Sensitizes Cells to Tumor Necrosis Factor Alpha by Downregulating C-FLIP S. J. Virol. 2003, 77, 2651–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, T.; Nakagawara, A. Role of P53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef]
- Teodoro, J.G.; Shore, G.C.; Branton, P.E. Adenovirus E1A Proteins Induce Apoptosis by Both P53-Dependent and P53-Independent Mechanisms. Oncogene 1995, 11, 467–474. [Google Scholar]
- Mincberg, M.; Gopas, J.; Tal, J. Minute Virus of Mice (MVMp) Infection and NS1 Expression Induce P53 Independent Apoptosis in Transformed Rat Fibroblast Cells. Virology 2011, 412, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Perri, F.; Pisconti, S.; Della Vittoria Scarpati, G. P53 Mutations and Cancer: A Tight Linkage. Ann. Transl. Med. 2016, 4, 522. [Google Scholar] [CrossRef]
- Evan, G.I.; Brown, L.; Whyte, M.; Harrington, E. Apoptosis and the Cell Cycle. Curr. Opin. Cell Biol. 1995, 7, 825–834. [Google Scholar] [CrossRef]
- Huang, H.-C.; Shi, J.; Orth, J.D.; Mitchison, T.J. Evidence That Mitotic Exit Is a Better Cancer Therapeutic Target than Spindle Assembly. Cancer Cell 2009, 16, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Sigoillot, F.; Gaur, S.; Choi, S.; Pfaff, K.L.; Oh, D.-C.; Hathaway, N.; Dimova, N.; Cuny, G.D.; King, R.W. Pharmacologic Inhibition of the Anaphase-Promoting Complex Induces a Spindle Checkpoint-Dependent Mitotic Arrest in the Absence of Spindle Damage. Cancer Cell 2010, 18, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, J.G.; Heilman, D.W.; Parker, A.E.; Green, M.R. The Viral Protein Apoptin Associates with the Anaphase-Promoting Complex to Induce G2/M Arrest and Apoptosis in the Absence of P53. Genes Dev. 2004, 18, 1952–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaabane, W.; Ghavami, S.; Małecki, A.; Łos, M.J. Human Gyrovirus-Apoptin Interferes with the Cell Cycle and Induces G2/M Arrest Prior to Apoptosis. Arch. Immunol. Ther. Exp. 2017, 65, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Kornitzer, D.; Sharf, R.; Kleinberger, T. Adenovirus E4orf4 Protein Induces PP2A-Dependent Growth Arrest in Saccharomyces Cerevisiae and Interacts with the Anaphase-Promoting Complex/Cyclosome. J. Cell Biol. 2001, 154, 331–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Op De Beeck, A.; Sobczak-Thepot, J.; Sirma, H.; Bourgain, F.; Brechot, C.; Caillet-Fauquet, P. NS1- and Minute Virus of Mice-Induced Cell Cycle Arrest: Involvement of P53 and P21cip1. J. Virol. 2001, 75, 11071–11078. [Google Scholar] [CrossRef] [Green Version]
- Lanz, H.L.; Zimmerman, R.M.E.; Brouwer, J.; Noteborn, M.H.M.; Backendorf, C. Mitotic Catastrophe Triggered in Human Cancer Cells by the Viral Protein Apoptin. Cell Death Dis. 2013, 4, e487. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, C.; Zhang, S.; Barford, D. Visualizing the Complex Functions and Mechanisms of the Anaphase Promoting Complex/Cyclosome (APC/C). Open Biol. 2017, 7, 170204. [Google Scholar] [CrossRef]
- Turnell, A.S.; Stewart, G.S.; Grand, R.J.A.; Rookes, S.M.; Martin, A.; Yamano, H.; Elledge, S.J.; Gallimore, P.H. The APC/C and CBP/P300 Cooperate to Regulate Transcription and Cell-Cycle Progression. Nature 2005, 438, 690–695. [Google Scholar] [CrossRef]
- Liu, J.; Fuchs, S.Y. Cross-Talk between APC/C and CBP/P300. Cancer Biol. Ther. 2006, 5, 760–762. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.C.; Stone, N.L.; Pittman, R.N. Extranuclear Apoptosis. The Role of the Cytoplasm in the Execution Phase. J. Cell Biol. 1999, 146, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Gourlay, C.W.; Ayscough, K.R. The Actin Cytoskeleton: A Key Regulator of Apoptosis and Ageing? Nat. Rev. Mol. Cell Biol. 2005, 6, 583–589. [Google Scholar] [CrossRef]
- Robert, A.; Smadja-Lamère, N.; Landry, M.C.; Champagne, C.; Petrie, R.; Lamarche-Vane, N.; Hosoya, H.; Lavoie, J.N. Adenovirus E4orf4 Hijacks Rho GTPase-Dependent Actin Dynamics to Kill Cells: A Role for Endosome-Associated Actin Assembly. Mol. Biol. Cell 2006, 17, 3329–3344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellett, A.J.; Jackson, P.; David, E.T.; Bennett, E.J.; Cronin, B. Functions of the Two Adenovirus Early E1A Proteins and Their Conserved Domains in Cell Cycle Alteration, Actin Reorganization, and Gene Activation in Rat Cells. J. Virol. 1989, 63, 303–310. [Google Scholar] [PubMed]
- Nüesch, J.P.F.; Lachmann, S.; Rommelaere, J. Selective Alterations of the Host Cell Architecture upon Infection with Parvovirus Minute Virus of Mice. Virology 2005, 331, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohmann, T.; Dehghani, F. The Cytoskeleton—A Complex Interacting Meshwork. Cells 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, R.S.; Quinlan, M.P. While E1A Can Facilitate Epithelial Cell Transformation by Several Dominant Oncogenes, the C-Terminus Seems Only to Regulate Rac and Cdc42 Function, but in Both Epithelial and Fibroblastic Cells. Virology 2000, 269, 404–419. [Google Scholar] [CrossRef] [Green Version]
- Nüesch, J.P.F.; Rommelaere, J. NS1 Interaction with CKII Alpha: Novel Protein Complex Mediating Parvovirus-Induced Cytotoxicity. J. Virol. 2006, 80, 4729–4739. [Google Scholar] [CrossRef] [Green Version]
- Bär, S.; Daeffler, L.; Rommelaere, J.; Nüesch, J.P.F. Vesicular Egress of Non-Enveloped Lytic Parvoviruses Depends on Gelsolin Functioning. PLoS Pathog. 2008, 4. [Google Scholar] [CrossRef]
- Fruman, D.A.; Rommel, C. PI3K and Cancer: Lessons, Challenges and Opportunities. Nat. Rev. Drug Discov. 2014, 13, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Davis, W.J.; Lehmann, P.Z.; Li, W. Nuclear PI3K Signaling in Cell Growth and Tumorigenesis. Front. Cell Dev. Biol. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Aki, T.; Yamaguchi, K.; Fujimiya, T.; Mizukami, Y. Phosphoinositide 3-Kinase Accelerates Autophagic Cell Death during Glucose Deprivation in the Rat Cardiomyocyte-Derived Cell Line H9c2. Oncogene 2003, 22, 8529–8535. [Google Scholar] [CrossRef] [Green Version]
- Shack, S.; Wang, X.-T.; Kokkonen, G.C.; Gorospe, M.; Longo, D.L.; Holbrook, N.J. Caveolin-Induced Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Increases Arsenite Cytotoxicity. Mol. Cell. Biol. 2003, 23, 2407–2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Wang, L.; Stehlik, C.; Medan, D.; Huang, C.; Hu, S.; Chen, F.; Shi, X.; Rojanasakul, Y. Phosphatidylinositol 3-Kinase/Akt Positively Regulates Fas (CD95)-Mediated Apoptosis in Epidermal Cl41 Cells. J. Immunol. 2006, 176, 6785–6793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddika, S.; Bay, G.H.; Kroczak, T.J.; Ande, S.R.; Maddika, S.; Wiechec, E.; Gibson, S.B.; Los, M. Akt Is Transferred to the Nucleus of Cells Treated with Apoptin, and It Participates in Apoptin-Induced Cell Death. Cell Prolif. 2007, 40, 835–848. [Google Scholar] [CrossRef] [Green Version]
- Maddika, S.; Wiechec, E.; Ande, S.R.; Poon, I.K.; Fischer, U.; Wesselborg, S.; Jans, D.A.; Schulze-Osthoff, K.; Los, M. Interaction with PI3-Kinase Contributes to the Cytotoxic Activity of Apoptin. Oncogene 2008, 27, 3060–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddika, S.; Panigrahi, S.; Wiechec, E.; Wesselborg, S.; Fischer, U.; Schulze-Osthoff, K.; Los, M. Unscheduled Akt-Triggered Activation of Cyclin-Dependent Kinase 2 as a Key Effector Mechanism of Apoptin’s Anticancer Toxicity. Mol. Cell. Biol. 2009, 29, 1235–1248. [Google Scholar] [CrossRef] [Green Version]
- Shimwell, N.J.; Martin, A.; Bruton, R.K.; Blackford, A.N.; Sedgwick, G.G.; Gallimore, P.H.; Turnell, A.S.; Grand, R.J.A. Adenovirus 5 E1A Is Responsible for Increased Expression of Insulin Receptor Substrate 4 in Established Adenovirus 5-Transformed Cell Lines and Interacts with IRS Components Activating the PI3 Kinase/Akt Signalling Pathway. Oncogene 2009, 28, 686–697. [Google Scholar] [CrossRef] [Green Version]
- Flinterman, M.; Gäken, J.; Farzaneh, F.; Tavassoli, M. E1A-Mediated Suppression of EGFR Expression and Induction of Apoptosis in Head and Neck Squamous Carcinoma Cell Lines. Oncogene 2003, 22, 1965–1977. [Google Scholar] [CrossRef]
- Liao, Y.; Hung, M.C. A New Role of Protein Phosphatase 2A in Adenoviral E1A Protein-Mediated Sensitization to Anticancer Drug-Induced Apoptosis in Human Breast Cancer Cells. Cancer Res. 2004, 64, 5938–5942. [Google Scholar] [CrossRef] [Green Version]
- Colle, J.H.; Garcia, A. A New Structured Helical DPT-Peptide Containing a Short Canine Adenovirus E4orf4 PP2A1-Binding Sequence Inhibits the PI3k Survival Pathway in Human Radio-Resistant U87G Glioblastoma Cells. Curr. Top. Pharmacol. 2017, 21, 49–54. [Google Scholar]
- Rosen, H.; Sharf, R.; Pechkovsky, A.; Salzberg, A.; Kleinberger, T. Selective Elimination of Cancer Cells by the Adenovirus E4orf4 Protein in a Drosophila Cancer Model: A New Paradigm for Cancer Therapy. Cell Death Dis. 2019, 10, 455. [Google Scholar] [CrossRef]
- O’Shea, C.; Klupsch, K.; Choi, S.; Bagus, B.; Soria, C.; Shen, J.; McCormick, F.; Stokoe, D. Adenoviral Proteins Mimic Nutrient/Growth Signals to Activate the MTOR Pathway for Viral Replication. EMBO J. 2005, 24, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leliveld, S.R.; Dame, R.T.; Rohn, J.L.; Noteborn, M.H.M.; Abrahams, J.P. Apoptin’s Functional N- and C-Termini Independently Bind DNA. FEBS Lett. 2004, 557, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Leliveld, S.R.; Dame, R.T.; Mommaas, M.A.; Koerten, H.K.; Wyman, C.; Danen-Van Oorschot, A.A.A.M.; Rohn, J.L.; Noteborn, M.H.M.; Abrahams, J.P. Apoptin Protein Multimers Form Distinct Higher-Order Nucleoprotein Complexes with DNA. Nucleic Acids Res. 2003, 31, 4805–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brestovitsky, A.; Sharf, R.; Mittelman, K.; Kleinberger, T. The Adenovirus E4orf4 Protein Targets PP2A to the ACF Chromatin-Remodeling Factor and Induces Cell Death through Regulation of SNF2h-Containing Complexes. Nucleic Acids Res. 2011, 39, 6414–6427. [Google Scholar] [CrossRef] [PubMed]
- De Beeck, A.O.; Caillet-Fauquet, P. The NS1 Protein of the Autonomous Parvovirus Minute Virus of Mice Blocks Cellular DNA Replication: A Consequence of Lesions to the Chromatin? J. Virol. 1997, 71, 5323–5329. [Google Scholar] [PubMed]
- Nayerossadat, N.; Ali, P.; Maedeh, T. Viral and Nonviral Delivery Systems for Gene Delivery. Adv. Biomed. Res. 2012, 1, 27. [Google Scholar] [CrossRef]
- Lian, H.; Jin, N.; Li, X.; Mi, Z.; Zhang, J.; Sun, L.; Li, X.; Zheng, H.; Li, P. Induction of an Effective Anti-Tumor Immune Response and Tumor Regression by Combined Administration of IL-18 and Apoptin. Cancer Immunol. Immunother. 2007, 56, 181–192. [Google Scholar] [CrossRef]
- Mitrus, I.; Missol-Kolka, E.; Plucienniczak, A.; Szala, S. Tumour Therapy with Genes Encoding Apoptin and E4orf4. Anticancer Res. 2005, 25, 1087–1090. [Google Scholar]
- Wu, F.; Liu, Y.; Li, J.; Hou, L.; Lei, F.; Huang, S.; Feng, L.; Zhao, X. Human Serum Albumin-Mediated Apoptin Delivery Suppresses Breast Cancer Cell Growth in Vitro and in Vivo. Oncol. Lett. 2017, 13, 579–586. [Google Scholar] [CrossRef]
- Bae, Y.; Thuy, L.T.; Lee, Y.H.; Ko, K.S.; Han, J.; Choi, J.S. Polyplexes of Functional PAMAM Dendrimer/Apoptin Gene Induce Apoptosis of Human Primary Glioma Cells in Vitro. Polymers 2019, 11, 296. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Matin, A.; Xia, W.; Sorgi, F.; Huang, L.; Hung, M.C. Liposome-Mediated in Vivo E1A Gene Transfer Suppressed Dissemination of Ovarian Cancer Cells That Overexpress HER-2/Neu. Oncogene 1995, 11, 1383–1388. [Google Scholar] [PubMed]
- Yoo, G.H.; Hung, M.C.; Lopez-Berestein, G.; LaFollette, S.; Ensley, J.F.; Carey, M.; Batson, E.; Reynolds, T.C.; Murray, J.L. Phase I Trial of Intratumoral Liposome E1A Gene Therapy in Patients with Recurrent Breast and Head and Neck Cancer. Clin. Cancer Res. 2001, 7, 1237–1245. [Google Scholar] [PubMed]
- Pietersen, A.M.; van der Eb, M.M.; Rademaker, H.J.; van den Wollenberg, D.J.M.; Rabelink, M.J.W.E.; Kuppen, P.J.K.; Van Dierendonck, J.H.; Van Ormondt, H.; Masman, D.; Van De Velde, C.J.H.; et al. Specific Tumor-Cell Killing with Adenovirus Vectors Containing the Apoptin Gene. Gene Ther. 1999, 6, 882–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoop, R.A.L.; Baatenburg de Jong, R.J.; Noteborn, M.H.M. Apoptin Induces Apoptosis in an Oral Cancer Mouse Model. Cancer Biol. Ther. 1368, 7, 1368–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Eb, M.M.; Pietersen, A.M.; Speetjens, F.M.; Kuppen, P.P.J.K.; Van de Velde, C.J.H.; Noteborn, M.H.M.; Hoeben, R.C. Gene Therapy with Apoptin Induces Regression of Xenografted Human Hepatomas. Cancer Gene Ther. 2002, 9, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Wolkersdörfer, G.W.; Morris, J.C.; Ehninger, G.; Ramsey, W.J. Trans-Complementing Adenoviral Vectors for Oncolytic Therapy of Malignant Melanoma. J. Gene Med. 2004, 6, 652–662. [Google Scholar] [CrossRef]
- Liu, L.; Wu, W.; Zhu, G.; Liu, L.; Guan, G.; Li, X.; Jin, N.; Chi, B. Therapeutic Efficacy of an HTERT Promoter-Driven Oncolytic Adenovirus That Expresses Apoptin in Gastric Carcinoma. Int. J. Mol. Med. 2012, 30, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.J.; Qian, J.; Wang, S.B.; Yang, Y. Targeting Gene-Viro-Therapy with AFP Driving Apoptin Gene Shows Potent Antitumor Effect in Hepatocarcinoma. J. Biomed. Sci. 2012, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Y.; Wen, Z.; Li, C.; Lu, H.; Tian, M.; Jin, K.; Sun, L.; Gao, P.; Yang, E.; et al. Potent Anti-Tumor Effects of a Dual Specific Oncolytic Adenovirus Expressing Apoptin in Vitro and in Vivo. Mol. Cancer 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Itamochi, H.; Kigawa, J.; Kanamori, Y.; Oishi, T.; Bartholomeusz, C.; Nahta, R.; Esteva, F.J.; Sneige, N.; Terakawa, N.; Ueno, N.T. Adenovirus Type 5 E1A Gene Therapy for Ovarian Clear Cell Carcinoma: A Potential Treatment Strategy. Mol. Cancer Ther. 2007, 6, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y.-P.; Kim, H.-S.; Bae, K.-H.; Stantz, K.M.; Lee, S.-J.; Jung, C.; Jiménez, J.A.; Gardner, T.A.; Jeng, M.-H.; et al. Gene Therapy for Prostate Cancer by Controlling Adenovirus E1a and E4 Gene Expression with PSES Enhancer. Cancer Res. 2005, 65, 1941–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, T.; Sakhawat, A.; Khan, A.A.; Ma, L.; Gjerset, R.A.; Huang, Y. Mesenchymal Stem Cell-Mediated Delivery of Therapeutic Adenoviral Vectors to Prostate Cancer. Stem Cell Res. Ther. 2019, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yao, W.; He, D.; Xu, Y.; Li, Y.; Zhu, Y.; Fang, J.; Bai, B.; Li, X.; Sun, L.; et al. A Dual Cancer-Specific Recombinant Adenovirus Suppresses the Growth of Liver Cancer Cells in Vivo and in Vitro. Anticancer Drugs 2019, 1. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.L.; Han, S.X.; Zhao, J.; Zhang, D.; Wang, L.; Li, Y.D.; Zhu, Q. Systemic Delivery of Lentivirus-Mediated Secretable TAT-Apoptin Eradicates Hepatocellular Carcinoma Xenografts in Nude Mice. Int. J. Oncol. 2012, 41, 1013–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Zhong, B.; Dan, G.; Jiang, F.; Sai, Y.; Zhao, J.; Sun, H.; Zou, Z. Therapeutic Anti-Tumor Effect of Exogenous Apoptin Driven by Human Survivin Gene Promoter in a Lentiviral Construct. Arch. Med. Sci. 2013, 9, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Fang, L.; Fan, H.; Luo, R.; Zhao, Q.; Chen, H.; Xiao, S. Antitumor Effects of a Recombinant Pseudotype Baculovirus Expressing Apoptin in Vitro and in Vivo. Int. J. Cancer 2010, 126, 2741–2751. [Google Scholar] [CrossRef] [PubMed]
- Nemunaitis, J.; Ganly, I.; Khuri, F.; Arseneau, J.; Kuhn, J.; McCarty, T.; Landers, S.; Maples, P.; Romel, L.; Randlev, B.; et al. Selective Replication and Oncolysis in P53 Mutant Tumors with ONYX-015, an E1B-55kD Gene-Deleted Adenovirus, in Patients with Advanced Head and Neck Cancer: A Phase II Trial. Cancer Res. 2000, 60, 6359–6366. [Google Scholar]
- Koski, A.; Kangasniemi, L.; Escutenaire, S.; Pesonen, S.; Cerullo, V.; Diaconu, I.; Nokisalmi, P.; Raki, M.; Rajecki, M.; Guse, K.; et al. Treatment of Cancer Patients with a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF. Mol. Ther. 2010, 18, 1874–1884. [Google Scholar] [CrossRef]
- Ranki, T.; Pesonen, S.; Hemminki, A.; Partanen, K.; Kairemo, K.; Alanko, T.; Lundin, J.; Linder, N.; Turkki, R.; Ristimäki, A.; et al. Phase I Study with ONCOS-102 for the Treatment of Solid Tumors - an Evaluation of Clinical Response and Exploratory Analyses of Immune Markers. J. Immunother. Cancer 2016, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Rommelaere, J.; Geletneky, K.; Angelova, A.L.; Daeffler, L.; Dinsart, C.; Kiprianova, I.; Schlehofer, J.R.; Raykov, Z. Oncolytic Parvoviruses as Cancer Therapeutics. Cytokine Growth Factor Rev. 2010, 21, 185–195. [Google Scholar] [CrossRef]
- Geletneky, K.; Huesing, J.; Rommelaere, J.; Schlehofer, J.R.; Leuchs, B.; Dahm, M.; Krebs, O.; von Knebel Doeberitz, M.; Huber, B.; Hajda, J. Phase I/IIa Study of Intratumoral/Intracerebral or Intravenous/Intracerebral Administration of Parvovirus H-1 (ParvOryx) in Patients with Progressive Primary or Recurrent Glioblastoma Multiforme: ParvOryx01 Protocol. BMC Cancer 2012, 12, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajda, J.; Lehmann, M.; Krebs, O.; Kieser, M.; Geletneky, K.; Jäger, D.; Dahm, M.; Huber, B.; Schöning, T.; Sedlaczek, O.; et al. A Non-Controlled, Single Arm, Open Label, Phase II Study of Intravenous and Intratumoral Administration of ParvOryx in Patients with Metastatic, Inoperable Pancreatic Cancer: ParvOryx02 Protocol. BMC Cancer 2017, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flinterman, M.; Farzaneh, F.; Habib, N.; Malik, F.; Gäken, J.; Tavassoli, M. Delivery of Therapeutic Proteins as Secretable TAT Fusion Products. Mol. Ther. 2009, 17, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Flinterman, M.; Guelen, L.; Ezzati-Nik, S.; Killick, R.; Melino, G.; Tominaga, K.; Mymryk, J.S.; Gäken, J.; Tavassoli, M. E1A Activates Transcription of P73 and Noxa to Induce Apoptosis. J. Biol. Chem. 2005, 280, 5945–5959. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Yan, Y.; Wang, X.T.; Liu, X.W.; Peng, D.J.; Wang, M.; Tian, J.; Zong, Y.Q.; Zhang, Y.H.; Noteborn, M.H.M.; et al. PTD4-Apoptin Protein Therapy Inhibits Tumor Growth in Vivo. Int. J. Cancer 2009, 124, 2973–2981. [Google Scholar] [CrossRef]
- Jin, J.L.; Gong, J.; Yin, T.J.; Lu, Y.J.; Xia, J.J.; Xie, Y.Y.; Di, Y.; He, L.; Guo, J.L.; Sun, J.; et al. PTD4-Apoptin Protein and Dacarbazine Show a Synergistic Antitumor Effect on B16-F1 Melanoma in Vitro and in Vivo. Eur. J. Pharmacol. 2011, 654, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Wu, J.; Qin, Y.-Y.; Zhao, X.-L.; Ding, Y.; Sun, L.-S.; He, T.; Huang, X.-W.; Liu, C.-B.; Wang, H. Novel Peptide MT23 for Potent Penetrating and Selective Targeting in Mouse Melanoma Cancer Cells. Eur. J. Pharm. Biopharm. 2017, 120, 80–88. [Google Scholar] [CrossRef]
- Wang, H.; Ma, J.-L.; Yang, Y.-G.; Song, Y.; Wu, J.; Qin, Y.-Y.; Zhao, X.-L.; Wang, J.; Zou, L.-L.; Wu, J.-F.; et al. Efficient Therapeutic Delivery by a Novel Cell-Permeant Peptide Derived from KDM4A Protein for Antitumor and Antifibrosis. Oncotarget 2016, 7, 49075–49090. [Google Scholar] [CrossRef] [Green Version]
- Galioot, A.; Godet, A.N.; Maire, V.; Falanga, P.B.; Cayla, X.; Baron, B.; England, P.; Garcia, A. Transducing Properties of a Pre-Structured α-Helical DPT-Peptide Containing a Short Canine Adenovirus Type 2 E4orf4 PP2A1-Binding Sequence. Biochim. Biophys. Acta 2013, 1830, 3578–3583. [Google Scholar] [CrossRef]
- Wang, D.-M.; Zhou, Y.; Xie, H.-J.; Ma, X.-L.; Wang, X.; Chen, H.; Huang, B.-R. Cytotoxicity of a Recombinant Fusion Protein of Adenovirus Early Region 4 Open Reading Frame 4 (E4orf4) and Human Epidermal Growth Factor on P53-Deficient Tumor Cells. Anticancer Drugs 2006, 17, 527–537. [Google Scholar] [CrossRef]
Protein | Viral Origin | Year Isolated | Therapeutic Status |
---|---|---|---|
Apoptin | Chicken Anaemia Virus | 1979 [4] | Preclinical stage |
Human Gyrovirus | 2011 [5] | Preclinical stage | |
Taip | Torque Teno Virus | 1997 [6] | Little preclinical evidence |
Ns1 | Parvovirus H1 | 1960 [7] | Clinical trial phase II |
Mice Minute Virus | 1966 [8] | Preclinical stage | |
E4orf4 | Adenovirus | 1953 [9] | Clinical trial phase III (in combination) |
E1a | Adenovirus |
Protein | Modification | Enzyme | Ref |
---|---|---|---|
CAV-Apoptin | T 106, 107 and 108 | PKCβ1 | [18] |
T 56 | Cdk1/2 | [20] | |
NS1 | T435, S473 | PKCλ | [46] |
S283, T403, T585 S588 | PKC * | [45] | |
E1A | S89, S96, S132 and S219 | Unknown | [69] |
S185 and S188 | MAPK | [69] | |
S132 | CkII | [72] | |
E4orf4 | Y26, Y42 and Y59 | Src kinases | [78] |
Characteristics | Apoptin | Ns1 | E4orf4 | E1a |
---|---|---|---|---|
Intrinsically disordered structure | Yes | No | Yes | Yes |
PTM’s in the form of phosphorylation | Yes | Yes | Yes | Yes |
Nuclear localisation | Yes | Yes | Yes | Yes |
Multimerization | Yes | Yes | Unknown | Yes |
P53-Independent Death | Yes | Yes | Yes | Yes |
Activation of Caspases | Yes | Yes | Yes | Yes |
Cytoskeleton Re-Arrangement | Yes | Yes | Yes | Yes |
Alterations in PI3K pathway | Yes | Unknown | Yes | Yes |
DNA interactions | Yes | Yes | Unknown | Unknown |
Method | Apoptin | E4orf4 | E1A | NS1 | |
---|---|---|---|---|---|
Viral-Delivery of DNA | Adenovirus | Yes | Yes | Yes | Yes |
Lentivirus | Yes | / | / | / | |
Baculovirus | Yes | / | / | / | |
Non-Viral Delivery of DNA | Direct injection | Yes | / | / | / |
Electroporation | Yes | Yes | / | / | |
Polymer coupled | Yes | / | / | / | |
Liposomal | / | / | Yes | / | |
Protein Therapy | CPP/PTD’s | Yes | Yes | Yes | / |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyatt, J.; Müller, M.M.; Tavassoli, M. Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers 2019, 11, 1975. https://doi.org/10.3390/cancers11121975
Wyatt J, Müller MM, Tavassoli M. Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers. 2019; 11(12):1975. https://doi.org/10.3390/cancers11121975
Chicago/Turabian StyleWyatt, Jasmine, Manuel M. Müller, and Mahvash Tavassoli. 2019. "Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death" Cancers 11, no. 12: 1975. https://doi.org/10.3390/cancers11121975
APA StyleWyatt, J., Müller, M. M., & Tavassoli, M. (2019). Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers, 11(12), 1975. https://doi.org/10.3390/cancers11121975