Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Role of Substrate Stiffness on Cell Morphological Features Before and after the Exposure to RT
2.2. Role of Substrate Stiffness on Cell Motility before and after the Exposure to RT
3. Materials and Methods
3.1. Preparation of Substrate and Mechanical Characterization
3.2. Cell Culture
3.3. Cell Irradiation
3.4. Cell Adhesion Analysis
3.5. Cell Motility
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017, 13, 1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olive, P.L. The role of DNA single-and double-strand breaks in cell killing by ionizing radiation. Radiat. Res. 1998, 150, S42–S51. [Google Scholar] [CrossRef] [PubMed]
- Lliakis, G. The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells. BioEssays 1991, 13, 641–648. [Google Scholar] [CrossRef]
- Puck, T.T. Action of radiation on mammalian cells III. Relationship between reproductive death and induction of chromosome anomalies by X-irradiation of euploid human cells in vitro. Proc. Natl. Acad. Sci. USA 1958, 44, 772. [Google Scholar] [CrossRef] [Green Version]
- Iliakis, G.; Wang, Y.A.; Guan, J.; Wang, H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 2003, 22, 5834–5847. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009, 28, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Panzetta, V.; Musella, I.; Rapa, I.; Volante, M.; Netti, P.A.; Fusco, S. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomater. 2017, 57, 334–341. [Google Scholar] [CrossRef]
- Stowers, R.S.; Allen, S.C.; Sanchez, K.; Davis, C.L.; Ebelt, N.D.; Van Den Berg, C.; Suggs, L.J. Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells. Cell Mol. Bioeng. 2017, 10, 114–123. [Google Scholar] [CrossRef]
- Panciera, T.; Citron, A.; Di Biagio, D.; Battilana, G.; Gandin, A.; Giulitti, S.; Forcato, M.; Biccoato, S.; Panzetta, V.; Fusco, S.; et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 2020, 1–10. [Google Scholar] [CrossRef]
- Cordes, N.; Hansmeier, B.; Beinke, C.; Meineke, V.; Van Beuningen, D. Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines. Br. J. Cancer 2003, 89, 2122–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohmann, T.; Grabiec, U.; Vogel, C.; Ghadban, C.; Ensminger, S.; Bache, M.; Vordermark, D.; Dehghani, F. The impact of non-lethal single-dose radiation on tumor invasion and cytoskeletal properties. Int. J. Mol. 2017, 18, 2001. [Google Scholar] [CrossRef] [PubMed]
- Panzetta, V.; De Menna, M.; Bucci, D.; Giovannini, V.; Pugliese, M.; Quarto, M.; Fusco, S.; Netti, P.A. X-ray irradiation affects morphology, proliferation and migration rate of healthy and cancer cells. J. Mech. Med. Biol. 2015, 15, 1540022. [Google Scholar] [CrossRef] [Green Version]
- Panzetta, V.; Musella, I.; Pugliese, M.; Piccolo, C.; Pasqua, G.; Netti, P.A.; Fusco, S. Effects of high energy X-rays on cell morphology and functions. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [Google Scholar]
- Panzetta, V.; Pugliese, M.G.; Musella, I.; De Menna, M.; Netti, P.A.; Fusco, S. A biophysical analysis to assess X-ray sensitivity of healthy and tumour cells. Radiat. Prot. Dosim. 2019, 183, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, H.; Sato, K.; Nishihara, A.; Minami, K.; Koizumi, M.; Matsuura, N.; Hieda, M. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex. Cancer Sci. 2018, 109, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Piontek, G.; Haug, A.; Bas, M.; Knopf, A.; Stark, T.; MartinMißlbeck, M.; Rudelius, M.; Reiter, R.; Brandstetter, M.; et al. The kallikrein–kinin-system in head and neck squamous cell carcinoma (HNSCC) and its role in tumour survival, invasion, migration and response to radiotherapy. Oral Oncol. 2012, 48, 1208–1219. [Google Scholar] [CrossRef]
- Pickhard, A.C.; Margraf, J.; Knopf, A.; Stark, T.; Piontek, G.; Beck, C.; Boulesteix, A.L.; Scherer, E.Q.; Pigorsch, S.; Schelegel, J.; et al. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways. BMC Cancer 2011, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst. 2011, 103, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Badiga, A.V.; Chetty, C.; Kesanakurti, D.; Are, D.; Gujrati, M.; Klopfenstein, J.D.; Dinh, D.D.; Rao, J.S. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS ONE 2011, 6, e20614. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.W.; Hwang, S.Y.; Hwang, J.S.; Oh, E.S.; Park, S.; Han, I.O. Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur. J. Cancer 2007, 43, 1214–1224. [Google Scholar] [CrossRef]
- Torok, J.A.; Salama, J.K. Combining immunotherapy and radiotherapy for the STAR treatment. Nat. Rev. Clin. Oncol. 2019, 16, 666–667. [Google Scholar] [CrossRef] [PubMed]
- Blyth, B.J.; Cole, A.J.; MacManus, M.P.; Martin, O.A. Radiation therapy-induced metastasis: Radiobiology and clinical implications. Cli. Exp. Metastas. 2018, 35, 223–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Ingber, D.E. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005, 8, 175–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.; Aebi, U.; Bentires-Alj, M.; Lim, R.Y.; et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 2012, 7, 757. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Lee, G.Y.; Ong, C.N.; Lim, C.T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 2008, 374, 609–613. [Google Scholar] [CrossRef]
- Baker, E.L.; Lu, J.; Yu, D.; Bonnecaze, R.T.; Zaman, M.H. Cancer cell stiffness: Integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 2010, 99, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, M.; Strobl, J.S.; De Vita, R.; Agah, M. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials 2010, 31, 4552–4561. [Google Scholar] [CrossRef]
- Levental, K.R.; Yu, H.; Kass, L.; Lakins, J.N.; Egeblad, M.; Erler, J.T.; Fong, S.F.; Csiszar, K.; Giaccia, A.; Weninger, W.; et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139, 891–906. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 2015, 7, 1120–1134. [Google Scholar] [CrossRef] [Green Version]
- Fusco, S.; Panzetta, V.; Embrione, V.; Netti, P.A. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. Acta Biomater. 2015, 23, 63–71. [Google Scholar] [CrossRef]
- Alam, S.; Lovett, D.B.; Dickinson, R.B.; Roux, K.J.; Lele, T.P. Nuclear forces and cell mechanosensing. In Progress in Molecular Biology and Translational Science; Engler, A.J., Kumar, S., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 126, pp. 205–215. [Google Scholar]
- Panzetta, V.; Fusco, S.; Netti, P.A. Cell mechanosensing is regulated by substrate strain energy rather than stiffness. Proc. Natl. Acad. Sci. USA 2019, 116, 22004–22013. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Panzetta, V.; Pugliese, M.; di Gennaro, G.; Federico, C.; Arrichiello, C.; Muto, P.; Netti, P.A.; Fusco, S. X-rays affect cytoskeleton assembly and nanoparticle uptake: Preliminary results. IL NUOVO CIMENTO 2018, 100, 41. [Google Scholar]
- Fusco, S.; Panzetta, V.; Netti, P.A. Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell. Meccanica 2017, 52, 3389–3398. [Google Scholar] [CrossRef]
- Kraning-Rush, C.M.; Reinhart-King, C.A. Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adhes. Migr. 2012, 6, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.M.; Bird, D.; Lang, G.; Cox, T.R.; Erler, J.T. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013, 32, 1863–1868. [Google Scholar] [CrossRef] [Green Version]
- Haage, A.; Schneider, I.C. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J. 2014, 28, 3589–3599. [Google Scholar] [CrossRef] [Green Version]
- Peela, N.; Sam, F.S.; Christenson, W.; Truong, D.; Watson, A.W.; Mouneimne, G.; Ros, R.; Nikkhah, M. A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 2016, 81, 72–83. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, H.; Huang, J.; Xiong, C. Substrate stiffness coupling TGF-β1 modulates migration and traction force of MDA-MB-231 human breast cancer cells in vitro. ACS Biomater. Sci. Eng. 2018, 4, 1337–1345. [Google Scholar] [CrossRef]
- Kornberg, L.J. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck-J. Sci. Spec. Head Neck 1998, 20, 745–752. [Google Scholar] [CrossRef]
- Cance, W.G.; Harris, J.E.; Iacocca, M.V.; Roche, E.; Yang, X.; Chang, J.; Simkins, S.; Xu, L. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: Correlation with preinvasive and invasive phenotypes. Clin. Cancer Res. 2000, 6, 2417–2423. [Google Scholar] [PubMed]
- Provenzano, P.P.; Inman, D.R.; Eliceiri, K.W.; Keely, P.J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK–ERK linkage. Oncogene 2009, 28, 4326–4343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszek, M.J.; Zahir, N.; Johnson, K.R.; Lakins, J.N.; Rozenberg, G.I.; Gefen, A.; Reinhart-King, C.A.; Margulies, S.S.; Dembo, M.; Boettiger, D.; et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieken, S.; Habermehl, D.; Wuerth, L.; Brons, S.; Mohr, A.; Lindel, K.; Weber, K.; Haberer, T.; Debus, J.; Combs, S.E. Carbon ion irradiation inhibits glioma cell migration through downregulation of integrin expression. Int. J. Radiat. 2012, 83, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Panzetta, V.; Guarnieri, D.; Paciello, A.; Della Sala, F.; Muscetti, O.; Raiola, L.; Netti, P.A.; Fusco, S. ECM mechano-sensing regulates cytoskeleton assembly and receptor-mediated endocytosis of nanoparticles. ACS Biomater. Sci. Eng. 2017, 3, 1586–1594. [Google Scholar] [CrossRef]
- Fürth, R. Die brownsche bewegung bei berücksichtigung einer persistenz der bewegungsrichtung. mit anwendungen auf die bewegung lebender infusorien. Z. Für Phys. 1920, 2, 244–256. [Google Scholar] [CrossRef] [Green Version]
Control | 2 Gy | 10 Gy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 day | 3 days | 1 day | 3 days | ||||||||
13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | |||
Control | 1.3 kPa | ***.NS ***.NS | **.### ***.NS | ***.NS **.### | ***.### ***.NS | NS.NS ***.### | **.NS NS.## | ***.NS NS.### | NS.NS NS.### | ***.### ***.### | |
13 kPa | ***.### **.# | ***.# ***.### | ***.### **.NS | ***.NS NS.### | ***.## ***.### | ***.### **.### | ***.NS ***.### | NS.### NS.### | |||
2 Gy | 1 day | 1.3 kPa | NS.### NS.# | *.NS NS.### | ***.### ***.NS | NS.### NS.# | ***.### NS.### | *.## **.### | ***.### ***.### | ||
13 kPa | NS.### NS.### | ***.NS ***.NS | NS.NS NS.NS | ***.NS NS.NS | ***.## NS.### | ***.### ***.### | |||||
3 days | 1.3 kPa | ***.### ***.### | NS.### NS.### | ***.### NS.### | ***.NS *.### | ***.### ***.### | |||||
13 kPa | ***.# ***.NS | ***.NS **.NS | NS.NS ***.### | ***.### **.### | |||||||
10 Gy | 1 day | 1.3 kPa | ***.## NS.NS | *.## NS.## | ***.### ***.### | ||||||
13 kPa | ***.NS *.NS | ***.### **.### | |||||||||
3 days | 1.3 kPa | ***.### ***.### |
Control | 2 Gy | 10 Gy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 day | 3 days | 1 day | 3 days | ||||||||
13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | |||
Control | 1.3 kPa | ***.### | ***.### | ***.### | ***.### | ***.### | NS.NS | ***.### | ***.### | ***.### | |
13 kPa | ***.## | ***.NS | ***.### | ***.### | ***.### | NS.NS | ***.### | ***.### | |||
2 Gy | 1 day | 1.3 kPa | ***.# | ***.### | ***.### | ***.### | ***.# | ***.### | ***.### | ||
13 kPa | ***.### | NS.### | ***.### | ***.NS | ***.### | ***.### | |||||
3 days | 1.3 kPa | ***.NS | ***.### | ***.### | ***.### | ***.NS | |||||
13 kPa | ***.### | ***.### | ***.### | ***.NS | |||||||
10 Gy | 1 day | 1.3 kPa | **.### | ***.### | ***.### | ||||||
13 kPa | ***.### | ***.### | |||||||||
3 days | 1.3 kPa | ***.### |
Control | 2 Gy | 10 Gy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 3 d | 1 d | 3 d | ||||||||
1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | 1.3 kPa | 13 kPa | ||
MCF10A | D [mm2/min] | 4.0448 | 3.4916 | 6.9223 | 7.8180 | 1.8238 | 3.3666 | 5.4219 | 2.9704 | 1.8234 | 3.0483 |
P [min] | 0.0090 | 0.0086 | 32.2139 | 113.1808 | 6.6790 | 31.9583 | 49.0114 | 0.05537 | 0.03201 | 43.5825 | |
R2 | 0.9864 | 0.9937 | 0.9997 | 0.9987 | 0.9993 | 0.9973 | 0.9996 | 0.9939 | 0.9943 | 0.9979 | |
MDA-MB-231 | D [mm2/min] | 13.0096 | 21.4693 | 11.8329 | 22.1579 | 6.7391 | 7.305239 | 7.594923 | 12.08702 | 4.338288 | 6.487246 |
P [min] | 59.7990 | 114.9188 | 62.1477 | 112.1086 | 84.9445 | 122.0365 | 97.8991 | 71.3609 | 104.0150 | 100.9757 | |
R2 | 0.9998 | 0.9995 | 0.9998 | 0.9995 | 0.9998 | 0.999801 | 0.998634 | 0.998922 | 0.999376 | 0.998346 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panzetta, V.; La Verde, G.; Pugliese, M.; Artiola, V.; Arrichiello, C.; Muto, P.; La Commara, M.; Netti, P.A.; Fusco, S. Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers 2020, 12, 1170. https://doi.org/10.3390/cancers12051170
Panzetta V, La Verde G, Pugliese M, Artiola V, Arrichiello C, Muto P, La Commara M, Netti PA, Fusco S. Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers. 2020; 12(5):1170. https://doi.org/10.3390/cancers12051170
Chicago/Turabian StylePanzetta, Valeria, Giuseppe La Verde, Mariagabriella Pugliese, Valeria Artiola, Cecilia Arrichiello, Paolo Muto, Marco La Commara, Paolo A. Netti, and Sabato Fusco. 2020. "Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates" Cancers 12, no. 5: 1170. https://doi.org/10.3390/cancers12051170
APA StylePanzetta, V., La Verde, G., Pugliese, M., Artiola, V., Arrichiello, C., Muto, P., La Commara, M., Netti, P. A., & Fusco, S. (2020). Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers, 12(5), 1170. https://doi.org/10.3390/cancers12051170