Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Benign Tumors
2.1. Pleomorphic Adenoma
2.2. Oncocytoma
2.3. Papillary Cystadenoma Lymphomatosum (Warthin’s Tumor)
3. Malignant Tumors
3.1. Mucoepidermoid Carcinoma (MEC)
3.2. Adenoid Cystic Carcinoma
3.3. Acinic Cell Carcinoma
3.4. Polymorphous Adenocarcinoma
3.5. Squamous Cell Carcinoma
3.6. Salivary Duct Carcinoma
4. Cellular and Molecular Mechanisms at the Origin of Salivary Gland Tumors
4.1. Genetic and Molecular Deregulation in Salivary Gland Tumors
4.2. Cancer Stem Cells in Salivary Gland Tumors
5. Novel Approaches for Modelling, Diagnose, and Therapy
5.1. Traditional Approaches for Diagnosis and Therapy
5.2. Perspectives in Biomedical Research and Diagnostics
5.2.1. Organotypic Models
5.2.2. In Vivo Models
5.2.3. Novel Diagnostic Tools
5.3. Novel Therapeutic Approaches
5.3.1. Molecular Targets
5.3.2. Immunotherapy
5.3.3. Checkpoint Inhibitors
5.3.4. T-Cell Chimeric Antigen Receptor-T (CAR-T)
5.3.5. Cancer Vaccine
5.3.6. Tumor Microenvironment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AciCC | Acinic cell carcinoma |
AdCC | Adenoid cystic carcinoma |
AP2g | Transcription factor AP-2 gamma |
APC | Adenomatous polyposis coli |
AQPs | Aquaporins |
AREG | Amphiregulin |
BCL2 | B-cell lymphoma 2 |
CAR-T | T-cells chimeric antigen receptor-T |
CD31 | Cluster of differentiation 31 |
CD4 | Cluster of differentiation 4 |
CD8 | Cluster of differentiation 8 |
CDH5 | Cadherin 5/Ve-Cadherin |
CMV | Cytomegalovirus |
CREB | Coactivator of the cAMP response element-binding protein |
CRS | Cytokine release syndrome |
CTLA4 | Cytotoxic T-lymphocyte-associated protein 4 |
DLBCL | Diffuse large B-cell lymphoma |
EBV | Epstein–Barr virus |
ECM | Extra-cellular Matrix |
EGF | Epidermal growth factor |
ERKs | Extracellular signal-regulated kinases |
FGF2 | Basic fibroblast growth factor |
FISH | Fluorescent in situ hybridization |
FLT1 | (or VEGFR-1) vascular endothelial growth factor receptor 1 |
HBV | Hepatitis B virus |
Hes1/5 | Hairy and enhancer of split 1/5 |
HIV | Human immunodeficiency viruses (HIV) |
HPV | Papillomavirus |
HSV | Herpes virus |
HTN3-MSANTD3 | Histatin3 and Myb/SANT-like DNA-binding domain containing 3 |
IHC | Immunohistochemistry |
IL6 | Interleukin 6 |
JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
Kit | (or SCFR) Stem cell factor receptor |
LC3B | Microtubule-associated protein 1 light chain 3 bet |
MALM | Mastermind-like protein |
MALT | Mucosa-associated lymphoid tissue lymphoma |
MAPK | Mitogen-activated protein kinase (MAPK or MAP kinase) |
MDSCs | Myeloid-derived suppressor cells |
MEC | Mucoepidermoid carcinoma |
METC-1 | Epidermoid carcinoma translocated-1 |
MMTV | Mouse mammary tumour virus |
MYB | Myeloblastosis |
MYBL1 | MYB ligand |
NFIB | Nuclear Factor I B |
NGS | Next-Generation Sequencin |
NK | Natural Killers |
NR4A2 | (or NURR1) The Nuclear receptor related 1 protein |
PA | Pleomorphic adenoma |
PAC | Polymorphous adenocarcinoma |
PD-1 | Programmed cell death protein 1 |
PDGFa/b | Platelet-derived growth factor subunit A |
PD-L1 | PD1-Ligand |
PI3K | Phosphoinositide 3-kinase |
PTAH | Phosphotungstic acid–hematoxylin stain |
PTEN | Phosphatase and tensin homolog |
SCC | Squamous cell carcinoma |
SOX4 | SRY-Box Transcription Factor 4 |
Wnt | Wingless-related integration site |
WWII | World War II |
References
- Porcheri, C.; Mitsiadis, T.A. Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019, 8, 976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. (Eds.) WHO Classification of Head and Neck Tumours. In WHO Classification of Tumours, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017; Volume 9, p. 347. ISBN 978-92-832-2438-9. [Google Scholar]
- Ellis, G.L.; Auclair, P.L. Tumors of the Salivary Glands; Armed Forces Institute of Pathology: Washington, DC, USA, 2008; ISBN 978-1-881041-02-3.
- Pan, S.Y.; De Groh, M.; Morrison, H. A Case-Control Study of Risk Factors for Salivary Gland Cancer in Canada. J. Cancer Epidemiol. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Spitz, M.R.; Tilley, B.C.; Batsakis, J.G.; Gibeau, J.M.; Newell, G.R. Risk factors for major salivary gland carcinoma. A case-comparison study. Cancer 1984, 54, 1854–1859. [Google Scholar] [CrossRef]
- Preston-Martin, S.; Thomas, D.C.; White, S.C.; Cohen, D. Prior Exposure to Medical and Dental X-rays Related to Tumors of the Parotid Gland1. J. Natl. Cancer Inst. 1988, 80, 943–949. [Google Scholar] [CrossRef]
- Kordzińska-Cisek, I.; Cisek, P.; Grzybowska-Szatkowska, L. The Role of Prognostic Factors in Salivary Gland Tumors Treated by Surgery and Adjuvant Radio- or Chemoradiotherapy—A Single Institution Experience. Cancer Manag. Res. 2020, 12, 1047–1067. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Hanna, E.Y. Salivary Gland Cancers: Biology and Molecular Targets for Therapy. Curr. Oncol. Rep. 2012, 14, 166–174. [Google Scholar] [CrossRef]
- Noone, A.M.; Howlader, N.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review (CSR) 1975–2017. Available online: https://seer.cancer.gov/csr/1975_2017/ (accessed on 22 September 2020).
- Spiro, R.H. Salivary neoplasms: Overview of a 35-year experience with 2807 patients. Head Neck Surg. 1986, 8, 177–184. [Google Scholar] [CrossRef]
- Barrett, A.W.; Speight, P.M. Perineural invasion in adenoid cystic carcinoma of the salivary glands: A valid prognostic indicator? Oral Oncol. 2009, 45, 936–940. [Google Scholar] [CrossRef]
- Speight, P.M.; Barrett, A.W. Salivary gland tumours. Oral Dis. 2002, 8, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.H.; Limesand, K.H.; Ann, D.K. Current State of Knowledge on Salivary Gland Cancers. Crit. Rev. Oncog. 2018, 23, 139–151. [Google Scholar] [CrossRef]
- Bokhari, M.R.; Greene, J. Pleomorphic Adenoma; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar] [PubMed]
- Zhan, K.Y.; Khaja, S.F.; Flack, A.B.; Day, T.A. Benign Parotid Tumors. Otolaryngol. Clin. North Am. 2016, 49, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Agarwal, C.; Pujani, M.; Verma, P.; Chauhan, V. Carcinoma ex pleomorphic adenoma: A diagnostic challenge on cytology. Diagn. Cytopathol. 2017, 45, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Lomax-Smith, J.D.; Azzopardi, J.G. The hyaline cell: A distinctive feature of ‘mixed’ salivary tumours. Histopathology 1978, 2, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Scarini, J.F.; Rosa, L.F.; Souza, R.A.D.L.; Abu Egal, E.S.; Tincani, A.J.; Martins, A.S.; Kowalski, L.P.; Graner, E.; Coletta, R.D.; Carlos, R.; et al. Gene and immunohistochemical expression of HIF-1α, GLUT-1, FASN, and adipophilin in carcinoma ex pleomorphic adenoma development. Oral Dis. 2020, 26, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Myssiorek, D.; Ruah, C.B.; Hybels, R.L. Recurrent pleomorphic adenomas of the parotid gland. Head Neck 1990, 12, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.D. World Health Organization Classification of Tumours: Pathology and Genetics of Head and Neck Tumours. Ear Nose Throat J. 2006, 85, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Kumar, S.; Sethi, A. Oncocytoma Parotid Gland. Ann. Maxillofac. Surg. 2018, 8, 330–332. [Google Scholar] [CrossRef]
- Capone, R.B.; Ha, P.K.; Westra, W.H.; Pilkington, T.M.; Sciubba, J.J.; Koch, W.M.; Cummings, C.W. Oncocytic Neoplasms of the Parotid Gland: A 16-Year Institutional Review. Otolaryngol. Neck Surg. 2002, 126, 657–662. [Google Scholar] [CrossRef]
- Vlachaki, E.; Tsapas, A.; Dimitrakopoulos, K.; Kontzoglou, G.; Klonizakis, I. Parotid gland oncocytoma: A case report. Cases J. 2009, 2, 6423. [Google Scholar] [CrossRef]
- Eveson, J.W.; Cawson, R.A. Warthin’s tumor (cystadenolymphoma) of salivary glands. Oral Surgery, Oral Med. Oral Pathol. 1986, 61, 256–262. [Google Scholar] [CrossRef]
- Sato, T.; Morita, Y.; Hamamoto, S.; Noikura, T.; Kawashima, K.; Matsune, S.; Semba, I. Interpretation of scintigraphy of papillary cystadenoma lymphomatosum (Warthin’s tumor) on the basis of histopathologic findings. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 1996, 82, 101–107. [Google Scholar] [CrossRef]
- Mandel, L.; Surattanont, F. Bilateral parotid swelling: A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2002, 93, 221–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Sato, E.; Inoue, R.; Oshiro, H.; Takahashi, R.H.; Nagai, T.; Yoshida, M.; Suzuki, F.; Obikane, H.; Yamashina, M.; et al. Immunohistochemical Analysis of Salivary Gland Tumors: Application for Surgical Pathology Practice. Acta Histochem. ET Cytochem. 2012, 45, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Takezawa, K.; Jackson, C.; Gnepp, D.R.; King, T.C. Molecular characterization of Warthin tumor. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 1998, 85, 569–575. [Google Scholar] [CrossRef]
- Neville, B.W. Update on Current Trends in Oral and Maxillofacial Pathology. Head Neck Pathol. 2007, 1, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, L.; Masson, P. Epithéliomas à Double Métaplasie de la Parotide; Bull Assoc Fr Etude Cancer: Paris, France, 1924; Volume 13, pp. 366–373. [Google Scholar]
- De Oliveira, F.A.; Duarte, E.C.B.; Taveira, C.T.; Máximo, A.A.; De Aquino Érica, C.; Alencar, R.D.C.; Vêncio, E.F. Salivary Gland Tumor: A Review of 599 Cases in a Brazilian Population. Head Neck Pathol. 2009, 3, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Barnes, L.; Weltgesundheitsorganisation; International Agency for Research on Cancer (Eds.) Pathology and Genetics of Head and Neck Tumours: Reflects the Views of a Working Group That Convened for an Editorial and Consensus Conference in Lyon, France, 16–19 July 2003, Reprinted; IARC Press: Lyon, France, 2007. [Google Scholar]
- Byrd, S.A.; Spector, M.E.; Carey, T.E.; Bradford, C.R.; McHugh, J.B. Predictors of Recurrence and Survival for Head and Neck Mucoepidermoid Carcinoma. Otolaryngol. Neck Surg. 2013, 149, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.C.-F.; Chen, P.-L.; Tsao, T.-Y.; Li, C.-R.; Jeng, K.-C.; Tsai, S.C.-S. Prevalence of human papillomavirus and Epstein–Barr virus in salivary gland diseases. J. Int. Med Res. 2014, 42, 1093–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeggblom, L.; Ursu, R.G.; Mirzaie, L.; Attoff, T.; Gahm, C.; Nordenvall, L.H.; Näsman, A. No evidence for human papillomavirus having a causal role in salivary gland tumors. Diagn. Pathol. 2018, 13, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Melnick, M.; Sedghizadeh, P.P.; Allen, C.M.; Jaskoll, T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: Cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp. Mol. Pathol. 2012, 92, 118–125. [Google Scholar] [CrossRef]
- Nichols, W.G.; Boeckh, M. Recent advances in the therapy and prevention of CMV infections. J. Clin. Virol. 2000, 16, 25–40. [Google Scholar] [CrossRef]
- Jee, K.J.; Persson, M.; Heikinheimo, K.; Passador-Santos, F.; Aro, K.; Knuutila, S.; Odell, E.W.; Mäkitie, A.; Sundelin, K.; Stenman, G.; et al. Genomic profiles and CRTC1–MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma. Mod. Pathol. 2012, 26, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiro, R.H.; Huvos, A.G.; Strong, E.W. Acinic cell carcinoma of salivary origin.A clinicopathologic study of 67 cases. Cancer 1978, 41, 924–935. [Google Scholar] [CrossRef]
- Van Der Wal, J.E.; Becking, A.G.; Snow, G.B.; Van Der Waal, I. Distant metastases of adenoid cystic carcinoma of the salivary glands and the value of diagnostic examinations during follow-up. Head Neck 2002, 24, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.S.; Ochoa, A.; Jayakumaran, G.; Zehir, A.; Mayor, C.V.; Tepe, J.; Makarov, V.; Dalin, M.G.; He, J.; Bailey, M.; et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J. Clin. Investig. 2019, 129, 4276–4289. [Google Scholar] [CrossRef] [PubMed]
- Jaso, J.; Malhotra, R. Adenoid cystic carcinoma. Arch. Pathol. Lab. Med. 2011, 135, 511–515. [Google Scholar] [PubMed]
- Du, F.; Zhou, C.-X.; Gao, Y. Myoepithelial differentiation in cribriform, tubular and solid pattern of adenoid cystic carcinoma: A potential involvement in histological grading and prognosis. Ann. Diagn. Pathol. 2016, 22, 12–17. [Google Scholar] [CrossRef]
- Al-Zaher, N.; Obeid, A.; Al-Salam, S.; Al-Kayyali, B.S. Acinic cell carcinoma of the salivary glands: A literature review. Hematol. Stem Cell Ther. 2009, 2, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.A.; Yonescu, R.; Batista, D.A.S.; Eisele, D.W.; Westra, W.H. Most Nonparotid “Acinic Cell Carcinomas” Represent Mammary Analog Secretory Carcinomas. Am. J. Surg. Pathol. 2013, 37, 1053–1057. [Google Scholar] [CrossRef] [Green Version]
- Squires, J.; Mills, S.; Cooper, P.H.; Innes, D.J.; McLean, W.C. Acinic cell carcinoma: Its occurrence in the laryngotracheal junction after thyroid radiation. Arch. Pathol. Lab. Med. 1981, 105, 266–268. [Google Scholar]
- Batsakis, J.G.; Pinkston, G.R.; Luna, M.A.; Byers, R.M.; Sciubba, J.J.; Tillery, G.W. Adenocarcinomas of the oral cavity: A clinicopathologic study of terminal duct carcinomas. J. Laryngol. Otol. 1983, 97, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Evans, H.L.; Batsakis, J.G. Polymorphous low-grade adenocarcinoma of minor salivary glands a study of 14 cases of a distinctive neoplasm. Cancer 1984, 53, 935–942. [Google Scholar] [CrossRef]
- Seethala, R.R.; Johnson, J.T.; Barnes, L.; Myers, E. Polymorphous Low-Grade Adenocarcinoma. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Sedassari, B.T.; Dos Santos, H.T.; Pigatti, F.M.; Mussi, M.C.M.; Tobouti, P.L.; Altemani, A.; Sousa, S. Doing more with less: The challenging diagnosis of polymorphous low-grade adenocarcinoma in incisional biopsy samples. Histopathology 2015, 68, 1046–1054. [Google Scholar] [CrossRef]
- Mimica, X.; Katabi, N.; McGill, M.R.; Patel, S.; Zanoni, D.K.; Shah, J.; Wong, R.J.; Cohen, M.A.; Patel, S.; Ganly, I. Polymorphous adenocarcinoma of salivary glands. Oral Oncol. 2019, 95, 52–58. [Google Scholar] [CrossRef]
- Akhtar, K.; Ray, P.S.; Sherwani, R.; Siddiqui, S. Primary squamous cell carcinoma of the parotid gland: A rare entity. BMJ Case Rep. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Manvikar, V.; Ramulu, S.; Ravishanker, S.T.; Chakravarthy, C. Squamous cell carcinoma of submandibular salivary gland: A rare case report. J. Oral Maxillofac. Pathol. JOMFP 2014, 18, 299–302. [Google Scholar] [CrossRef]
- Xu, B.; Wang, L.; Borsu, L.; Ghossein, R.; Katabi, N.; Ganly, I.; Dogan, S. A proportion of primary squamous cell carcinomas of the parotid gland harbour high-risk human papillomavirus. Histopathology 2016, 69, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Van Heerden, W.F.; Raubenheimer, E.J.; Swart, T.J.; Boy, S.C. Intraoral salivary duct carcinoma: A report of 5 cases. J. Oral Maxillofac. Surg. 2003, 61, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Sharma, A.; Schmitt, N.C.; Johnson, J.T.; Ferris, R.L.; Duvvuri, U.; Kim, S. A 20-Year Review of 75 Cases of Salivary Duct Carcinoma. JAMA Otolaryngol. Neck Surg. 2016, 142, 489–495. [Google Scholar] [CrossRef]
- Delgado, R.; Vuitch, F.; Albores-Saavedra, J. Salivary duct carcinoma. Cancer 1993, 72, 5, 1503–1512. [Google Scholar] [CrossRef]
- Williams, M.D.; Roberts, D.; Blumenschein, G.R.; Temam, S.; Kies, M.S.; Rosenthal, D.I.; Weber, R.S.; El-Naggar, A.K. Differential Expression of Hormonal and Growth Factor Receptors in Salivary Duct Carcinomas. Am. J. Surg. Pathol. 2007, 31, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, S.B.; Barnes, L. Expression of androgen receptor, gross cystic disease fluid protein, and CD44 in salivary duct carcinoma. Mod. Pathol. 1998, 11, 1033–1038. [Google Scholar] [PubMed]
- Di Palma, S.; Simpson, R.H.W.; Marchiò, C.; Skálová, A.; Ungari, M.; Sandison, A.; Whitaker, S.; Parry, S.; Reis-Filho, J.S. Salivary duct carcinomas can be classified into luminal androgen receptor-positive, HER2 and basal-like phenotypes*. Histopathology 2012, 61, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Qi, S.; Zhang, X.; Wu, J.; Yang, X.; Wang, R. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β-catenin pathway in oral squamous cell carcinoma. Int. J. Oncol. 2019, 54, 1183–1194. [Google Scholar] [CrossRef]
- Muzio, L.L.; Pannone, G.; Staibano, S.; Mignogna, M.; Serpico, R.; Fanali, S.; De Rosa, G.; Piattelli, A.; Mariggiò, M.A. p120cat delocalization in cell lines of oral cancer. Oral Oncol. 2002, 38, 64–72. [Google Scholar] [CrossRef]
- Wend, P.; Fang, L.; Zhu, Q.; Schipper, J.H.; Loddenkemper, C.; Kosel, F.; Brinkmann, V.; Eckert, K.; Hindersin, S.; Holland, J.D.; et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J. 2013, 32, 1977–1989. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shao, C.; Tan, M.L.; Mu, D.; Ferris, R.L.; Ha, P.K.; Ferris, R.L. Molecular biology of adenoid cystic carcinoma. Head Neck 2011, 34, 1665–1677. [Google Scholar] [CrossRef]
- Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 2007, 17, 45–51. [Google Scholar] [CrossRef]
- Frierson, H.F.; El-Naggar, A.K.; Welsh, J.B.; Sapinoso, L.M.; Su, A.; Cheng, J.; Saku, T.; Moskaluk, C.A.; Hampton, G.M. Large Scale Molecular Analysis Identifies Genes with Altered Expression in Salivary Adenoid Cystic Carcinoma. Am. J. Pathol. 2002, 161, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Holst, V.; Marshall, C.; Moskaluk, C.; Frierson, H.F. KIT protein expression and analysis of c-kit gene mutation in adenoid cystic carcinoma. Mod. Pathol. 1999, 12, 956–960. [Google Scholar] [PubMed]
- Porcheri, C.; Mitsiadis, T.A. Notch in Head and Neck Cancer. Adv. Exp. Med. Biol. 2020, 1287, 81–103. [Google Scholar] [CrossRef]
- Porcheri, C.; Meisel, C.T.; Mitsiadis, T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 1520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.-H.; Liu, H.-C.; Liang, Y.-J.; Liang, L.-Z.; Zheng, G.-S.; Huang, H.; Wu, J.-N.; Liao, G.-Q. Suppression of tongue squamous cell carcinoma growth by inhibition of Jagged1 in vitro and in vivo. J. Oral Pathol. Med. 2012, 42, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Gaykalova, D.A.; Ochs, M.F.; Mambo, E.; Arnaoutakis, D.; Liu, Y.; Loyo, M.; Agrawal, N.; Howard, J.; Li, R.; et al. Activation of the NOTCH Pathway in Head and Neck Cancer. Cancer Res. 2013, 74, 1091–1104. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, A.K.; Lovell, M.; Killary, A.M.; Clayman, G.L.; Batsakis, J.G. A mucoepidermoid carcinoma of minor salivary gland with t(11;19)(q21;p13.1) as the only karyotypic abnormality. Cancer Genet. Cytogenet. 1996, 87, 29–33. [Google Scholar] [CrossRef]
- Nordkvist, A.; Gustafsson, H.; Juberg-Ode, M.; Stenman, G. Recurrent rearrangements of 11q14–22 in mucoepidermoid carcinoma. Cancer Genet. Cytogenet. 1994, 74, 77–83. [Google Scholar] [CrossRef]
- Behboudi, A.; Enlund, F.; Winnes, M.; Andrén, Y.; Nordkvist, A.; Leivo, I.; Flaberg, E.; Szekely, L.; Mäkitie, A.; Grenman, R.; et al. Molecular classification of mucoepidermoid carcinomas—Prognostic significance of theMECT1–MAML2 fusion oncogene. Genes Chromosom. Cancer 2006, 45, 470–481. [Google Scholar] [CrossRef]
- Tonon, G.; Modi, S.; Wu, L.; Kubo, A.; Coxon, A.B.; Komiya, T.; O’Neil, K.; Stover, K.; Elnaggar, A.K.; Griffin, J.D.; et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat. Genet. 2003, 33, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Tan, M.; Bishop, J.A.; Jones, S.; Sausen, M.; Ha, P.K.; Agrawal, N. Whole-Exome Sequencing of Salivary Gland Mucoepidermoid Carcinoma. Clin. Cancer Res. 2016, 23, 283–288. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Gu, Y.; Hu, C.; Li, J.-L.; Lin, S.; Shen, H.; Cao, C.; Gao, R.; Li, J.; et al. Aberrantly activated AREG–EGFR signaling is required for the growth and survival of CRTC1–MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene 2013, 33, 3869–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, M.; Murase, T.; Okumura, Y.; Ueda, K.; Sakamoto, Y.; Masaki, A.; Kawakita, D.; Tada, Y.; Nibu, K.; Shibuya, Y.; et al. Clinicopathological significance of EGFR pathway gene mutations and CRTC1/3–MAML2 fusions in salivary gland mucoepidermoid carcinoma. Histopathology 2020, 76, 1013–1022. [Google Scholar] [CrossRef]
- Lujan, B.; Hakim, S.; Moyano, S.; Nadal, A.; Caballero, M.; Diaz, A.; Valera, A.; Carrera, M.; Cardesa, A.; Alos, L. Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br. J. Cancer 2010, 103, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Ito, F.; Ito, K.; Coletta, R.D.; Graner, E.; De Almeida, O.P.; Lopes, M. Salivary gland tumors: Immunohistochemical study of EGF, EGFR, ErbB-2, FAS and Ki-67. Anal. Quant. Cytol. Histol. 2009, 31, 280–287. [Google Scholar] [PubMed]
- Bieńkowski, M.; Kunc, M.; Iliszko, M.; Kuźniacka, A.; Studniarek, M.; Biernat, W. MAML2 rearrangement as a useful diagnostic marker discriminating between Warthin tumour and Warthin-like mucoepidermoid carcinoma. Virchows Archiv 2020, 477, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Daoud, E.V.; Mclean-Holden, A.C.; Pfeifer, C.M.; Timmons, C.F.; Oliai, B.R.; Bishop, J.A. Pediatric Warthin-like Mucoepidermoid Carcinoma: Report of Two Cases with One Persistent/Recurrent as Conventional Mucoepidermoid Carcinoma. Head Neck Pathol. 2020, 1–6. [Google Scholar] [CrossRef]
- Kas, K.; Voz, M.L.; Röijer, E.; Åström, A.-K.; Meyen, E.; Stenman, G.; Van De Ven, W.J. Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat. Genet. 1997, 15, 170–174. [Google Scholar] [CrossRef]
- Persson, F.; Andrén, Y.; Mark, J.; Horlings, H.M.; Stenman, G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA 2009, 106, 18740–18744. [Google Scholar] [CrossRef] [Green Version]
- De Braekeleer, E.; Douet-Guilbert, N.; Morel, F.; Le Bris, M.-J.; Basinko, A.; De Braekeleer, M. ETV6 fusion genes in hematological malignancies: A review. Leuk. Res. 2012, 36, 945–961. [Google Scholar] [CrossRef]
- Stenman, G. Fusion Oncogenes in Salivary Gland Tumors: Molecular and Clinical Consequences. Head Neck Pathol. 2013, 7, 12–19. [Google Scholar] [CrossRef]
- Andreasen, S.; Tan, Q.; Agander, T.K.; Steiner, P.; Bjørndal, K.; Høgdall, E.; Larsen, S.R.; Erentaite, D.; Olsen, C.H.; Ulhøi, B.P.; et al. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod. Pathol. 2018, 31, 1211–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.H.; Roberts, D.; Zhao, Y.-J.; Bell, D.; Harris, C.P.; Weber, R.S.; El-Naggar, A.K. Deletion of 1p32-p36 Is the Most Frequent Genetic Change and Poor Prognostic Marker in Adenoid Cystic Carcinoma of the Salivary Glands. Clin. Cancer Res. 2008, 14, 5181–5187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaghad, M.; Bonnet, H.; Yang, A.; Creancier, L.; Biscan, J.-C.; Valent, A.; Minty, A.; Chalon, P.; Lelias, J.-M.; Dumont, X.; et al. Monoallelically Expressed Gene Related to p53 at 1p36, a Region Frequently Deleted in Neuroblastoma and Other Human Cancers. Cell 1997, 90, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, A.; Papazoglu, C.; Wu, Y.; Capurso, D.; Brodt, M.; Francis, D.; Bredel, M.; Vogel, H.; Mills, A.A. CHD5 Is a Tumor Suppressor at Human 1p36. Cell 2007, 128, 459–475. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Lin, L.-S.; Huang, X.-Y.; Gan, R.-H.; Ding, L.-C.; Su, B.-H.; Zhao, Y.; Lu, Y.-G.; Zheng, D.-L. The NOTCH1-HEY1 pathway regulates self-renewal and epithelial-mesenchymal transition of salivary adenoid cystic carcinoma cells. Int. J. Biol. Sci. 2020, 16, 598–610. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-Y.; Gan, R.-H.; Xie, J.; She, L.; Zhao, Y.; Ding, L.-C.; Su, B.-H.; Zheng, D.-L.; Lu, Y.-G. The oncogenic effects of HES1 on salivary adenoid cystic carcinoma cell growth and metastasis. BMC Cancer 2018, 18, 436. [Google Scholar] [CrossRef] [Green Version]
- Haller, F.; Bieg, M.; Will, R.; Körner, C.; Weichenhan, D.; Bott, A.; Ishaque, N.; Lutsik, P.; Moskalev, E.A.; Mueller, S.K.; et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Andreasen, S.; Varma, S.; Barasch, N.; Thompson, L.D.; Miettinen, M.; Rooper, L.; Stelow, E.B.; Agander, T.K.; Seethala, R.R.; Chiosea, S.I.; et al. The HTN3-MSANTD3 Fusion Gene Defines a Subset of Acinic Cell Carcinoma of the Salivary Gland. Am. J. Surg. Pathol. 2019, 43, 489–496. [Google Scholar] [CrossRef]
- Barasch, N.; Gong, X.; Kwei, K.A.; Varma, S.; Biscocho, J.; Qu, K.; Xiao, N.; Lipsick, J.S.; Pelham, R.J.; West, R.B.; et al. Recurrent rearrangements of the Myb/SANT-like DNA-binding domain containing 3 gene (MSANTD3) in salivary gland acinic cell carcinoma. PLoS ONE 2017, 12, e0171265. [Google Scholar] [CrossRef]
- Piscuoglio, S.; Hodi, Z.; Katabi, N.; Guerini-Rocco, E.; Macedo, G.S.; Ng, C.K.Y.; Edelweiss, M.; De Mattos-Arruda, L.; Wen, H.Y.; Rakha, E.; et al. Are acinic cell carcinomas of the breast and salivary glands distinct diseases? Histopathology 2015, 67, 529–537. [Google Scholar] [CrossRef]
- Geyer, F.C.; Pareja, F.; Weigelt, B.; Rakha, E.; Ellis, I.O.; Schnitt, S.J.; Reis-Filho, J.S. The Spectrum of Triple-Negative Breast Disease. Am. J. Pathol. 2017, 187, 2139–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takase, S.; Kano, S.; Tada, Y.; Kawakita, D.; Shimura, T.; Hirai, H.; Tsukahara, K.; Shimizu, A.; Imanishi, Y.; Ozawa, H.; et al. Biomarker immunoprofile in salivary duct carcinomas: Clinicopathological and prognostic implications with evaluation of the revised classification. Oncotarget 2017, 8, 59023–59035. [Google Scholar] [CrossRef] [Green Version]
- Coussens, L.; Yang-Feng, T.L.; Liao, Y.C.; Chen, E.; Gray, A.; McGrath, J.; Seeburg, P.H.; Libermann, T.; Schlessinger, J.; Francke, U.; et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985, 230, 1132–1139. [Google Scholar] [CrossRef]
- Nardi, V.; Sadow, P.M.; Juric, D.; Zhao, D.; Cosper, A.K.; Bergethon, K.; Scialabba, V.L.; Batten, J.M.; Borger, D.R.; Iafrate, A.J.; et al. Detection of Novel Actionable Genetic Changes in Salivary Duct Carcinoma Helps Direct Patient Treatment. Clin. Cancer Res. 2012, 19, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Jaehne, M.; Roeser, K.; Jaekel, T.; Schepers, J.D.; Albert, N.; Löning, T. Clinical and immunohistologic typing of salivary duct carcinoma. Cancer 2005, 103, 2526–2533. [Google Scholar] [CrossRef]
- Rosa, A.C.G.; Soares, A.B.; Santos, F.P.; Furuse, C.; De Araújo, V.C. Immunoexpression of growth factors and receptors in polymorphous low-grade adenocarcinoma. J. Oral Pathol. Med. 2015, 45, 494–499. [Google Scholar] [CrossRef]
- Soares, A.B.; Martinez, E.F.; Ribeiro, P.F.A.; Barreto, I.S.; Aguiar, M.C.; Furuse, C.; Sperandio, M.; Montalli, V.A.M.; De Araújo, N.S.; De Araujo, V.C. Factors that may influence polymorphous low-grade adenocarcinoma growth. Virchows Archiv 2017, 470, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Stamboni, M.B.; de Mello Gomes, Á.N.; De Souza, M.M.; Oliveira, K.K.; Arruda, C.F.J.; De Paula, F.; Bettim, B.B.; Marques, M.M.; Kowalski, L.P.; Pinto, C.A.L.; et al. Aquaporin 1, 3, and 5 Patterns in Salivary Gland Mucoepidermoid Carcinoma: Expression in Surgical Specimens and an In Vitro Pilot Study. Int. J. Mol. Sci. 2020, 21, 1287. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Saku, T.; Okabe, H.; Furthmayr, H. Basement membranes in adenoid cystic carcinoma an immunohistochemical study. Cancer 1992, 69, 2631–2640. [Google Scholar] [CrossRef]
- Azumi, N.; Battifora, H. The cellular composition of adenoid cystic carcinoma. An immunohistochemical study. Cancer 1987, 60, 1589–1598. [Google Scholar] [CrossRef]
- Toida, M.; Takeuchi, J.; Sobue, M.; Tsukidate, K.; Akao, S.; Fukatsu, T.; Nakashima, N. Histochemical studies on pseudocysts in adenoid cystic carcinoma of the human salivary gland. J. Mol. Histol. 1985, 17, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Caselitz, J.; Schulze, I.; Seifert, G. Adenoid cystic carcinoma of the salivary glands: An immunohistochemical study. J. Oral Pathol. Med. 1986, 15, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Speight, P.M.; Barrett, A.W. Salivary gland tumours: Diagnostic challenges and an update on the latest WHO classification. Diagn. Histopathol. 2020, 26, 147–158. [Google Scholar] [CrossRef]
- Man, Y.-G.; Ball, W.D.; Marchetti, L.; Hand, A.R. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2001, 263, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Denny, P.C.; Denny, P.A. Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat. Rec. 1999, 254, 3, 408–417. [Google Scholar] [CrossRef]
- Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2007, 104, 973–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmerson, E.; Knox, S.M. Salivary gland stem cells: A review of development, regeneration and cancer. Genesis 2018, 56, e23211. [Google Scholar] [CrossRef]
- Laurie, S.A.; Licitra, L. Systemic Therapy in the Palliative Management of Advanced Salivary Gland Cancers. J. Clin. Oncol. 2006, 24, 2673–2678. [Google Scholar] [CrossRef] [Green Version]
- Panaccione, A.; Chang, M.T.; Carbone, B.E.; Guo, Y.; Moskaluk, C.A.; Virk, R.K.; Chiriboga, L.; Prasad, M.L.; Judson, B.; Mehra, S.; et al. NOTCH1 and SOX10 are Essential for Proliferation and Radiation Resistance of Cancer Stem-Like Cells in Adenoid Cystic Carcinoma. Clin. Cancer Res. 2016, 22, 2083–2095. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Ikeda, T. Cancer stem-like cells in adenoid cystic carcinoma of salivary glands: Relationship with morphogenesis of histological variants. J. Oral Pathol. Med. 2011, 41, 207–213. [Google Scholar] [CrossRef]
- Panaccione, A.; Zhang, Y.; Ryan, M.; Moskaluk, C.A.; Anderson, K.S.; Yarbrough, W.G.; Ivanov, S.V. MYB fusions and CD markers as tools for authentication and purification of cancer stem cells from salivary adenoid cystic carcinoma. Stem Cell Res. 2017, 21, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Guzmán, M.E.; Hernández-Pando, R.; Gómez-Gallegos, A.A.; Ortiz-Sánchez, E.; Toledo-Guzman, E.M.; Miguel, I.H.; Gomez-Gallegos, A.A.; Elizabeth, O.-S. ALDH as a Stem Cell Marker in Solid Tumors. Curr. Stem Cell Res. Ther. 2019, 14, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Z. ALDHhigh adenoid cystic carcinoma cells display cancer stem cell properties and are responsible for mediating metastasis. Biochem. Biophys. Res. Commun. 2010, 396, 843–848. [Google Scholar] [CrossRef]
- Lombaert, I.M.A.; Brunsting, J.F.; Wierenga, P.K.; Faber, H.; Stokman, M.A.; Kok, T.; Visser, W.H.; Kampinga, H.H.; De Haan, G.; Coppes, R.P. Rescue of Salivary Gland Function after Stem Cell Transplantation in Irradiated Glands. PLoS ONE 2008, 3, e2063. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Vries, R.G.; Snippert, H.J.; Van De Wetering, M.; Barker, N.; Stange, D.E.; Van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nat. Cell Biol. 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Van Es, J.H.; Snippert, H.J.; Stange, D.E.; Vries, R.G.; Born, M.V.D.; Barker, N.; Shroyer, N.F.; Van De Wetering, M.; Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nat. Cell Biol. 2010, 469, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopper, O.; De Witte, C.J.; Lõhmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019, 25, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.-J.; Chun, S.-M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Bds, S.K.; Nör, J.E. Orosphere assay: A method for propagation of head and neck cancer stem cells. Head Neck 2012, 35, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.; Warner, K.; Nör, J.E. Salivary gland cancer stem cells. Oral Oncol. 2013, 49, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Frankenthaler, R.A.; Callender, D.; Goepfert, H. Salivary Gland Cancers. Otolaryngol. Neck Surg. 1995, 112, P60. [Google Scholar] [CrossRef]
- Luukkaa, H.; Klemi, P.; Leivo, I.; Koivunen, P.; Laranne, J.; Mäkitie, A.; Virtaniemi, J.; Hinkka, S.; Grénman, R. Salivary gland cancer in Finland 1991–96: An evaluation of 237 cases. Acta Oto-Laryngol. 2005, 125, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gordin, E.; Lee, T.S.; Ducic, Y.; Arnaoutakis, D. Facial Nerve Trauma: Evaluation and Considerations in Management. Craniomaxillofacial Trauma Reconstr. 2015, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Burlage, F.R.; Coppes, R.P.; Meertens, H.; Stokman, M.A.; Vissink, A. Parotid and submandibular/sublingual salivary flow during high dose radiotherapy. Radiother. Oncol. 2001, 61, 271–274. [Google Scholar] [CrossRef]
- Vissink, A.; Mitchell, J.B.; Baum, B.J.; Limesand, K.H.; Jensen, S.B.; Fox, P.C.; Elting, L.S.; Langendijk, J.A.; Coppes, R.P.; Reyland, M.E. Clinical Management of Salivary Gland Hypofunction and Xerostomia in Head-and-Neck Cancer Patients: Successes and Barriers. Int. J. Radiat. Oncol. 2010, 78, 983–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redman, R.S. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech. Histochem. 2008, 83, 103–130. [Google Scholar] [CrossRef] [Green Version]
- Mosier, A.P.; Peters, S.B.; Larsen, M.; Cady, N.C. Microfluidic Platform for the Elastic Characterization of Mouse Submandibular Glands by Atomic Force Microscopy. Biosensors 2014, 4, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, J.; Ogawa, M.; Hojo, H.; Kawashima, Y.; Mabuchi, Y.; Hata, K.; Nakamura, S.; Yasuhara, R.; Takamatsu, K.; Irié, T.; et al. Generation of orthotopically functional salivary gland from embryonic stem cells. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Sakai, Y.; Fujii, T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 2018, 33, 43–48. [Google Scholar] [CrossRef]
- Fu, Y.; Cruz-Monserrate, Z.; Lin, H.H.; Chung, Y.; Ji, B.; Lin, S.-M.; Vonderfecht, S.; Logsdon, C.D.; Li, C.-F.; Ann, D.K. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci. Rep. 2015, 5, 13347. [Google Scholar] [CrossRef] [Green Version]
- Diegel, C.R.; Cho, K.R.; El-Naggar, A.K.; Williams, B.O.; Lindvall, C. Mammalian Target of Rapamycin-Dependent Acinar Cell Neoplasia after Inactivation of Apc and Pten in the Mouse Salivary Gland: Implications for Human Acinic Cell Carcinoma. Cancer Res. 2010, 70, 9143–9152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Liu, H.; Gao, L.; Lü, L.; Du, L.; Bai, H.; Li, J.; Said, S.; Wang, X.-J.; Song, J.; et al. Cooperation Between Pten and Smad4 in Murine Salivary Gland Tumor Formation and Progression. Neoplasia 2018, 20, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, E.; Dickson, B.C.; Weinreb, I. Salivary Gland Cancer in the Era of Routine Next-Generation Sequencing. Head Neck Pathol. 2020, 14, 311–320. [Google Scholar] [CrossRef]
- Cipriani, N.A.; Lusardi, J.J.; McElherne, J.; Pearson, A.T.; Olivas, A.D.; Fitzpatrick, C.; Lingen, M.W.; Blair, E.A. Mucoepidermoid Carcinoma. Am. J. Surg. Pathol. 2019, 43, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Seethala, R.R.; Dacic, S.; Cieply, K.; Kelly, L.M.; Nikiforova, M.N. A Reappraisal of the MECT1/MAML2 Translocation in Salivary Mucoepidermoid Carcinomas. Am. J. Surg. Pathol. 2010, 34, 1106–1121. [Google Scholar] [CrossRef]
- García, J.J.; Hunt, J.L.; Weinreb, I.; McHugh, J.B.; Barnes, E.L.; Cieply, K.; Dacic, S.; Seethala, R.R. Fluorescence in situ hybridization for detection of MAML2 rearrangements in oncocytic mucoepidermoid carcinomas: Utility as a diagnostic test. Hum. Pathol. 2011, 42, 2001–2009. [Google Scholar] [CrossRef]
- Luk, P.P.; Wykes, J.; Selinger, C.I.; Ekmejian, R.; Tay, J.; Gao, K.; Eviston, T.J.; Lum, T.; O’Toole, S.A.; Clark, J.R.; et al. Diagnostic and prognostic utility of Mastermind-like 2 (MAML2) gene rearrangement detection by fluorescent in situ hybridization (FISH) in mucoepidermoid carcinoma of the salivary glands. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 530–541. [Google Scholar] [CrossRef]
- Li, S.; Schmitz, K.R.; Jeffrey, P.D.; Wiltzius, J.J.; Kussie, P.; Ferguson, K.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005, 7, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Burtness, B. The role of cetuximab in the treatment of squamous cell cancer of the head and neck. Expert Opin. Biol. Ther. 2005, 5, 1085–1093. [Google Scholar] [CrossRef]
- O’Neil, B.H.; Allen, R.; Spigel, D.R.; Stinchcombe, T.E.; Moore, D.T.; Berlin, J.D.; Goldberg, R.M. High Incidence of Cetuximab-Related Infusion Reactions in Tennessee and North Carolina and the Association With Atopic History. J. Clin. Oncol. 2007, 25, 3644–3648. [Google Scholar] [CrossRef]
- Baselga, J.; Trigo, J.M.; Bourhis, J.; Tortochaux, J.; Cortés-Funes, H.; Hitt, R.; Gascón, P.; Amellal, N.; Harstrick, A.; Eckardt, A. Phase II Multicenter Study of the Antiepidermal Growth Factor Receptor Monoclonal Antibody Cetuximab in Combination With Platinum-Based Chemotherapy in Patients With Platinum-Refractory Metastatic and/or Recurrent Squamous Cell Carcinoma of the Head and Neck. J. Clin. Oncol. 2005, 23, 5568–5577. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Tada, Y.; Saotome, T.; Akazawa, K.; Ojiri, H.; Fushimi, C.; Masubuchi, T.; Matsuki, T.; Tani, K.; Osamura, R.Y.; et al. Phase II Trial of Trastuzumab and Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2–Positive Salivary Duct Carcinoma. J. Clin. Oncol. 2019, 37, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Sharon, E.; Kelly, R.J.; Szabo, E. Sustained response of carcinoma ex pleomorphic adenoma treated with trastuzumab and capecitabine. Head Neck Oncol. 2010, 2, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limaye, S.A.; Posner, M.R.; Krane, J.F.; Fonfria, M.; Lorch, J.H.; Dillon, D.A.; Shreenivas, A.V.; Tishler, R.B.; Haddad, R.I. Trastuzumab for the Treatment of Salivary Duct Carcinoma. Oncology 2013, 18, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabili, V.; Tan, J.W.; Bhuta, S.; Sercarz, J.A.; Head, C.S. Salivary duct carcinoma: A clinical and histologic review with implications for trastuzumab therapy. Head Neck 2007, 29, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, T.S.; Matos, G.D.R.; Segura, M.; Dos Anjos, C.H. Second-Line Treatment of HER2-Positive Salivary Gland Tumor: Ado-Trastuzumab Emtansine (T-DM1) after Progression on Trastuzumab. Case Rep. Oncol. 2018, 11, 252–257. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Han, L.; Yi, Y. Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J. Cancer 2018, 9, 1259–1266. [Google Scholar] [CrossRef]
- Tchekmedyian, V.; Sherman, E.J.; Dunn, L.; Tran, C.; Baxi, S.; Katabi, N.; Antonescu, C.R.; Ostrovnaya, I.; Haque, S.S.; Pfister, D.G.; et al. Phase II Study of Lenvatinib in Patients With Progressive, Recurrent or Metastatic Adenoid Cystic Carcinoma. J. Clin. Oncol. 2019, 37, 1529–1537. [Google Scholar] [CrossRef]
- Ho, A.L.; Dunn, L.; Sherman, E.J.; Fury, M.G.; Baxi, S.S.; Chandramohan, R.; Dogan, S.; Morris, L.G.T.; Cullen, G.D.; Haque, S.; et al. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann. Oncol. 2016, 27, 1902–1908. [Google Scholar] [CrossRef]
- Locati, L.; Perrone, F.; Cortelazzi, B.; Bergamini, C.; Bossi, P.; Civelli, E.M.; Morosi, C.; Vullo, S.L.; Imbimbo, M.; Quattrone, P.; et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: Translational analyses and clinical impact. Eur. J. Cancer 2016, 69, 158–165. [Google Scholar] [CrossRef]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed Death-1 Ligand 1 Interacts Specifically with the B7-1 Costimulatory Molecule to Inhibit T Cell Responses. Immunity 2007, 27, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, F.; Whiteside, G.; Perry, C. Ipilimumab. Drugs 2011, 71, 1093–1104. [Google Scholar] [CrossRef]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017, 18, e731–e741. [Google Scholar] [CrossRef]
- Karwacz, K.; Bricogne, C.; Macdonald, D.; Arce, F.; Bennett, C.L.; Collins, M.; Escors, D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8 + T cells. EMBO Mol. Med. 2011, 3, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016, 17, 956–965. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Gross, G.; Waks, T.; Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028. [Google Scholar] [CrossRef] [Green Version]
- Sadelain, M.; Brentjens, R.; Rivière, I. The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discov. 2013, 3, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; June, C.H. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2016, 27, 38–58. [Google Scholar] [CrossRef] [Green Version]
- Kochenderfer, J.N.; Rosenberg, S.A. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 2013, 10, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Eshhar, Z.; Waks, T.; Gross, G.; Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 720–724. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, L. Tragedy, Perseverance, and Chance—The Story of CAR-T Therapy. N. Engl. J. Med. 2017, 377, 1313–1315. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Shin, S.; Dy, G.K. Advances in Cancer Immunotherapy in Solid Tumors. Cancers 2016, 8, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, F.J.; Benike, C.; Fagnoni, F.; Liles, T.M.; Czerwinski, D.; Taidi, B.; Engleman, E.G.; Levy, R. Vaccination of patients with B–cell lymphoma using autologous antigen–pulsed dendritic cells. Nat. Med. 1996, 2, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Nestle, F.O.; Alijagic, S.; Gilliet, M.; Sun, Y.; Grabbe, S.; Dummer, R.; Burg, G.; Schadendorf, D. Vaccination of melanoma patients with peptide- or tumorlysate-pulsed dendritic cells. Nat. Med. 1998, 4, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Tun-Kyi, A.; Tassis, A.; Jungius, K.-P.; Burg, G.; Dummer, R.; Nestle, F.O. Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate–pulsed dendritic cells. Blood 2003, 102, 2338–2344. [Google Scholar] [CrossRef] [Green Version]
- Schirmbeck, R.; Böhm, W.; Reimann, J. Virus-Like Particles Induce MHC Class I-Restricted T-Cell Responses. Intervirology 1996, 39, 111–119. [Google Scholar] [CrossRef]
- Parez, N.; Fourgeux, C.; Mohamed, A.; Dubuquoy, C.; Pillot, M.; Dehee, A.; Charpilienne, A.; Poncet, D.; Schwartz-Cornil, I.; Garbarg-Chenon, A. Rectal Immunization with Rotavirus Virus-Like Particles Induces Systemic and Mucosal Humoral Immune Responses and Protects Mice against Rotavirus Infection. J. Virol. 2006, 80, 1752–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, D.M.; Franco, E.L.; Wheeler, C.; Ferris, D.G.; Jenkins, D.; Schuind, A.; Zahaf, T.; Innis, B.; Naud, P.; De Carvalho, N.S.; et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomised controlled trial. Lancet 2004, 364, 1757–1765. [Google Scholar] [CrossRef]
- Schäfer, M.; Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 2008, 9, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcheri, C.; Meisel, C.T.; Mitsiadis, T.A. Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers 2020, 12, 3107. https://doi.org/10.3390/cancers12113107
Porcheri C, Meisel CT, Mitsiadis TA. Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers. 2020; 12(11):3107. https://doi.org/10.3390/cancers12113107
Chicago/Turabian StylePorcheri, Cristina, Christian T. Meisel, and Thimios A. Mitsiadis. 2020. "Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment" Cancers 12, no. 11: 3107. https://doi.org/10.3390/cancers12113107
APA StylePorcheri, C., Meisel, C. T., & Mitsiadis, T. A. (2020). Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers, 12(11), 3107. https://doi.org/10.3390/cancers12113107