Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Combating Hypoxia in Pancreatic Cancer
3.2. Hypoxia Activated Prodrug
3.3. HAPs Limitations and Future Work
3.4. Stereotactic Body Radiation Therapy
3.5. Proton Therapy
3.6. Carbon Ion
3.7. Gaps in Particle Therapy for Pancreatic Cancer
3.8. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Availability of Data and Materials
Appendix A
Search Term | Hits | |
---|---|---|
1 | (proton therap * or proton beam * or proton pencil beam *).mp. | 6280 |
2 | (carbon ion therap * or carbon beam *).mp. | 425 |
3 | 1 or 2 | 6594 |
4 | (Radiol * or radiotherapy * or radiation therap * or chemoradio * or Radiosurger * or stereotactic * or SBRT or SABR or ablative * or dose escalat * or dose-escalat *).mp. | 719,296 |
5 | exp Radiotherapy | 177,645 |
6 | 4 or 5 | 732,871 |
7 | 3 and 6 | 5310 |
8 | ((vasodilator * or oxygenat * or vessel * or dilat * or oxygen * or vasostimula * or hypox * or oxygen-mimetic or hypoxia-activated) adj3 (radiosensiti* or activated? or prodrug * or agent * or stimulated * or therapy? or drug * or pharmaceutical? or drug * or HAP)).mp. | 80,168 |
9 | exp Pancreatic Neoplasms | 72,324 |
10 | ((Pancreas or pancreatic or LAPC or PDAC or ductal) adj3 (cancer * or neoplasm * or malignan * or tumor? * or carcinoma ? or adenocarcinoma ?)).mp. | 117,214 |
11 | 9 or 10 | 119,161 |
12 | 6 and 8 and 11 | 32 |
13 | 7 and 8 and 11 | 1 |
14 | 12 or 13 | 32 |
15 | 7 or 11 | 70 |
16 | 14 or 15 | 101 |
17 | Limit 16 to English language | 95 |
18 | Limit 17 to yr = “2000–Current” | 87 |
Appendix B
- Conference abstracts
- Case studies
- Dosimetric studies
- 3D conformal radiation therapy treatment
References
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Sereti, E.; Karagianellou, T.; Kotsoni, I.; Magouliotis, D.; Kamposioras, K.; Ulukaya, E.; Sakellaridis, N.; Zacharoulis, D.; Dimas, K. Patient Derived Xenografts (PDX) for personalized treatment of pancreatic cancer: Emerging allies in the war on a devastating cancer? J. Proteom. 2018, 188, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, A.; Miksad, R.; Goldstein, M.; Sullivan, R.; Bullock, A.; Buchbinder, E.; Pleskow, D.; Sawhney, M.; Kent, T.; Vollmer, C.; et al. Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e615–e622. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.; Huh, S.; Li, Z.; Rutenberg, M. Proton therapy for pancreatic cancer. World J. Gastrointest. Oncol. 2015, 7, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohopolski, M.; Glaser, S.; Vargo, J.; Balasubramani, G.; Beriwal, S. Stereotactic body radiotherapy for locally-advanced unresectable pancreatic cancer-patterns of care and overall survival. J. Gastrointest. Oncol. 2017, 8, 766–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauffert, B.; Mornex, F.; Bonnetain, F.; Rougier, P.; Mariette, C.; Bouché, O.; Bosset, J.; Aparicio, T.; Mineur, L.; Azzedine, A.; et al. Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer. Definitive results of the 2000–01 FFCD/SFRO study. Ann. Oncol. 2008, 19, 1592–1599. [Google Scholar] [CrossRef]
- Loehrer, P.; Feng, Y.; Cardenes, H.; Wagner, L.; Brell, J.; Cella, D.; Flynn, P.; Ramanathan, R.; Crane, C.; Alberts, S.; et al. Gemcitabine Alone Versus Gemcitabine Plus Radiotherapy in Patients With Locally Advanced Pancreatic Cancer: An Eastern Cooperative Oncology Group Trial. J. Clin. Oncol. 2011, 29, 4105–4112. [Google Scholar] [CrossRef]
- Hammel, P.; Huguet, F.; van Laethem, J.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouche, O.; Shannon, J.; Andre, T.; et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Ben-Josef, E.; Shields, A.; Vaishampayan, U.; Vaitkevicius, V.; El-Rayes, B.; McDermott, P.; Burmeister, J.; Bossenberger, T.; Philip, P. Intensity-modulated radiotherapy (IMRT) and concurrent capecitabine for pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 454–459. [Google Scholar] [CrossRef]
- Ben-Josef, E.; Schipper, M.; Francis, I.; Hadley, S.; Ten-Haken, R.; Lawrence, T.; Normolle, D.; Simeone, D.; Sonnenday, C.; Abrams, R.; et al. A Phase I/II Trial of Intensity Modulated Radiation (IMRT) Dose Escalation with Concurrent Fixed-dose Rate Gemcitabine (FDR-G) in Patients With Unresectable Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1166–1171. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.; Giaccia, A. Radiobiology for the Radiologist, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Paganetti, H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 2014, 59, R419. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kang, J. Basics of particle therapy II: Relative biological effectiveness. Radiat. Oncol. 2012, 30, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossati, P.; Matsufuji, N.; Kamada, T.; Karger, C. Radiobiological issues in prospective carbon ion therapy trials. Med. Phys. 2018, 45, e1096–e1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habermehl, D.; Ilicic, K.; Dehne, S.; Rieken, S.; Orschiedt, L.; Brons, S.; Haberer, T.; Weber, K.-J.; Debus, J.; Combs, S. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Weyrather, W.; Kraft, G. RBE of carbon ions: Experimental data and the strategy of RBE calculation for treatment planning. Radiother. Oncol. 2004, 73, S161–S169. [Google Scholar] [CrossRef]
- Kawashiro, S.; Yamada, S.; Okamoto, M.; Ohno, T.; Nakano, T.; Shinoto, M.; Shioyama, Y.; Nemoto, K.; Isozaki, Y.; Tsuji, H.; et al. Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1212–1221. [Google Scholar] [CrossRef]
- Mistry, I.; Thomas, M.; Calder, E.; Conway, S.; Hammond, E. Clinical Advances of Hypoxia-Activated Prodrugs in Combination with Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Koshy, M.; Landry, J.; Cavanaugh, S.; Fuller, C.; Willett, C.; Abrams, R.; Hoffman, J.; Thomas, C. A challenge to the therapeutic nihilism of ESPAC-1. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 965–966. [Google Scholar] [CrossRef]
- Regine, W.; Winter, K.; Abrams, R.; Safran, H.; Hoffman, J.; Konski, A.; Benson, A.; Macdonald, J.; Kudrimoti, M.; Fromm, M.; et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: A randomized controlled trial. JAMA 2008, 299, 1019–1026. [Google Scholar] [CrossRef]
- Koong, A.; Mehta, V.; Le, Q.; Fisher, G.; Terris, D.; Brown, J.; Bastidas, A.; Vierra, M. Pancreatic tumors show high levels of hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 919–922. [Google Scholar] [CrossRef]
- Chang, D.; Schellenberg, D.; Shen, J.; Kim, J.; Goodman, K.; Fisher, G.; Ford, J.; Desser, T.; Quon, A.; Koong, A. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 2009, 115, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Lohse, I.; Rasowski, J.; Cao, P.; Pintilie, M.; Do, T.; Tsao, M.; Hill, R.; Hedley, D. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302. Oncotarget 2016, 7, 33571–33580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.; Saiyin, H.; Fu, D.; Li, J. Stroma—A Double-Edged Sword in Pancreatic Cancer: A Lesson from Targeting Stroma in Pancreatic Cancer With Hedgehog Signaling Inhibitors. Pancreas 2018, 47, 382–389. [Google Scholar] [CrossRef]
- Benej, M.; Hong, X.; Vibhute, S.; Scott, S.; Wu, J.; Graves, E.; Le, Q.; Koong, A.; Giaccia, A.; Yu, B.; et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 10756–10761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Ma, J.; Zhan, Y.; Xu, X.; Zeng, Q.; Liang, J.; Chen, X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int. J. Nanomed. 2018, 13, 6551–6574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borad, M.; Reddy, S.; Bahary, N.; Uronis, H.; Sigal, D.; Cohn, A.; Schelman, W.; Stephenson, J.; Chiorean, G.; Rosen, P.; et al. Randomized Phase II Trial of Gemcitabine Plus TH-302 Versus Gemcitabine in Patients with Advanced Pancreatic Cancer. J. Clin. Oncol. 2015, 33, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.; Infante, J.; Chiorean, G.; Borad, M.; Bendell, J.; Molina, J.; Tibes, R.; Ramanathan, R.; Lewandowski, K.; Jones, S.; et al. Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of TH-302, a Hypoxia-Activated Prodrug, in Patients with Advanced Solid Malignancies. Clin. Cancer Res. 2011, 17, 2997–3004. [Google Scholar] [CrossRef] [Green Version]
- Wardman, P. Chemical Radiosensitizers for Use in Radiotherapy. J. Clin. Oncol. 2007, 19, 397–417. [Google Scholar] [CrossRef]
- Hajj, C.; Russell, J.; Hart, C.; Goodman, K.; Lowery, M.; Haimovitz-Friedman, A.; Deasy, J.; Humm, J. A Combination of Radiation and the Hypoxia-Activated Prodrug Evofosfamide (TH-302) is Efficacious against a Human Orthotopic Pancreatic Tumor Model. Transl. Oncol. 2017, 10, 760–765. [Google Scholar] [CrossRef]
- Nytko, K.; Grgic, I.; Bender, S.; Ott, J.; Guckenberger, M.; Riesterer, O.; Pruschy, M. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget 2017, 8, 23702–23712. [Google Scholar] [CrossRef] [Green Version]
- Lindner, L. Hypoxia-activated prodrug: An appealing preclinical concept yet lost in clinical translation. Lancet Oncol. 2017, 18, 991–993. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Lenz, H.; Furuse, J.; Tabernero, J.; Heinemann, V.; Ioka, T.; Bazin, I.; Ueno, M.; Csõszi, T.; Wasan, H.; et al. MAESTRO: A randomized, double-blind phase III study of evofosfamide (Evo) in combination with gemcitabine (Gem) in previously untreated patients (pts) with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 2016, 34, 4007. [Google Scholar] [CrossRef]
- Larue, R.; Van De Voorde, L.; Berbée, M.; van Elmpt, W.; Dubois, L.; Panth, K.; Peeters, S.; Claessens, A.; Schreurs, W.; Nap, M.; et al. A phase 1 ‘window-of-opportunity’ trial testing evofosfamide (TH-302), a tumour-selective hypoxia-activated cytotoxic prodrug, with preoperative chemoradiotherapy in oesophageal adenocarcinoma patients. BMC Cancer 2016, 16, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawla, S.P.; Cranmer, L.D.; Van Tine, B.A.; Reed, D.R.; Okuno, S.H.; Butrynski, J.E.; Adkins, D.R.; Hendifar, A.E.; Kroll, S.; Ganjoo, K.N. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J. Clin. Oncol. 2014, 32, 3299–3306. [Google Scholar] [CrossRef] [PubMed]
- Gurka, M.; Kim, C.; He, A.; Charabaty, A.; Haddad, N.; Turocy, J.; Johnson, L.; Jackson, P.; Weiner, L.; Marshall, J.; et al. Stereotactic Body Radiation Therapy (SBRT) Combined With Chemotherapy for Unresected Pancreatic Adenocarcinoma. Am. J. Clin. Oncol. 2017, 40, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Chuong, M.; Springett, G.; Freilich, J.; Park, C.; Weber, J.; Mellon, E.; Hodul, P.; Malafa, M.; Meredith, K.; Hoffe, S.; et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 516–522. [Google Scholar] [CrossRef]
- Koong, A.; Christofferson, E.; Le, Q.; Goodman, K.; Ho, A.; Kuo, T.; Ford, J.; Fisher, G.; Greco, R.; Norton, J.; et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 320–323. [Google Scholar] [CrossRef]
- Didolkar, M.; Coleman, C.; Brenner, M.; Chu, K.; Olexa, N.; Stanwyck, E.; Yu, A.; Neerchal, N.; Rabinowitz, S. Image-Guided Stereotactic Radiosurgery for Locally Advanced Pancreatic Adenocarcinoma Results of First 85 Patients. J. Gastrointest. Surg. 2010, 14, 1547–1559. [Google Scholar] [CrossRef]
- Comito, T.; Cozzi, L.; Clerici, E.; Franzese, C.; Tozzi, A.; Iftode, C.; Navarria, P.; D’Agostino, G.; Rimassa, L.; Carnaghi, C.; et al. Can Stereotactic Body Radiation Therapy Be a Viable and Efficient Therapeutic Option for Unresectable Locally Advanced Pancreatic Adenocarcinoma? Results of a Phase 2 Study. Technol. Cancer Res. Treat. 2017, 16, 295–301. [Google Scholar] [CrossRef]
- Schellenberg, D.; Goodman, K.; Lee, F.; Chang, S.; Kuo, T.; Ford, J.; Fisher, G.; Quon, A.; Desser, T.; Norton, J.; et al. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 678–686. [Google Scholar] [CrossRef]
- Koong, A.; Le, Q.; Ho, A.; Fong, B.; Fisher, G.; Cho, C.; Ford, J.; Poen, J.; Gibbs, I.; Mehta, V.; et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Pollom, E.; Alagappan, M.; von Eyben, R.; Kunz, P.; Fisher, G.; Ford, J.; Poultsides, G.; Visser, B.; Norton, J.; Kamaya, A.; et al. Single-versus multifraction stereotactic body radiation therapy for pancreatic adenocarcinoma: Outcomes and toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, A.; Comito, T.; Alongi, F.; Navarria, P.; Iftode, C.; Mancosu, P.; Reggiori, G.; Clerici, E.; Rimassa, L.; Zerbi, A.; et al. SBRT in unresectable advanced pancreatic cancer: Preliminary results of a mono-institutional experience. Radiat. Oncol. 2013, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiroshima, Y.; Fukumitsu, N.; Saito, T.; Numajiri, H.; Murofushi, K.; Ohnishi, K.; Nonaka, T.; Ishikawa, H.; Okumura, T.; Sakurai, H. Concurrent chemoradiotherapy using proton beams for unresectable locally advanced pancreatic cancer. Radiother. Oncol. 2019, 136, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Mellon, E.; Hoffe, S.; Springett, G.; Frakes, J.; Strom, T.; Hodul, P.; Malafa, M.; Chuong, M.; Shridhar, R. Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015, 54, 979–985. [Google Scholar] [CrossRef]
- Hoyer, M.; Roed, H.; Sengelov, L.; Traberg, A.; Ohlhuis, L.; Pedersen, J.; Nellemann, H.; Kiil Berthelsen, A.; Eberholst, F.; Engelholm, S.; et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother. Oncol. 2005, 76, 48–53. [Google Scholar] [CrossRef]
- Schellenberg, D.; Kim, J.; Christman-Skieller, C.; Chun, C.; Columbo, L.; Ford, J.M.; Fisher, G.A.; Kunz, P.L.; Van Dam, J.; Quon, A.; et al. Single-Fraction Stereotactic Body Radiation Therapy and Sequential Gemcitabine for the Treatment of Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 181–188. [Google Scholar] [CrossRef]
- De Bari, B.; Porta, L.; Mazzola, R.; Alongi, F.; Wagner, A.; Schäfer, M.; Bourhis, J.; Ozsahin, M. Hypofractionated radiotherapy in pancreatic cancer: Lessons from the past in the era of stereotactic body radiation therapy. Crit. Rev. Oncol. Hematol. 2016, 103, 49–61. [Google Scholar] [CrossRef]
- Sachsman, S.; Nichols, R.; Morris, C.; Zaiden, R.; Johnson, E.; Awad, Z.; Bose, D.; Ho, M.; Huh, S.; Li, Z.; et al. Proton Therapy and Concomitant Capecitabine for Non-Metastatic Unresectable Pancreatic Adenocarcinoma. Int. J. Part. Ther. 2014, 1, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Robertson, J.; Ye, H.; Margolis, J.; Nadeau, L.; Yan, D. Dose–Volume Analysis of Predictors for Gastrointestinal Toxicity After Concurrent Full-Dose Gemcitabine and Radiotherapy for Locally Advanced Pancreatic Adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1120–1125. [Google Scholar] [CrossRef]
- Terashima, K.; Demizu, Y.; Hashimoto, N.; Jin, D.; Mima, M.; Fujii, O.; Niwa, Y.; Takatori, K.; Kitajima, N.; Sirakawa, S.; et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother. Oncol. 2012, 103, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takatori, K.; Terashima, K.; Yoshida, R.; Horai, A.; Satake, S.; Ose, T.; Kitajima, N.; Kinoshita, Y.; Demizu, Y.; Fuwa, N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J. Gastroenterol. 2014, 49, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, A.; Jain, S.; Goldstein, M.; Miksad, R.; Pleskow, D.; Sawhney, M.; Brennan, D.; Callery, M.; Vollmer, C. Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.; Chang, D.; Goodman, K.; Dholakia, A.; Raman, S.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.; Griffith, M.; Pawlik, T.; Pai, J.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.; Hoppe, B. RE: Takatori K, Terashima K, Yoshida R, Horai A, Satake S, Ose T, Kitajima N, Kinoshita, Y., Demizu, Y., Fuwa, N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2013; (E-pub only). J. Gastrointest. Oncol. 2013, 4, E33–E34. [Google Scholar] [CrossRef]
- Kim, T.; Lee, W.; Woo, S.; Kim, H.; Oh, E.; Lee, J.; Han, S.; Park, S.; Suh, Y.; Moon, S.; et al. Effectiveness and Safety of Simultaneous Integrated Boost-Proton Beam Therapy for Localized Pancreatic Cancer. Technol. Cancer Res. Treat. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Jethwa, K.; Tryggestad, E.; Whitaker, T.; Giffey, B.; Kazemba, B.; Neben-Wittich, M.; Merrell, K.; Haddock, M.; Hallemeier, C. Initial experience with intensity modulated proton therapy for intact, clinically localized pancreas cancer: Clinical implementation, dosimetric analysis, acute treatment-related adverse events, and patient-reported outcomes. Adv. Radiat. Oncol. 2018, 3, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Nichols, R.; George, T.; Zaiden, R.; Awad, Z.; Asbun, H.; Huh, S.; Ho, M.; Mendenhall, N.; Morris, C.; Hoppe, B. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity. Acta Oncol. 2013, 52, 498–505. [Google Scholar] [CrossRef]
- Hitchcock, K.; Nichols, R.; Morris, C.; Bose, D.; Hughes, S.; Stauffer, J.; Celinski, S.; Johnson, E.; Zaiden, R.; Mendenhall, N.; et al. Feasibility of pancreatectomy following high-dose proton therapy for unresectable pancreatic cancer. World J. Gastrointest. Surg. 2017, 9, 103–108. [Google Scholar] [CrossRef]
- Chuong, M.; Badiyan, S.; Yam, M.; Li, Z.; Langen, K.; Regine, W.; Morris, C.; Snider, J.; Mehta, M.; Huh, S.; et al. Pencil beam scanning versus passively scattered proton therapy for unresectable pancreatic cancer. J. Gastrointest. Oncol. 2018, 9, 687–693. [Google Scholar] [CrossRef]
- Hong, T.; Ryan, D.; Blaszkowsky, L.; Mamon, H.; Kwak, E.; Mino-Kenudson, M.; Adams, J.; Yeap, B.; Winrich, B.; DeLaney, T.; et al. Phase I study of preoperative short-course chemoradiation with proton beam therapy and capecitabine for resectable pancreatic ductal adenocarcinoma of the head. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 151–157. [Google Scholar] [CrossRef]
- Hong, T.; Ryan, D.; Borger, D.; Blaszkowsky, L.; Yeap, B.; Ancukiewicz, M.; Deshpande, V.; Shinagare, S.; Wo, J.; Boucher, Y.; et al. A phase 1/2 and biomarker study of preoperative short course chemoradiation with proton beam therapy and capecitabine followed by early surgery for resectable pancreatic ductal adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 830–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, Y.; Wo, J.; Ancukiewicz, M.; Adams, J.; Depauw, N.; Mamon, H.; Hong, T. Dosimetric predictors of nausea and vomiting: An exploratory analysis of a prospective phase I/II trial with neoadjuvant accelerated short-course radiotherapy and capecitabine for resectable pancreatic cancer. J. Radiat. Oncol. 2013, 2, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Fukumitsu, N.; Okumura, T.; Hiroshima, Y.; Ishida, T.; Numajiri, H.; Murofushi, K.; Ohnishi, K.; Aihara, T.; Ishikawa, H.; Tsuboi, K.; et al. Simulation study of dosimetric effect in proton beam therapy using concomitant boost technique for unresectable pancreatic cancers. Jpn. J. Radiol. 2018, 36, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, O.; Makishima, H.; Kamada, T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers 2018, 10, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinoto, M.; Yamada, S.; Terashima, K.; Yasuda, S.; Shioyama, Y.; Honda, H.; Kamada, T.; Tsujii, H.; Saisho, H. Carbon Ion Radiation Therapy with Concurrent Gemcitabine for Patients With Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 498–504. [Google Scholar] [CrossRef]
- Shinoto, M.; Terashima, K.; Suefuji, H.; Matsunobu, A.; Toyama, S.; Fukunishi, K.; Shioyama, Y. A single institutional experience of combined carbon-ion radiotherapy and chemotherapy for unresectable locally advanced pancreatic cancer. Radiother. Oncol. 2018, 129, 333–339. [Google Scholar] [CrossRef]
- Kawashiro, S.; Mori, S.; Yamada, S.; Miki, K.; Nemoto, K.; Tsuji, H.; Kamada, T. Dose escalation study with respiratory-gated carbon-ion scanning radiotherapy using a simultaneous integrated boost for pancreatic cancer: Simulation with four-dimensional computed tomography. Br. J. Radiol. 2017, 90, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shinoto, M.; Yamada, S.; Yasuda, S.; Imada, H.; Shioyama, Y.; Honda, H.; Kamada, T.; Tsujii, H.; Saisho, H. Phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer 2013, 119, 45–51. [Google Scholar] [CrossRef]
- Maemura, K.; Mataki, Y.; Kurahara, H.; Kawasaki, Y.; Iino, S.; Sakoda, M.; Ueno, S.; Arimura, T.; Higashi, R.; Yoshiura, T.; et al. Comparison of proton beam radiotherapy and hyper-fractionated accelerated chemoradiotherapy for locally advanced pancreatic cancer. Pancreatology 2017, 17, 833–838. [Google Scholar] [CrossRef]
- Zschaeck, S.; Blümke, B.; Wust, P.; Kaul, D.; Bahra, M.; Riess, H.; Klein, F.; Sinn, M.; Pelzer, U.; Budach, V.; et al. Dose-escalated radiotherapy for unresectable or locally recurrent pancreatic cancer: Dose volume analysis, toxicity and outcome of 28 consecutive patients. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.-P.; Shi, J.; Chen, Y.-X.; Xie, W.-F.; Lin, Y. Gemcitabine in the chemoradiotherapy for locally advanced pancreatic cancer: A meta-analysis. Radiother. Oncol. 2011, 99, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Mitin, T.; Zietman, A. Promise and pitfalls of heavy-particle therapy. J. Clin. Oncol. 2014, 32, 2855–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.; Shank, B.; Solin, L.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Kavanagh, B.; Pan, C.; Dawson, L.; Das, S.; Li, X.; Ten Haken, R.; Miften, M. Radiation Dose–Volume Effects in the Stomach and Small Bowel. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S101–S107. [Google Scholar] [CrossRef]
- Borad, M.; Chiorean, E.; Molina, J.; Mita, A.; Infante, J.; Schelman, W.; Traynor, A.; Vlahovic, G.; Mendelson, D.; Reddy, S. Clinical benefits TH-302, a tumor-selective, hypoxia-activated prodrug, and gemcitabine in first-line pancreatic cancer (PanC). J. Clin. Oncol. 2011, 29, 265. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Q.; Wang, J.; Ahluwalia, D.; Ferraro, D.; Wang, Y.; Duan, J.; Ammons, S.; Curd, J.; Matteucci, M.; et al. Selective Tumor Hypoxia Targeting by Hypoxia-Activated Prodrug TH-302 Inhibits Tumor Growth in Preclinical Models of Cancer. Clin. Cancer Res. 2012, 18, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Evans, J.; Bhupathi, D.; Banica, M.; Lan, L.; Lorente, G.; Duan, J.; Cai, X.; Mowday, A.; Guise, C.; et al. Molecular and Cellular Pharmacology of the Hypoxia-Activated Prodrug TH-302. Mol. Cancer Ther. 2012, 11, 740–751. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Liu, Q.; Ahluwalia, D.; Li, W.; Meng, F.; Wang, Y.; Bhupathi, D.; Ruprell, A.; Hart, C. Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer. Cancer Biol. Ther. 2015, 16, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowiak, J.; Cornnell, H.; Matsumoto, S.; Saito, K.; Takakusagi, Y.; Dutta, P.; Kim, M.; Zhang, X.; Leos, R.; Bailey, K.; et al. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302. Cancer Metab. 2015, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Zhu, W.; Song, J.; Jiao, Y.; Luo, J.; Yu, C.; Zhou, J.; Wu, J.; Chen, M.; Ding, W.Q.; et al. Activation of PPARα by clofibrate sensitizes pancreatic cancer cells to radiation through the Wnt/β-catenin pathway. Oncogene 2017, 37, 953–962. [Google Scholar] [CrossRef]
- Shibamoto, Y.; Kubota, T.; Kishii, K.; Tsujitani, M. Radiosensitivity of human pancreatic cancer cells in vitro and in vivo, and the effect of a new hypoxic cell sensitizer, doranidazole. Radiother. Oncol. 2000, 56, 265–270. [Google Scholar] [CrossRef]
- Sunamura, M.; Karasawa, K.; Okamoto, A.; Ogata, Y.; Nemoto, K.; Hosotani, R.; Nishimura, Y.; Matsui, K.; Matsuno, S. Phase III Trial of Radiosensitizer PR-350 Combined with Intraoperative Radiotherapy for the Treatment of Locally Advanced Pancreatic Cancer. Pancreas 2004, 28, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, K.; Sunamura, M.; Okamoto, A.; Nemoto, K.; Matsuno, S.; Nishimura, Y.; Shibamoto, Y. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: Long-term results of a placebo-controlled randomised study. Radiother. Oncol. 2008, 87, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Lipner, M.; Marayati, R.; Deng, Y.; Wang, X.; Raftery, L.; O’Neil, B.; Yeh, J. Metformin Treatment Does Not Inhibit Growth of Pancreatic Cancer Patient-Derived Xenografts. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Limani, P.; Linecker, M.; Kron, P.; Samaras, P.; Pestalozzi, B.; Stupp, R.; Jetter, A.; Dutkowski, P.; Mullhaupt, B.; Schlegel, A.; et al. Development of OXY111A, a novel hypoxia-modifier as a potential antitumor agent in patients with hepato-pancreato-biliary neoplasms-Protocol of a first Ib/IIa clinical trial. BMC Cancer 2016, 16, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, A.; Ferry, D.; Edmunds, S.; Gu, Y.; Singleton, R.; Patel, K.; Pullen, S.; Hicks, K.; Syddall, S.; Atwell, G.; et al. Mechanism of Action and Preclinical Antitumor Activity of the Novel Hypoxia-Activated DNA Cross-Linking Agent PR-104. Clin. Cancer Res. 2007, 13, 3922–3932. [Google Scholar] [CrossRef] [Green Version]
- McKeage, M.; Jameson, M.; Ramanathan, R.; Rajendran, J.; Gu, Y.; Wilson, W.; Melink, T.; Tchekmedyian, N.S. PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. BMC Cancer 2012, 12, 496–505. [Google Scholar] [CrossRef] [Green Version]
- Cancer Therapy Evaluation Program. Common Terminology Criteria for Adverse Events (version 3). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcaev3.pdf (accessed on 29 January 2019).
- Wild, A.; Hiniker, S.; Chang, D.; Tran, P.; Khashab, M.; Limaye, M.; Laheru, D.; Le, D.; Kumar, R.; Pai, J.; et al. Re-irradiation with stereotactic body radiation therapy as a novel treatment option for isolated local recurrence of pancreatic cancer after multimodality therapy: Experience from two institutions. J. Gastrointest. Oncol. 2013, 4, 343–351. [Google Scholar] [CrossRef]
- Macchia, G.; Morganti, A.; Cilla, S.; Ippolito, E.; Massaccesi, M.; Picardi, V.; Mattiucci, G.; Bonomo, P.; Tambaro, R.; Pacelli, F.; et al. Quality of life and toxicity of stereotactic radiotherapy in pancreatic tumors: A case series. Cancer Investig. 2012, 30, 149–155. [Google Scholar] [CrossRef]
- Cancer Therapy Evaluation Program. Common Toxicity Criteria (version 2). Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcv20_4-30-992.pdf (accessed on 6 June 2019).
- Lominska, C.; Unger, K.; Nasr, N.; Haddad, N.; Gagnon, G. Stereotactic body radiation therapy for reirradiation of localized adenocarcinoma of the pancreas. Radiat. Oncol. 2012, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Dagoglu, N.; Callery, M.; Moser, J.; Tseng, J.; Kent, T.; Bullock, A.; Miksad, R.; Mancias, J.; Mahadevan, A. Stereotactic Body Radiotherapy (SBRT) Reirradiation for Recurrent Pancreas Cancer. J. Cancer 2016, 7, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurka, M.; Collins, S.; Slack, R.; Tse, G.; Charabaty, A.; Ley, L.; Berzcel, L.; Lei, S.; Suy, S.; Haddad, N.; et al. Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: A pilot trial demonstrating safety. Radiat. Oncol. 2013, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polistina, F.; Costantin, G.; Casamassima, F.; Francescon, P.; Guglielmi, R.; Panizzoni, G.; Febbraro, A.; Ambrosino, G. Unresectable locally advanced pancreatic cancer: A multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann. Surg. Oncol. 2010, 17, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Rwigema, J.; Parikh, S.; Heron, D.; Howell, M.; Zeh, H.; Moser, A.; Bahary, N.; Quinn, A.; Burton, S. Stereotactic body radiotherapy in the treatment of advanced adenocarcinoma of the pancreas. Am. J. Clin. Oncol. 2011, 34, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Cancer Therapy Evaluation Program. Common Terminology Criteria for Adverse Events (version 4). Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29_QuickReference_8.5x11.pdf (accessed on 29 January 2019).
- Murphy, J.; Wo, J.; Ryan, D.; Jiang, W.; Yeap, B.; Drapek, L.; Blaszkowsky, L.; Kwak, E.; Allen, J.; Clark, J.; et al. Total Neoadjuvant Therapy With FOLFIRINOX Followed by Individualized Chemoradiotherapy for Borderline Resectable Pancreatic Adenocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Boimel, P.; Berman, A.; Li, J.; Apisarnthanarax, S.; Both, S.; Lelionis, K.; Larson, G.; Teitelbaum, U.; Lukens, J.; Ben-Josef, E.; et al. Proton beam reirradiation for locally recurrent pancreatic adenocarcinoma. J. Gastrointest. Oncol. 2017, 8, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Combs, S.; Habermehl, D.; Kieser, M.; Dreher, C.; Werner, J.; Haselmann, R.; Jakel, O.; Jager, D.; Buchler, M.; Debus, J. Phase I study evaluating the treatment of patients with locally advanced pancreatic cancer with carbon ion radiotherapy: The PHOENIX-01 trial. BMC Cancer 2013, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shinoto, M.; Shioyama, Y.; Suefuji, H.; Matsunobu, A.; Toyama, S.; Kudo, S. A phase II clinical trial of carbon-ion radiotherapy and concurrent S-1 chemotherapy for locally advanced pancreatic cancer. J. Clin. Oncol. 2015, 33. [Google Scholar] [CrossRef]
HAP | Author | Chemotherapy | XRT | Study | Sample Size | Limitations | Summary of Applicable Findings |
---|---|---|---|---|---|---|---|
TH-302 | Weiss, et al. [28] | No | No | Phase I clinical trial | 57 | Only 2 pancreatic patients in the study | TH-302 was well tolerated during the first phases of monotherapy investigations with only mild concern regarding high-grade skin and mucosal toxicities above 240 mg/m2. |
Borad, et al. [77] | Yes | No | Phase I/II clinical study | 46 | No full publication of results. No XRT | Overall response rate of 21% and median PFS time of 5.9 months across advanced pancreatic cancer patients. | |
Sun, et al. [78] | No | No | In vitro | Monotherapy study | TH-302 antitumour activity was reported as dose-dependent. | ||
Meng, et al. [79] | No | No | In vivo | Monotherapy study | TH-302 requires more severe hypoxia for to produce higher rates of anti-tumour activity. | ||
Borad, et al. [27] | Yes | No | Phase II clinical trial (NCT01144455) | 229 | No XRT | First randomised Phase II clinical trial to demonstrate the potential outcomes of combining TH-302 with gemcitabine. Demonstrated improved tumour response and PFS (median 5.6 vs 3.6 months) compared to gemcitabine alone. | |
Sun, et al. [80] | Yes | No | In vitro | No XRT | TH-302, gemcitabine and nab-paclitaxel were assessed as tolerable and providing favourable anti-tumour activity. | ||
Wojtkowiak, et al. [81] | No | No | In vitro and in vivo | Monotherapy study | Identified biomarkers which may predict a significant decrease in tumour growth with TH-302. | ||
Lohse, et al. [23] | No | Yes | In vitro | No chemotherapy | Reduced tumour growth rates demonstrate a strong predictor of OS for clinical application and efficacy of the treatment combination. | ||
Van Cutsem, et al. [33] | Yes | No | Phase III ‘MAESTRO’ clinical trial (NCT01746979) | 693 | No full publication of results. No overall survival benefit with the treatment combination of TH-302 with gemcitabine (median of 8.7 months compared to 7.6 months for gemcitabine alone) | Treatment combination demonstrated favourable signs of antitumour activity regarding patient PFS (median of 5.5 months compared to 3.7 months for gemcitabine alone) and higher objective response rate. | |
Hajj, et al. [30] | No | Yes | In vitro | Single-fraction 15 Gy | Combination produced significant growth delay compared to either TH-302 or XRT treatments alone. | ||
Clofibrate | Xue, et al. [82] | No | Yes | In vivo | No chemotherapy Single-fraction 4 Gy | Reduction in the affinity of haemoglobin for oxygen and thus acting as a radiosensitiser for pancreatic xenografts. | |
Papaverine | Benej, et al. [25] | No | Yes | In vivo | No chemotherapy. | Significantly enhances tumour response to XRT in terms of LC and OS. | |
PR-350 | Shibamoto, et al. [83] | No | Yes | In vitro and in vivo | Large amount required, therefore not predicted to have a high radiosensitising effect in clinical studies | Effective radiosensitiser in pancreatic cancer cell lines and xenografts. | |
Sunamura, et al. [84] | No | Yes | Phase III clinical trial | 48 | Intraoperative XRT | PR-350 group showed higher survival rates and more effective control than the group that did not receive the radiosensitizer. | |
Karasawa, et al. [85] | No | Yes | Phase III clinical trial | 47 | Intraoperative XRT No chemotherapy | No difference in short-term survival. | |
Metformin | Lipner, et al. [86] | No | No | In vitro | Monotherapy study. | All tested pancreatic cell lines were resistant to metformin. | |
Benej, et al. [25] | No | Yes | In vivo | Metformin required 24 hours to reach full mitochondrial inhibition and clinical effectiveness | Papaverine was more suitable radiosensitiser, taking only 30 min to reach clinical effectiveness (similar to Atovaquone). | ||
OXY111A | Limani, et al. [87] | No | No | Ib/IIa clinical trial (NCT02528526) | 69 | Study last updated at recruiting in 2015 | Pending results. Study aims to assess the safety, tolerability, and efficacy of the HAP. |
PR-104 | Patterson, et al. [88] | Yes | Yes | In vitro | Single-fraction 10 Gy | Clinical benefit adding PR-104 to standard gemcitabine and XRT care. | |
McKeage, et al. [89] | Yes | Phase Ib clinical trial (NCT00459836) | 42 | 4 patients with pancreatic cancer, remaining 3 had other diseases | PR-104 combined with docetaxel results in dose-limiting toxicities. |
Author | Disease | Sample Size | Study Design | Chemotherapy | Total Dose (Gy) and Fractionation | Acute Side Effects Criteria for Adverse Events Version | Late Side Effects | MST Months (Range) | 1-year OS Rate | 2-year OS Rate | PFS | FFLP | Median FU Period Months (Range) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chang, et al. [22] Φ * | Unresectable LAPC | 77 | Retrospective, single institute, combination of phase I and phase II studies. | Variety of gemcitabine-based regimens | 25 in 1 | Grade ≥ 2 = 5% NR | Grade ≥ 2 = 4% Grade ≥ 3 = 9% | 11.8 | 21% | NR | 1-year = 9% | 1-year = 84% | 6 (3–31) |
Schellenberg, et al. [48] * | LAPC | 20 | Prospective, phase II trial, single institute. | Gemcitabine 1000 mg/m2 weekly (days 1, 8, and 15) | 25 in 1 | Grade ≥ 2 = 15% Grade 3 = 0% V3 [90] | Grade ≥ 2 = 15% Grade ≥ 3 = 5% | 11.8 | 50% | 20% | Median time to progression was 9.2 months | 1-year = 94% | 2 patients remaining alive = 25.1–36.4 months |
Schellenberg, et al. [41] * | LAPC | 16 | Prospective, phase II, single institute. | Gemcitabine 1000 mg/m2 weekly (days 1, 8, and 15) | 25 in 1 | Grade 2 = 13% Grade 3 = 6% V3 [90] | Grade ≥ 2 = 33% Grade ≥ 3 = 13% | 11.4 | 50% | Estimate 18% | Median time to progression was 9.7 months. | 1-year = 100% | 9.1 (22.3 for living patients) |
Hoyer, et al. [47] * | Unresectable LAPC | 22 | Prospective, phase II, single institute. | NR | 45 in 3 | Grade ≥ 2 = 100% NR | Grade ≥ 2 = 94% | 5.4 | 5% | NR | 1-year = 9% Median time to progression was 4.8 months. | Local control rate = 57% | 14 days–18 months |
Wild, et al. [91] * | Recurrent | 18 | Reirradiation, retrospective, single institute. | 5-fluorouracil-based regimen for 10 patients Gemcitabine- based regimen for 7 patients | 25, 20 or 27 in 5 After chemoradiation of 50.4 Gy in 27 | Grade 2 = 28% Grade 3 = 0% NR | Grade 3 = 6% | 8.8 | NR | NR | Median = 3.7 months | 1-year = 62% | 34.3 (6.4–61.6) |
Macchia, et al. [92] * | Unresectable disease or recurrent | 16 | Prospective, phase I, single institute. | Variety of chemotherapy regimens | 20–35 in 4–7 | Grade 1 = 50% Grade 2 = 0% NR | Grade 3 = 6.3% | NR Overall response rate =56.2% | NR | 50% | 2-year distant progression free = 58.7% | 2-year local progression free = 85.7% | 24 (10–85) |
Didolkar, et al. [39] * | Unresectable LAPC | 85 | Retrospective, single institute. | Variety of gemcitabine-based regimens post-SBRT | 15–30 in 1–4 | NR acute compared to late Grade ≥ 3 = 22.3% V2 [93] | 18.6 | 50% Median 1-year = 13.4 months | NR | NR | Local control = 91.7% | NR (25.8 months at last follow up) | |
Mahadevan, et al. [54] † | LAPC | 36 | Retrospective, single institute. | Gemcitabine 1000 mg/m2 weekly (for 6 months) | 24, 30 or 36 in 3 | Grade 1 = 42% Grade 2 = 25% Grade 3 = 8% NR | Grade ≥ 3 = 6% | 14.3 | NR | NR | Median = 9.6 months | Local control = 78% | 24 (12–33) |
Mahadevan, et al. [3] † | LAPC | 39 | Retrospective, single institute. | Gemcitabine 1000 mg/m2 weekly (for 6 months) | 24 or 30 in 3 | Grade 1 = 41% Grade 2 = 23% Grade 3 = 0% V3 [90] | Grade 3 = 9% | 20 | NR | NR | Median = 15 months | Local control = 85% FFLP= 31% | 21 (6–33) |
Lominska, et al. [94] † | LAPC | 28 | Reirradiation, retrospective, single institute. | Variety of chemotherapy regimens | 20–30 in 3–5 After 50.4 Gy XRT | Grade 2 = 4% V3 [90] | Grade 3 = 7% | 5.9 | 18% | NR | NR | 1-year = 70% | 5.9 (1–27) |
Dagoglu, et al. [95] † | Recurrent | 30 | Reirradiation, retrospective, single institute. | Variety of chemotherapy regimens Gemcitabine for 14 patients FOLFOX for 6 patients Erlotinib for 12 patients None for 5 patients | 24–36 in 3–5 | Grade 3 = 11% NR | Grade 3 = 7% | 14 | 50% | 5% | 78% | NR | 11 (4–24) |
Tozzi, et al. [44] † | Unresectable LAPC = 21 Locally recurrent = 9 | 30 | Prospective, single institute (consecutive enrolment). | Variety of gemcitabine-based regimens | 36–45 in 6 | Grade 1 = 43% Grade 2 = 10% Grade 3= 0% V3 [90] | Grade 3 = 0% | 11 | Median OS at 1-year = 47% | NR | Median PFS = 8 months | 1-year = 96% (for 45 Gy group) and 85% for others | 11.0 (2–28) |
Gurka, et al. [96] † | LAPC (with elective nodes) | 10 | Prospective, single institute, pilot trial. | Concurrent gemcitabine with 1000 mg/m2 for 6 cycles | 25 in 5 | Grade 1 = 60% Grade 3 = 0% V3 [90] | Grade 2 = 0% | 12.2 | NR | NR | 6.8 months | 1-year = 40% | Until death |
Koong, et al. [42] * | LAPC | 15 | Prospective, single institute, phase I. | Prior to enrolment 2 patients received conventional 5-FU–based chemoradiation to a dose of 50 Gy and 1 patient received chemotherapy alone. | 15 (3 patients), 20 (5 patients), 25 (7 patients) in 1 | Grade 1 = 13% Grade 2 = 20% Grade 3 = 0% GI toxicities were scored according to the Radiation Therapy Oncology Group acute radiation morbidity criteria. | NR | 11 | NR | NR | Median time to progression = 2 months | Local control = 75% | 5 |
Koong, et al. [38] * | LAPC | 16 | Prospective, single institute, phase II. | Concurrent 5-fluorouracil | 45 in 25 (IMRT) and 25 in 1 (SBRT) | Grade 0= 18.7% Grade 1= 43.7% Grade 2= 25% Grade 3= 12.5% GI toxicities were scored according to the Radiation Therapy Oncology Group acute radiation morbidity criteria. | NR | 8.3 | 15% | NR | Median time to progression = 4.38 months | 1-year = 8% Local control = 94% | 5.75 |
Polistina, et al. [97] * | Unresectable LAPC | 33 | Prospective, single institute. | Gemcitabine 1000 mg/m2 weekly (for 6 weeks) | 30 in 3 | Grade 1 = 21.7% Grade 2 = 0% V3 [90] | NR | 10.6 | 39.1% | 0% | Median time to progression = 7.3 months | 1-year = 82.6% | 9 |
Rwigema, et al. [98] * | LAPC (mix of metastatic (11%), unresectable (56%) and recurrent disease (16%)) | 71 | Retrospective, single institute. | Variety of chemotherapy regimens | 18–25 in 1–3 | Grade 1 = 24% Grade 2 = 11.3% Grade 3 = 4.2% NR | Grade 1 = 4.2% | 10.3 months overall median OS | 41% | NR | NR | Overall 1-year = 48.5% 1-year = 38% for unresectable 1-year = 18.8% for recurrent group 1-year = 40% for metastatic group | 12.7 (4–26) |
Herman, et al. [55] * | Unresectable LAPC | 49 | Prospective single-arm, multi-institutional, phase II. | Gemcitabine 1000 mg/m2 (3 doses) followed by a week break prior to SBRT | 33 in 5 | Grade ≥ 2 = 2% V4 [99] | Grade ≥ 2 = 11% | 13.9 (10.2–16.7) | 59% | 18% | Median PFS = 7.8 months 1-year = 32% 2-year = 10% | 1-year = 78% | 13.9 (3.9–45.2) |
Chuong, et al. [37] † (and *) | Nonmetastatic LAPC (16 patients) and borderline resectable pancreatic cancer (57)) | 73 | Retrospective, single institute. | Induction gemcitabine-based regimens delivered over 3 cycles followed by SBRT | 35–50 in 5 | Grade ≥ 3 = 0 V4 [99] | Grade ≥ 3 = 5.3% | 15 (LAPC) 16.4 (borderline) | 68.1% (LAPC) 72.2% borderline | NR | Median PFS = 9.8 months 1-year PFS LAPC = 41% 1-year PFS borderline = 42.8% | 1-year LC for non-surgical patients= 81% | 10.5 (2.2–25.9) |
Comito, et al. [40] * | Unresectable LAPC | 45 | Prospective, observational, single-arm, single institute, phase II. | 71% completed regimens 2 weeks prior to SBRT 19% received gemcitabine-based regimens | 45 in 6 | Grade 1–2 = 49% Grade ≥ 3 = 0% V3 [90] | Grade 2 = 4% Grade ≥ 3 = 0% | 19 | 85% | 33% | Median PFS = 8 months | Median FFLP = 26 months 1-year = 87% 2-year = 87% | 13.5 months (6–48) |
Gurka, et al. [36] * (and †) | Borderline resectable and inoperable LAPC | 38 | Retrospective, single institute. | Variety of gemcitabine-based regimens | 25–30 (one patient received 15) in 5 | Grade 2 = NR Grade 3 = 5.2% V3 [90] | Grade 3 = 5.2% Grade 4 = 5.2% Grade 5 = 5.2% | 14.3 | NR | NR | 9.2 months | Local control rate = 79% | NR |
Mellon, et al. [46] * | Borderline resectable and LAPC | 159 (110 BRPC and 49 LAPC) | Retrospective, single institute. | Variety of induction chemotherapy regimens | 28–30 in 5 | Grade1-2 = 52% Grade 3 = 11% V4 [99] | Grade 3 = 11% | 19.2 (borderline) 15 (LAPC) | NR | NR | Event free survival = 11.9 months in borderline and 13.2 in LAPC | 1-year locoregional control = 78% | 5.6 (2.1–15.4) |
Pollom, et al. [43] * | Unresectable (133), borderline resectable (11) pancreatic adenocarcinoma | 167 | Retrospective, single institute. | Variety of induction chemotherapy regimens (82% were gemcitabine-based) | 25 in 1 (76 patients) 25–45 in 5 (91 patients) | Single-fraction: Grade ≥ 2 = 25% Multi-fraction: Grade ≥ 2 = 8.7% V4 [99] | Single-fraction: Grade ≥ 3 = 12.3% Multi-fraction: Grade ≥ 3 = 5.6% | 13.6 | Single-fraction= 30.8% Multi- fraction= 34.9% | NR | NR | NR | 7.9 (0.1–63.6) |
Author | Disease | Sample Size | Study Design | Chemotherapy | Total Dose and Fractionation | Acute Side Effects Criteria for Adverse Events Version | Late Side Effects | MST Months (Range) | 1-year OS Rate | 2-year OS Rate | PFS | FFLP | Median FU Period Months (Range) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hiroshima, et al. [45] † | Unresectable LAPC | 42 | Retrospective, single institute. | Concurrent chemotherapy (gemcitabine (38 patients) or S-1 (3 patients)). | 50 GyE (12 patients) and 54–67.5 GyE (30 patients) in 25-33 | Grade 1 = 9.5% Grade 2 = 36% Grade 3 = 40% Grade 4 = 4.8% V4 [99] | Grade 1 = 7% Grade 2 = 4.8% Grade 3 = 0% | 25.6 | 77.8% | 50.8% | Median time to local recurrence = 36 months | 1-year LC rate = 83.3% 2-year LC rate = 78.9% | 14 (2.4–47.6) |
Murphy, et al. [100] † | Borderline resectable PDAC | 48 | Prospective, single institute, phase II trial. | Neoadjuvant FOLFIRINOX (8 cycles). Vascular involvement resolution determined whether patients received short-course capecitabine or long-course fluorouracil or capecitabine chemoradiation. | 25 GyE in 5 | Grade 3 GI = 10% V4 [99] | NR | 37.7 | NR | 56% | 14.7 months 2-year PFS = 43 | NR | 18 |
Sachsman, et al. [50] Φ | Unresectable LAPC | 11 | Prospective, single institute, phase II trial. | Concomitant capecitabine (1000 mg orally twice daily) 5 days/week | 59.4 Gy (RBE) in 33 | Grade 2 = 9% Grade 3 = 0% NR | Grade 2 = 0% Grade 3 = 0% | 18.4 | 61% | 31% | 1-year =55% 2-year =14% | 1-year = 86% 2-year = 69% | 14 (5–25) For surviving patients 23 (8–25) |
Terashima, et al. [52] § | LAPC (T3-T4) regardless of adjacency | 40 | Prospective, single institute, phase I/II trial. | Concurrent gemcitabine 800 mg/m2 weekly, for 30 min for the initial 3 weeks (days 1, 8, and 15) during 5 weeks of PT | 67.5 GyE in 25 | Grade 3 = 95% Grade 4 = 7.5% V3 [90] | Grade 3 = 8% Grade 5 = 2% | NR | 78.8% | NR | 1-year = 60.8% | 1-year = 79.9% | 12.1 (3.2–22.3) |
Terashima, et al. [52] § | LAPC (T3-T4) adjacent to the GI | 5 | Prospective, single institute, phase I/II trial. | Concurrent gemcitabine 800 mg/m2 weekly, for 30 min for the initial 3 weeks (days 1, 8, and 15) during 5 weeks of PT | 50 GyE in 25 | Grade 3 = 100% V3 [90] | NR | NR | NR | NR | NR | NR | 12.3 (8.2–18.6) |
Terashima, et al. [52] § | LAPC (T3-T4) non-adjacent to the GI | 5 | Prospective, single institute, phase I/II trial. | Concurrent gemcitabine 800 mg/m2 weekly, for 30 min for the initial 3 weeks (days 1, 8, and 15) during 5 weeks of PT | 70.2 GyE in 26 | Grade 3 = 100% V3 [90] | Grade 3 = 100% | NR | NR | NR | NR | NR | 19.6 (17.7–21.5) |
Terashima, et al. [52] | Combined group | 50 | Prospective, single institute, phase I/II trial. | Concurrent gemcitabine 800 mg/m2 weekly, for 30 min for the initial 3 weeks (days 1, 8, and 15) during 5 weeks of PT | 50–70.2 GyE in 25–26 | NR | 76.8% | NR | 64.3% | 1-year = 81.7% | 12.5 | ||
Nichols, et al. [59] | Pancreatic and ampullary adenocarcinoma Resected = 5, marginally resectable = 5, and unresectable = 12. | 22 | Prospective, single institute. | Concomitant capecitabine (1000 mg orally twice daily) | 50.4–59.4 CGE in 28–33 | Grade 2 = 13.6% Grade 3 = 0% V4 [99] | NR | 11= resected 14 = for marginally resectable 8.8 = unresectable | NR | NR | NR | NR | 11 (5–36) |
Hitchcock, et al. [60] | Unresectable LAPC | 15 | Retrospective, single institute. | Concomitant capecitabine (1000 mg orally twice daily) | 59.40 Gy (RBE) in 33 50.40 Gy (RBE) for 1 patient | NR | NR | 24 (10–30) for 5 resected patients | NR | NR | NR | NR | NR |
Takatori, et al. [53] * | Unresectable LAPC | 91 | Prospective, single institute. | Concurrent gemcitabine (800 mg/m2 on days 1, 8, and 15) for the initial 3 weeks during 5 weeks of PT | 67.5 GyE in 25 | NR Gastric/duodenal ulcers incidence = 49.4% V3 [90] | Grade 4 GI = 1% Grade 5 GI = 2% | NR | NR | NR | NR | NR | 10 |
Hong, et al. [62] ^ | Resectable PDAC | 3 | Prospective, single institute, phase I trial. | Concurrent capecitabine at 825 mg/m2 orally twice daily | 25 Gy (RBE) in 5 | Grade 3 = 67% NR | NR | NR | NR | NR | NR | NR | 12 |
Hong, et al. [62] ^ | Resectable PDAC | 12 | Prospective, single institute, phase I trial. | Concurrent capecitabine at 825 mg/m2 orally twice daily | 30 Gy (RBE) in 10 | Grade 3 = 16% NR | NR | NR | NR | NR | NR | NR | 12 |
Combined Hong, et al. [62] | Resectable PDAC | 15 | Prospective, single institute, phase I trial. | Concurrent capecitabine at 825 mg/m2 orally twice daily | 25–30 Gy (RBE) in 5–10 | Grade 3 = 27% NR | NR | NR | 75% | NR | Median relapse free survival was 10 months | NR | 12 |
Hong, et al. [63] | Resectable PDAC | 50 | Prospective, single institute phase I/II study. 15 patients from Hong, et al. [62] phase I study. | Concurrent capecitabine at 825 mg/m2 orally twice daily. Gemcitabine for 6 months starting post-operative 4 to 10 weeks | 25 GyE in 5 | Grade 2 = 31.4% Grade 3 = 4.1% (phase II patients only) Grade 4 = 0% NR | NR | 17.3 (11.2–29.2) months for non-resected For the 37 eligible resected patient = 27.0 (16.2–32.3) | NR | 42% | 10.4 (7.5–17.1) months for non-resected For the 37 Eligible resected patient = 14.5 (10.2–21.8) Whole group = 10 | Locoregional failure occurred = 16.2% Distant recurrence occurred = 72.9% | 12 patients alive at 38 months |
Boimel, et al. [101] | Locally recurrent LAPC | 15 | Reirradiation study, retrospective, single institute. | Variety of chemotherapy regimens. 67% of patients received concurrent chemotherapy | 37.5–59.4 Gy (RBE) Prior radiation dose 30–59.4 Gy | Grade ≥ 3 = 13% V4 [99] | NR | 16.7 | 67% | NR | Distant metastasis free survival 1-year = 64% | 72% | 15.7 (2–48) |
Jethwa, et al. [58] £ | LAPC | 13 | Retrospective, non-randomised, single institute. | Concurrent capecitabine 825mg/m2 twice daily. 2 patients received concurrent 5-fluorouracil 225mg/m2 | 50 Gy (RBE) in 25 | Grade 1 = 46% Grade 2 = 15% Grade ≥ 3 = 0% V4 [99] | NR | NR | 62% | 40% | 1-year local control rate = 66% | 1- and 2- year freedom from distant metastasis rate = 53% and 28% | 16 (9–24) |
Kim, et al. [57] | LAPC (4 recurrent, 1 metastatic) | 37 | Retrospective, non-randomised, single institute. | Variety of chemotherapy regimens. 21.6% patients received induction chemotherapy | 45 and 30 GyE in 10 | Anaemia: Grade 1 = 32.4% Grade 2 = 8.1% Leukopenia: Grade 1 = 21.4% Grade 2 = 2.7% Grade 1 thrombocytopenia= 2.7% Grade 1 abdominal pain = 16.2% Anorexia: Grade 1 = 10.8% Grade 2 = 8.1% Stomatitis: Grade 1 = 2.7% Grade 2 = 2.7% Vomiting: Grade 1 = 8.1% Grade 2 = 5.4% Grade ≥ 3 = 0% V4 [99] | Grade 1-2 = NR Grade ≥ 3 = 0% | 19.3 | OS rates = 75.7% | NR | Relapse free survival = 33.2% | 64.8% | 16.7 months (2.3–32.1 months) |
Maemura, et al. [71] | Unresectable LAPC | 25 | Prospective, non-randomised, single institute. | Induction and concurrent chemotherapy (gemcitabine or S-1) | 50 Gy (XRT) or 67.5 GyE (PT) in 25 | XRT = higher incidence of haematological toxicity, grade 3 = 3 patients PT = grade 2 or 3 gastric ulcer = 2 patients V4 [99] | NR | XRT = 23.4 PT = 22.3 | XRT = 86.7% PT = 80% | XRT = 33.3% PT = 45% | Median time (15.4 months) to progression was the same across both PT and XRT. | Local progression: XRT = 40% PT = 60% Disease control rates: XRT = 93% PT = 80% | NR |
Tseng, et al. [64] ‡ * | Resectable LAPC | 47 | Retrospective, single institute. | Concurrent neoadjuvant capecitabine (825 mg/m2 twice daily over 1 week (41 patients) or 2 weeks (6 patients) for 5 days a week | 25 GyE in 5 | Grade 1 = 51% Grade 2 = 4% Grade ≥ 3 = 0% V3 [90] | NR | NR | NR | NR | NR | NR | 8.5 (7 days–18.6 months) |
Author | Disease | Sample Size | Study Design | Chemotherapy | Total Dose and Fractionation | Acute Side Effects Criteria for Adverse Events Version | Late Side Effects | MST Months | 1-year OS Rate | 2-year OS Rate | PFS | FFLP | Median FU Period Months (Range) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shinoto, et al. [68] Φ | Unresectable LAPC | 64 | Retrospective, single institute. | Gemcitabine or S-1 | 55.2 Gy (RBE) in 12 | Grade 2 = 26% Grade 3 = 6% V4 [99] | Grade 2 = 6% Grade ≥3 = 0% | 25.1 | 84% | 53% | 2-year = 23% | 2-year LC = 82% | 24.4 (5.1–46.1) |
Kawashiro, et al. [17] Φ | Unresectable LAPC | 72 | Retrospective, non-randomized, multi- institutional study. | 68% received concurrent gemcitabine (1000 mg/m2 weekly) | 52.8 Gy (RBE) or 55.2 Gy (RBE) in 12 | Grade 2 = 44% Grade 3 = 28.1% Grade 4 = 1% V4 [99] | Grade 1 = 99% Grade 2 = 0% Grade 3 = 1% | 21.5 | 73% | 46% | Local recurrence incidence at 1- year and 2- year = 16% and 24% | Distant metastasis-free survival at 1-year and 2-year = 41% and 28%. Median distant metastasis-free survival = 8.3 months | 13.6 (2.8–37.9) For surviving patients 14.7 (3.2–37.5) |
Combs, et al. [102] | LAPC | 33 | Prospective, phase I, single institute. | Concurrent gemcitabine (300 mg/m2) | 45–53 GyE in 3 | PHOENIX-01 trial withdrawn (before enrolment). | |||||||
Shinoto, et al. [67] Φ | Unresectable LAPC | 72 | Prospective, single institute. | Concurrent gemcitabine (400–100 mg/m2) on days 1,8 and 15. | 43.2–55.2 GyE in 12 | Grade 1 ≥ GI ulcer = 15% Grade ≥ 3 haematologic toxicities = 53% V3 [90] | Grade 3 = 1.4% | 19.6 | 73% | 35% overall For ≥ 45.6 GyE group 2-year OS = 48% | The median time to progression was 5.9 months. 86% experienced distant metastases | 1-year = 92% 2-year = 83% | ≥ 2 years |
Shinoto, et al. [70] Φ | Potentially resectable LAPC | 26 | Phase 1, single institute. | NR | 30–36.8 GyE in 8 | Grade 1 = 3.8% Grade 3 = 3.8% V2 [93] | Grade 4 = 3.8% | 18.6 | 69% For patient who underwent surgical resection = 81% | NR | No patients experienced local recurrence. distant metastasis in 65% of patients | 81% of patients underwent surgery. 5-year survival rates for all 26 patients and for those who underwent surgery were 42% and 52% | 33.8 |
Shinoto, et al. [103] | LAPC | 45 | Phase II, single institute. | Concurrent S-1 administered orally twice a day (80 mg/m2) for 28 days every 6 weeks. | 55.2 GyE in 12 | Currently recruiting |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Oro, M.; Short, M.; Wilson, P.; Bezak, E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers 2020, 12, 163. https://doi.org/10.3390/cancers12010163
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers. 2020; 12(1):163. https://doi.org/10.3390/cancers12010163
Chicago/Turabian StyleDell’Oro, Mikaela, Michala Short, Puthenparampil Wilson, and Eva Bezak. 2020. "Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer" Cancers 12, no. 1: 163. https://doi.org/10.3390/cancers12010163
APA StyleDell’Oro, M., Short, M., Wilson, P., & Bezak, E. (2020). Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers, 12(1), 163. https://doi.org/10.3390/cancers12010163