NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Overview of Answers to the State-Of-The-Art Surveys
2.1.1. Laboratories and Sample Types
2.1.2. NGS Platforms
2.1.3. Bioinformatics Softwares, Reported Variant Types, and Limits of Detection
2.1.4. Gene Panels and Enrichment Strategies
2.2. Overview of Benchmark Results
2.2.1. General
2.2.2. Assessment of the Total Number of Reported Variants and Strategies for Defining Evaluative and Informative Variants
2.2.3. Assessment of Evaluative Variants
2.2.4. Assessment of Allelic Frequencies for Evaluative Variants
2.2.5. Assessment of Repeatability for Evaluative Variants
2.2.6. Assessment of Standardization of Reporting Nomenclature Amongst Participants
3. Discussion
3.1. State-Of-The-Art and Performance of Clinical Tests Based on NGS for (Hemato-) Oncology within Belgium: An Overview
3.2. Feasibility and Considerations for Implementing a Quality Assessment Framework for Clinical Tests Based on NGS for (Hemato-) Oncology
4. Materials and Methods
4.1. Benchmark Design
4.2. Technical Survey to Establish the State-Of-The-Art in Belgium
4.3. Assessment of Benchmark Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data
References
- Schuster, S.C. Next-generation sequencing transforms today’s biology. Nat. Methods 2008, 5, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Sikkema-Raddatz, B.; Johansson, L.F.; de Boer, E.N.; Almomani, R.; Boven, L.G.; van den Berg, M.P.; van Spaendonck-Zwarts, K.Y.; van Tintelen, J.P.; Sijmons, R.H.; Jongbloed, J.D.H.; et al. Targeted Next-Generation Sequencing can Replace Sanger Sequencing in Clinical Diagnostics. Hum. Mutat. 2013, 34, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef] [PubMed]
- D’Haene, N.; Le Mercier, M.; De Nève, N.; Blanchard, O.; Delaunoy, M.; El Housni, H.; Dessars, B.; Heimann, P.; Remmelink, M.; Demetter, P.; et al. Clinical validation of targeted next generation sequencing for colon and lung cancers. PLoS ONE 2015, 10, e0138245. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.P.; Minkovsky, A.; Jia, Y.; Ducar, M.D.; Shivdasani, P.; Gong, X.; Ligon, A.H.; Sholl, L.M.; Kuo, F.C.; MacConaill, L.E.; et al. Validation of oncopanel a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 2017, 141, 751–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.R.; Patel, K.P.; Routbort, M.J.; Reddy, N.G.; Barkoh, B.A.; Handal, B.; Kanagal-Shamanna, R.; Greaves, W.O.; Medeiros, L.J.; Aldape, K.D.; et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagnostics 2013, 15, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Simen, B.B.; Yin, L.; Goswami, C.P.; Davis, K.O.; Bajaj, R.; Gong, J.Z.; Peiper, S.C.; Johnson, E.S.; Wang, Z.X. Validation of a next-generation-sequencing cancer panel for use in the clinical laboratory. Arch. Pathol. Lab. Med. 2015, 139, 508–517. [Google Scholar] [CrossRef]
- Mendez, P.; Dang, J.; Kim, J.W.; Lee, S.; Yoon, J.H.; Kim, T.; Sailey, C.J.; Jablons, D.M.; Kim, I.J. Comprehensive evaluation and validation of targeted next generation sequencing performance in two clinical laboratories. Int. J. Oncol. 2016, 49, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koitzsch, U.; Heydt, C.; Attig, H.; Immerschitt, I.; Merkelbach-Bruse, S.; Fammartino, A.; Büttner, R.H.; Kong, Y.; Odenthal, M. Use of the GeneReader NGS System in a clinical pathology laboratory: A comparative study. J. Clin. Pathol. 2017, 70, 725–728. [Google Scholar] [CrossRef] [Green Version]
- Cottrell, C.E.; Al-Kateb, H.; Bredemeyer, A.J.; Duncavage, E.J.; Spencer, D.H.; Abel, H.J.; Lockwood, C.M.; Hagemann, I.S.; O’Guin, S.M.; Burcea, L.C.; et al. Validation of a next-generation sequencing assay for clinical molecular oncology. J. Mol. Diagn. 2014, 16, 89–105. [Google Scholar] [CrossRef]
- Larry Jameson, J.; Longo, D.L. Precision Medicine—Personalized, Problematic, and Promising. Obstet. Gynecol. Surv. 2015, 70, 612–614. [Google Scholar] [CrossRef]
- Dubbink, H.J.; Deans, Z.C.; Tops, B.B.J.; van Kemenade, F.J.; Koljenović, S.; van Krieken, H.J.M.; Blokx, W.A.M.; Dinjens, W.N.M.; Groenen, P.J.T.A. Next generation diagnostic molecular pathology: Critical appraisal of quality assurance in Europe. Mol. Oncol. 2014, 8, 830–839. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Luthra, R.; Chen, H.; Roy-Chowdhuri, S.; Singh, R.R. Next-generation sequencing in clinical molecular diagnostics of cancer: Advantages and challenges. Cancers (Basel) 2015, 7, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- Van Valckenborgh, E.; Hébrant, A.; Antoniou, A.; Van Hoof, W.; Van Bussel, J.; Pauwels, P.; Salgado, R.; Van Doren, W.; Waeytens, A.; Van den Bulcke, M. Roadbook for the implementation of next-generation sequencing in clinical practice in oncology and hemato-oncology in Belgium. Arch. Public Health 2018, 76, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hébrant, A.; Froyen, G.; Maes, B.; Salgado, R.; Le Mercier, M.; D’Haene, N.; De Keersmaecker, S.; Claes, K.; Van der Meulen, J.; Aftimos, P.; et al. The Belgian next generation sequencing guidelines for haematological and solid tumours. Belgian J. Med. Oncol. 2017, 11, 56–67. [Google Scholar]
- INAMI. Convention en application de l’art. 56, 1 en vue du financement d’une étude pilote relative a l’introduction controlée du next generation sequencing dans le diagnostic de routine en oncologie et hémato-oncologie. Available online: https://doi.org/10.5067/MODIS/MOD13Q1.006 (accessed on 28 October 2020).
- Miller, W.G.; Jones, G.R.D.; Horowitz, G.L.; Weykamp, C. Proficiency testing/external quality assessment: Current challenges and future directions. Clin. Chem. 2011, 57, 1670–1680. [Google Scholar] [CrossRef] [Green Version]
- Belac. Exigences Particulières Pour l’accréditation des Laboratoires Médicaux qui Réalisent des Analyses de Tumeurs Hématologiques et Solides Selon la Méthode NGS (Next Generation Sequencing); Belac: Brussels, Belgium, 2019. [Google Scholar]
- Normanno, N.; Pinto, C.; Castiglione, F.; Fenizia, F.; Barberis, M.; Marchetti, A.; Fontanini, G.; De Rosa, G.; Taddei, G.L. The Italian external quality assessment for RAS testing in colorectal carcinoma identifies methods-related inter-laboratory differences. J. Transl. Med. 2015, 13, 1–8. [Google Scholar] [CrossRef]
- Bellon, E.; Ligtenberg, M.J.L.; Tejpar, S.; Cox, K.; de Hertogh, G.; de Stricker, K.; Edsjo, A.; Gorgoulis, V.; Hofler, G.; Jung, A.; et al. External Quality Assessment for KRAS Testing Is Needed: Setup of a European Program and Report of the First Joined Regional Quality Assessment Rounds. Oncologist 2011, 16, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Seneca, S.; Morris, M.A.; Patton, S.; Elles, R.; Sequeiros, J. Experience and outcome of 3 years of a European EQA scheme for genetic testing of the spinocerebellar ataxias. Eur. J. Hum. Genet. 2008, 16, 913–920. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 15189:2012 Medical Laboratories—Requirements for Quality and Competence; IOS: Geneva, Switzerland, 2012. [Google Scholar]
- Dequeker, E.M.C.; Keppens, C.; Egele, C.; Lamy, A.; Lemoine, A.; Sabourin, J.; Denoux, Y.; Aube, C.; Penault-llorca, F.; Hofman, P.; et al. Three Rounds of External Quality Assessment in France to Evaluate the Performance of 28 Platforms for Multiparametric Molecular Testing in Metastatic Colorectal and Non-Small Cell Lung Cancer. J. Mol. Diagn. 2016, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belgian Cancer Registry. Cancer Burden in Belgium 2004-2013; Belgian Cancer Registry: Brussels, Belgium, 2015; p. 263. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K. Evaluation of the use of consensus values in proficiency testing programmes. Accredit. Qual. Assur. 2005, 10, 409–414. [Google Scholar] [CrossRef]
- Gutowska-Ding, M.W.; Deans, Z.C.; Roos, C.; Matilainen, J.; Khawaja, F.; Brügger, K.; Ahn, J.W.; Boustred, C.; Patton, S.J. One byte at a time: evidencing the quality of clinical service next-generation sequencing for germline and somatic variants. Eur. J. Hum. Genet. 2019. [Google Scholar] [CrossRef] [Green Version]
- Malapelle, U.; Mayo-de-Las-Casas, C.; Molina-Vila, M.A.; Rosell, R.; Savic, S.; Bihl, M.; Bubendorf, L.; Salto-Tellez, M.; de Biase, D.; Tallini, G.; et al. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol. 2017, 125, 615–626. [Google Scholar] [CrossRef]
- Nagarajan, R.; Bartley, A.N.; Bridge, J.A.; Jennings, L.J.; Kamel-Reid, S.; Kim, A.; Lazar, A.J.; Lindeman, N.I.; Moncur, J.; Rai, A.J.; et al. A window into clinical next-generation sequencing-based oncology testing practices. Arch. Pathol. Lab. Med. 2017, 141, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Pisapia, P.; Malapelle, U.; Roma, G.; Saddar, S.; Zheng, Q.; Pepe, F.; Bruzzese, D.; Vigliar, E.; Bellevicine, C.; Luthra, R.; et al. Consistency and reproducibility of next-generation sequencing in cytopathology: A second worldwide ring trial study on improved cytological molecular reference specimens. Cancer Cytopathol. 2019, 127, 285–296. [Google Scholar] [CrossRef]
- Richman, S.D.; Fairley, J.; Hall, J.A.; Nataraj, N.; Bhide, M.; Lau, A.; Norman, K.L.; Deans, Z.C. Results of the UK NEQAS for Molecular Genetics reference sample analysis. J. Clin. Pathol. 2018, 1–6. [Google Scholar] [CrossRef]
- Zhong, Q.; Wagner, U.; Kurt, H.; Molinari, F.; Cathomas, G.; Komminoth, P.; Barman-aksözen, J.; Schneider-yin, X.; Rey, J.; Vassella, E.; et al. Multi-laboratory proficiency testing of clinical cancer genomic profiling by next-generation sequencing. Pathol.-Res. Pract. 2018, 214, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.D.; Devereaux, K.; John Iafrate, A.; Kamel-Reid, S.; Kim, A.S.; Moncur, J.T.; Montgomery, S.B.; Nagarajan, R.; Portier, B.P.; Routbort, M.J.; et al. Proficiency testing of standardized samples shows very high interlaboratory agreement for clinical next-generation sequencing-based oncology assays. Arch. Pathol. Lab. Med. 2019, 143, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Ding, J.; Han, Y.; Yi, L.; Xie, J.; Yang, X.; Fan, G.; Wang, G.; Hao, M.; Zhang, D.; et al. The reliable assurance of detecting somatic mutations in cancer-related genes by next-generation sequencing: the results of external quality assessment in China. Oncotarget 2016, 7. [Google Scholar] [CrossRef]
- Van Krieken, J.H.; Normanno, N.; Blackhall, F.; Boone, E.; Botti, G.; Carneiro, F.; Celik, I.; Ciardiello, F.; Cree, I.A.; Deans, Z.C.; et al. Guideline on the requirements of external quality assessment programs in molecular pathology. Virchows Arch. 2013, 462, 27–37. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. Subgroup, 1000 Genome Project Data Processing The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.J.J.; Kummer, J.A.; de Bruin, P.C.; Bol, M.; Van Den Tweel, J.G.; Seldenrijk, K.A.; Willems, S.M.; Offerhaus, G.J.A.; De Weger, R.A.; Van Diest, P.J.; et al. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate. Mod. Pathol. 2013, 27, 168–174. [Google Scholar] [CrossRef]
- Dufraing, K.; De Hertogh, G.; Tack, V.; Keppens, C.; Dequeker, E.M.C.; Krieken, J.H. Van External Quality Assessment Identifies Training Needs to Determine the Neoplastic Cell Content for Biomarker Testing. J. Mol. Diagn. 2018, 20, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Gerlinger, M.; Rowan, A.J.; Sc, B.; Horswell, S.; Math, M.; Larkin, J.; Ph, D.; Endesfelder, D.; Math, D.; Gronroos, E.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2016, 366, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Park, C.; Ji, Y.; Kim, D.G.; Bae, H.; van Vrancken, M.; Kim, D.H.; Kim, K.M. Deamination Effects in Formalin-Fixed, Paraffin-Embedded Tissue Samples in the Era of Precision Medicine. J. Mol. Diagnostics 2017, 19, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Qiu, T.; Guo, L.; Ying, J. Major challenges related to tumor biological characteristics in accurate mutation detection of colorectal cancer by next-generation sequencing. Cancer Lett. 2017, 410, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Tack, V.; Ligtenberg, M.J.L.; Tembuyser, L.; Normanno, N.; Vander Borght, S.; Han van Krieken, J.; Dequeker, E.M.C. External Quality Assessment Unravels Interlaboratory Differences in Quality of RAS Testing for Anti-EGFR Therapy in Colorectal Cancer. Oncologist 2015, 20, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tembuyser, L.; Dequeker, E.M.C. Endorsing good quality assurance practices in molecular pathology: risks and recommendations for diagnostic laboratories and external quality assessment providers. Virchows Arch. 2016, 468, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallman, D.A.; Padron, E. Integrating mutation variant allele frequency into clinical practice in myeloid malignancies. Hematol. Oncol. Stem Cell Ther. 2016, 9, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, A.; Patel, K.; Cortes, J.E.; Kadia, T.M.; Ravandi, F.; Dinardo, C.D.; Daver, N.G.; Pemmaraju, N.; Kantarjian, H.M.; Borthakur, G. Impact of variant allele frequency of mutant PTPN11 in AML: Single institution experience of 122 patients. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef]
- Gargis, A.S.; Kalman, L.; Berry, M.W.; Bick, D.P.; Dimmock, D.P.; Hambuch, T.; Lu, F.; Lyon, E.; Voelkerding, K.V.; Zehnbauer, B.A.; et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 2012, 30, 1033–1036. [Google Scholar] [CrossRef]
- Froyen, G.; Le Mercier, M.; Lierman, E.; Vandepoele, K.; Nollet, F.; Boone, E.; Van der Meulen, J.; Jacobs, K.; Lambin, S.; Vander Borght, S.; et al. Standardization of somatic variant classifications in solid and haematological tumours by a two-level approach of biological and clinical classes: An initiative of the belgian compermed expert panel. Cancers (Basel) 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Ogino, S.; Gulley, M.L.; den Dunnen, J.T.; Wilson, R.B.; Payne, D.; Lowery Nordberg, M.C.; Gong, J.Z.; Krafft, A.E.; Uphoff, T.S.; Donahue, P.; et al. Standard mutation nomeclature in molecular diagnostics: Practical and educational challenges. J. Mol. Diagn. 2007, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Baldan, A.; Van Der Veen, A.M.H.; Prauß, D.; Recknagel, A.; Boley, N.; Evans, S.; Woods, D. Economy of proficiency testing: Reference versus consensus values. Accredit. Qual. Assur. 2001, 6, 164–167. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 13528:2015(E), Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison Méthodes; IOS: Geneva, Switzerland, 2015. [Google Scholar]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, A. NGS Benchmarking Trial/tumeurs Solides, Rapport Global définitif Next Generation Sequencing (NGS) 2017/1; Sciensano: Brussels, Belgium, 2017. [Google Scholar]
- Antoniou, A. Rapport Global Définitif, Next Generation Sequencing (NGS), 2017/2; Sciensano: Brussels, Belgium, 2017. [Google Scholar]
- Antoniou, A. Rapport Global Définitif, Next Generation Sequencing (NGS), BRCA1/BRCA2, 2018/1; Sciensano: Brussels, Belgium, 2018. [Google Scholar]
Benchmark | 2017/1 | 2017/2 | 2018/1 |
---|---|---|---|
Targeted cancer types | Colorectal carcinoma, pulmonary carcinoma | Acute myeloblastic leukemia, myeloproliferative neoplasia and (pre-fibrotic) primitive myelofibrosis, myelodysplastic syndromes | BRCA1/BRCA2 genes |
Sample origin | Mix of engineered and pure cell lines | Mix of engineered and pure cell lines | Mix of pure cell lines |
Participants | 16 | 15 | 12 |
Variants considered for evaluation | Variants reported by at least two-thirds of participants and validated by exome sequencing and/or ddPCR | Variants reported by at least two-thirds of participants and validated by ddPCR | Variants reported by at least two-thirds of participants and validated by exome sequencing and/or ddPCR |
Samples | 4 | 3 | 3 |
Ordered variants | 12 | 16 | 6 |
Total reported variants | 16 | 45 | 8 |
Evaluative variants | 16 1 | 16 2 | 6 3 |
Validated variants (method) | 4 (WES), 12 (ddPCR) | 16 (ddPCR) | 8 (WES), 6 (ddPCR + WES) |
Benchmark | Sample | Targeted Cancer Type(s) | Genes (Exons/Hotspots) |
---|---|---|---|
2017/1 | NGS-2017-001/002 | Colorectal carcinoma (advanced stage) | BRAF (exons 15 (codon 600)) |
KRAS (exon 2 (codons 12,13), exon 3 (codons 59, 61), exon 4 (codons 117, 146)) | |||
NRAS (exon 2 (codons 12,13), exon 3 (codons 59, 61), exon 4 (codons 117, 146)) | |||
NGS-2017-003/004 | Pulmonary carcinoma (advanced stage) | BRAF (exon 15 (codon 600)) | |
EGFR (exon 18 to 21) | |||
ALK (exon 22, exon 23, exon 25) | |||
MET (exon14 skipping) | |||
2017/2 | NGS-2017-005 | Acute myeloblastic leukemia | ASXL1 (exon 12) |
CEBPA (all exons) | |||
DNMT3A (exons 8 to 23) | |||
FLT3 (exon 14, exon 15, exon 20 (codon 835)) | |||
IDH1 (exon 4 hotspot) | |||
IDH2 (exon 4 hotspot) | |||
KIT (exon 8, exon 10, exon 17) | |||
NPM1 (exon 11 (codon 288)) | |||
RUNX1 (all exons) | |||
TET2 (exon 3, exons 9 to 11) | |||
TP53 (exons 3 to 9) | |||
WT1 (exon 7, exon 9) | |||
NGS-2017-006 | Myeloproliferative neoplasia/(pre-fibrotic) primary myelofibrosis | JAK2 (exon 12-F537_I546 1, exon 14 (codon 617)) | |
MPL (exon 10 (codon 515)) | |||
CALR (exon 9) | |||
ASXL1 (exons 12) | |||
EZH2 (all exons) | |||
TET2 (exon 3, exons 9 to 11) | |||
IDH1 (exon 4 hotspot) | |||
IDH2 (exon 4 hotspot) | |||
SRSF2 (exon 1 (codon 95)) | |||
SF3B1 (exon 14, exon 15) | |||
NGS-2017-007 | Myelodysplastic syndromes | SF3B1 (exon 14, exon 15) | |
TET2 (exon 3, exons 9 to 11) | |||
SRSF2 (exon 1 (codon 95)) | |||
ASXL1 (exon 12) | |||
DNMT3A (exons 8 to 23) | |||
RUNX1 (all exons) | |||
U2AF1 (exon 2 (codon 34), exon 6 (codon 157)) | |||
TP53 (exons 3 to 9) | |||
EZH2 (all exons) | |||
2018/1 | NGS-2018-001/002/003 | / | BRCA1 (all exons) |
BRCA2 (all exons) |
Benchmark | Sample | Gene | Variant (HGVS) | Median Allelic Frequency 1 (SD) | Z-Citations 2 | Participant Success 3 |
---|---|---|---|---|---|---|
2017/1 | NGS-2017-001 | BRAF | p.(Val600Glu) | 13.21 (0.60) | 1/16 | 16/16 |
KRAS | p.(Gly13Asp) | 32.94 (0.64) | 1/16 | 16/16 | ||
NRAS | p.(Gln61Lys) | 21.55 (1.17) | 1/16 | 16/16 | ||
NGS-2017-002 | BRAF | p.(Val600Arg) | 11.26 (1.13) | 1/16 | 16/16 | |
KRAS | p.(Ala146Thr) 4 | 20.07 (2.31) | 3/15 | 15/16 | ||
NRAS | p.(Gly12Asp) | 19.42 (2.24) | 1/16 | 16/16 | ||
NGS-2017-003 | BRAF | p.(Val600Lys) | 48.50 (2.95) | 0/16 | 16/16 | |
EGFR | p.(Glu746-Ala750del) | 35.70 (2.89) | 2/15 | 15/16 | ||
EGFR | p.(Gly719Ser) | 11.10 (1.38) | 1/15 | 15/16 | ||
KRAS | p.(Gly12Ala) 4 | 18.24 (1.36) | 1/15 | 15/16 | ||
NGS-2017-004 | BRAF | p.(Val600Met) | 19.73 (0.83) | 2/16 | 16/16 | |
EGFR | p.(Gly719Ser) | 3.73 (0.50) | 0/12 | 12/16 | ||
EGFR | p.(Leu858Arg) | 38.13 (0.96) | 1/16 | 16/16 | ||
EGFR | p.(Thr790Met) | 38.00 (1.10) | 3/16 | 16/16 | ||
KRAS | p.(Gly12Cys) 4 | 5.16 (0.42) | 1/15 | 15/16 | ||
KRAS | p.(Gly13Asp) | 29.07 (0.95) | 0/16 | 16/16 | ||
2017/2 | NGS-2017-005 | TP53 | p.(Glu171*) | 34.30 (1.76) | 1/15 | 15/15 |
KIT | p.(Asp816Val) | 19.03 (1.67) | 1/15 | 15/15 | ||
IDH2 | p.(Arg140Gln) | 20.88 (1.11) | 3/15 | 15/15 | ||
IDH1 | p.(Arg132Gly) | 5.30 (0.60) | 1/15 | 15/15 | ||
FLT3 | p.(Asp835Tyr) 4 | 11.46 (0.86) | 1/14 | 14/15 | ||
NGS-2017-006 | JAK2 | p.(Val617Phe) | 21.00 (0.87) | 2/15 | 15/15 | |
IDH2 | p.(Arg172Ser) | 30.95 (0.83) | 1/14 | 14/15 | ||
IDH1 | p.(Arg132Ser) | 11.05 (1.12) | 1/14 | 14/15 | ||
SF3B1 | p.(Lys700Glu) 4 | 10.65 (1.24) | 2/12 | 12/15 | ||
NGS-2017-007 | SF3B1 | p.(Lys666Asn) 4 | 24.76 (2.63) | 2/15 | 15/15 | |
TP53 | p.(Ala161Asp) | 47.45 (2.73) | 2/14 | 14/15 | ||
TP53 | p.(Tyr220Cys) | 5.12 (0.63) | 1/13 | 13/15 | ||
2018/1 | NGS-2018-001 | BRCA1 | p.(Arg1443*) | 11 (0.22) | 1/8 | 12/12 |
BRCA2 | p.(Asn1784Thrfs*7) | 12 (0.13) | 1/7 | 11/12 | ||
BRCA2 | p.(Lys1691Asnfs*15) | 13 (0.23) | 1/7 | 11/12 | ||
NGS-2018-002 | BRCA2 | p.(Asn1784Thrfs*7) | 20.7 (0.43) | 1/7 | 11/12 | |
NGS-2018-003 | BRCA2 | p.(Asn1784Thrfs*7) | 25.6 (0.61) | 0/7 | 11/12 | |
BRCA2 | p.(Ile2675Aspfs*6) | 24 (0.68) | 1/7 | 11/12 |
Benchmark | Sample | Gene | Variant (HGVS) | Median Allelic Frequency 1 (SD) | Participant Identification 2 |
---|---|---|---|---|---|
2017/2 | NGS-2017-005 | TET2 | p.(Ser268*) | 27.00 (1.21) | 15/15 |
TP53 | p.(Ser215Gly) | 46.34 (1.90) | 14/15 | ||
ASXL1 | p.(Leu764Tyrfs*8) | 40.20 (0.96) | 13/15 | ||
RUNX1 | p.(Pro49Leu) | 13.00 (1.04) | 10/15 | ||
RUNX1 | p.(Met267Ile) | 12.30 (2.20) | 9/15 | ||
ASXL1 | p.(Gly646Trpfs*12) | 8.00 (0.56) | 6/15 | ||
TET2 | p.(Tyr867His) | 51.10 (0.83) | 5/15 | ||
TET2 | p.(Pro1723Ser) | 48.81 (3.77) | 4/15 | ||
ASXL1 | p.(Met1249Val) | 7.79 (0.84) | 4/15 | ||
TET2 | p.(Ile1762Val) | 9.90 (0.59) | 2/15 | ||
TET2 | p.(His1778Arg) | 51.00 (0.15) | 2/15 | ||
TP53 | p.(Pro72Arg) | 98.50 (0.00) | 1/15 | ||
DNMT3A | p.(Arg729Trp) | 2.80 (0.00) | 1/15 | ||
CEBPA | p.(His195_Pro196dup) | 8.10 (0.00) | 1/15 | ||
NGS-2017-006 | ASXL1 | p.(Tyr591*) | 10.10 (0.74) | 13/15 | |
ASXL1 | p.(Leu764Tyrfs*8) | 68.00 (2.74) | 13/15 | ||
TET2 | p.(Tyr867His) | 69.82 (1.63) | 5/15 | ||
TET2 | p.(Pro1723Ser) | 67.74 (7.64) | 5/15 | ||
TET2 | p.(Leu1721Trp) | 20.30 (1.11) | 2/15 | ||
TET2 | p.(Ile1762Val) | 37.25 (22.28) | 2/15 | ||
TET2 | p.(His1778Arg) | 39.45 (21.83) | 2/15 | ||
NGS-2017-007 | EZH2 | p.(Cys539Arg) | 21.19 (0.69) | 11/15 | |
TET2 | p.(Arg1261His) | 26.70 (1.06) | 8/15 | ||
TET2 | p.(Gln1084Pro) | 41.10 (1.16) | 5/15 | ||
TET2 | p.(Ile1762Val) | 22.80 (2.15) | 2/15 | ||
TP53 | p.(Pro72Arg) | 53.70 (0.00) | 1/15 | ||
TET2 | p.(Leu1721Trp) | 3.15 (0.00) | 1/15 | ||
EZH2 | p.(Asp146His) | 7.80 (0.00) | 1/15 | ||
DNMT3A | p.(Arg729Trp) | 2.80 (0.00) | 1/15 | ||
2018/1 | NGS-2018-002 | BRCA1 | p.(Asp435Tyr) | / 3 | 5/12 |
NGS-2018-003 | BRCA1 | p.(Asp435Tyr) | / 3 | 5/12 |
Benchmark | Success Rate (Absolute Counts) 1 | Participants 2 |
---|---|---|
2017/1 | 100% (16/16 or 15/15 or 14/14) 3 | 11 (68.75%) |
93.75% (15/16) | 4 (25%) | |
87.50% (14/16) | 1 (6.25%) | |
97.63% (247/253) | 16 (100%) | |
2017/2 | 100% (12/12 or 11/11) 3 | 11 (73.33%) |
91.67% (11/12) | 3 (20%) | |
75% (9/12) | 1 (6.67%) | |
96.61% (171/177) | 15 (100%) | |
2018/1 | 100% (6/6) | 11 (91.67%) |
17% (1/6) | 1 (8.33%) | |
93.06% (67/72) | 12 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delcourt, T.; Vanneste, K.; Soumali, M.R.; Coucke, W.; Ghislain, V.; Hebrant, A.; Van Valckenborgh, E.; De Keersmaecker, S.C.J.; Roosens, N.H.; Van De Walle, P.; et al. NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program. Cancers 2020, 12, 3180. https://doi.org/10.3390/cancers12113180
Delcourt T, Vanneste K, Soumali MR, Coucke W, Ghislain V, Hebrant A, Van Valckenborgh E, De Keersmaecker SCJ, Roosens NH, Van De Walle P, et al. NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program. Cancers. 2020; 12(11):3180. https://doi.org/10.3390/cancers12113180
Chicago/Turabian StyleDelcourt, Thomas, Kevin Vanneste, Mohamed Rida Soumali, Wim Coucke, Vanessa Ghislain, Aline Hebrant, Els Van Valckenborgh, Sigrid C. J. De Keersmaecker, Nancy H. Roosens, Philippe Van De Walle, and et al. 2020. "NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program" Cancers 12, no. 11: 3180. https://doi.org/10.3390/cancers12113180
APA StyleDelcourt, T., Vanneste, K., Soumali, M. R., Coucke, W., Ghislain, V., Hebrant, A., Van Valckenborgh, E., De Keersmaecker, S. C. J., Roosens, N. H., Van De Walle, P., Van Den Bulcke, M., & Antoniou, A. (2020). NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program. Cancers, 12(11), 3180. https://doi.org/10.3390/cancers12113180