Melanoma Brain Metastases in the Era of Target Therapies: An Overview
Abstract
:1. Introduction
2. Biology and Molecular Alterations in Melanoma Brain Metastases
2.1. Biology of Cerebral Metastatization
2.2. Molecular Alteration in Brain Metastasis
2.2.1. BRAF Mutations
2.2.2. PI3K-AKT Pathway
2.2.3. Neoangiogenesis
3. Target Therapy Approaches
3.1. BRAF and MEK Inhibitors for Intracranial Stage IV Melanoma
3.2. Target Therapies Combinations with Radiotherapy
3.3. Other Approaches to Brain Metastasis
3.3.1. Chemotherapy
3.3.2. Immunotherapy
3.3.3. Combination of Immunotherapy and Target Therapy
4. Leptomeningeal Involvement
5. Drug-Resistance Mechanisms and the Role of the Micro-Environment
6. New Strategies to Overcome Melanoma Cells Resistance
6.1. PI3K/AKT Pathway
6.2. Cyclin-Dependent Kinase 4 (CDK4) and 6 (CD4-CDK6)
6.3. CXCR4 Antagonist
6.4. Other Approaches
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bottoni, U.; Clerico, R.; Paolino, G.; Ambrifi, M.; Corsetti, P.; Calvieri, S. Predictors and survival in patients with melanoma brain metastases. Med. Oncol. 2013, 30, 466. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.K.; Didolkar, M.S.; Pickren, J.W.; Moore, R.H. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am. J. Surg. 1978, 135, 807–810. [Google Scholar] [CrossRef]
- Davies, M.A.; Liu, P.; McIntyre, S.; Kim, K.B.; Papadopoulos, N.; Hwu, W.J.; Hwu, P.; Bedikian, A. Prognostic factors for survival in melanoma patients with brain metastases. Cancer 2011, 117, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Raizer, J.J.; Hwu, W.J.; Panageas, K.S.; Wilton, A.; Baldwin, D.E.; Bailey, E.; von Althann, C.; Lamb, L.A.; Alvarado, G.; Bilsky, M.H.; et al. Brain and leptomeningeal metastases from cutaneous melanoma: Survival outcomes based on clinical features. Neuro Oncol. 2008, 10, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Atkins, M.B.; Sosman, J.A.; Agarwala, S.; Logan, T.; Clark, J.I.; Ernstoff, M.S.; Lawson, D.; Dutcher, J.P.; Weiss, G.; Curti, B.; et al. Temozolomide, thalidomide, and whole brain radiation therapy for patients with brain metastasis from metastatic melanoma: A phase II Cytokine Working Group study. Cancer 2008, 113, 2139–2145. [Google Scholar] [CrossRef]
- Margolin, K.; Atkins, B.; Thompson, A.; Ernstoff, S.; Weber, J.; Flaherty, L.; Clark, I.; Weiss, G.; Sosman, J.; II Smith, W.; et al. Temozolomide and whole brain irradiation in melanoma metastatic to the brain: A phase II trial of the Cytokine Working Group. J. Cancer Res. Clin. Oncol. 2002, 128, 214–218. [Google Scholar] [CrossRef]
- Sloot, S.; Chen, Y.A.; Zhao, X.; Weber, J.L.; Benedict, J.J.; Mulé, J.J.; Smalley, K.S.; Weber, J.S.; Zager, J.S.; Forsyth, P.A.; et al. Improved survival of patients with melanoma brain metastases in the era of targeted BRAF and immune checkpoint therapies. Cancer 2018, 124, 297–305. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Forsyth, P.A.; Algazi, A.; Hamid, O.; Hodi, F.S.; Moschos, S.J.; Khushalani, N.I.; Lewis, K.; Lao, C.D.; Postow, M.A.; et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 2018, 379, 722–730. [Google Scholar] [CrossRef]
- Cohn-Cedermark, G.; Månsson-Brahme, E.; Rutqvist, L.E.; Larsson, O.; Johansson, H.; Ringborg, U. Central nervous system metastases of cutaneous malignant melanoma—A population-based study. Acta Oncol. 1998, 37, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Redmer, T. Deciphering mechanisms of brain metastasis in melanoma—The gist of the matter. Mol. Cancer 2018, 17, 106. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Boutros, C.; Kok, D.; Robert, C.; McArthur, G. New era in the management of melanoma brain metastases. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Kienast, Y.; von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 2010, 16, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Molnár, J.; Fazakas, C.; Haskó, J.; Sipos, O.; Nagy, K.; Nyúl-Tóth, Á.; Farkas, A.E.; Végh, A.G.; Váró, G.; Galajda, P.; et al. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K. Cell Adhes. Migr. 2016, 10, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Sagi-Assif, O.; Meshel, T.; Telerman, A.; Izraely, S.; Ben-Menachem, S.; Bayry, J.; Marzese, D.M.; Ohe, S.; Hoon, D.S.B.; et al. CCR4 is a determinant of melanoma brain metastasis. Oncotarget 2017, 8, 31079–31091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazakas, C.; Wilhelm, I.; Nagyoszi, P.; Farkas, A.E.; Haskó, J.; Molnár, J.; Bauer, H.; Bauer, H.C.; Ayaydin, F.; Dung, N.T.; et al. Transmigration of melanoma cells through the blood-brain barrier: Role of endothelial tight junctions and melanoma-released serine proteases. PLoS ONE 2011, 6, e20758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 2005, 57, 173–185. [Google Scholar] [CrossRef]
- Xie, T.X.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 2006, 66, 3188–3196. [Google Scholar] [CrossRef] [Green Version]
- Berghoff, A.S.; Schur, S.; Füreder, L.M.; Gatterbauer, B.; Dieckmann, K.; Widhalm, G.; Hainfellner, J.; Zielinski, C.C.; Birner, P.; Bartsch, R.; et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open 2016, 1, e000024. [Google Scholar] [CrossRef] [Green Version]
- Niessner, H.; Forschner, A.; Klumpp, B.; Honegger, J.B.; Witte, M.; Bornemann, A.; Dummer, R.; Adam, A.; Bauer, J.; Tabatabai, G.; et al. Targeting hyperactivation of the AKT survival pathway to overcome therapy resistance of melanoma brain metastases. Cancer Med. 2013, 2, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Yaman, B.; Akalin, T.; Kandiloğlu, G. Clinicopathological characteristics and mutation profiling in primary cutaneous melanoma. Am. J. Dermatopathol. 2015, 37, 389–397. [Google Scholar] [CrossRef]
- Colombino, M.; Capone, M.; Lissia, A.; Cossu, A.; Rubino, C.; De Giorgi, V.; Massi, D.; Fonsatti, E.; Staibano, S.; Nappi, O.; et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol. 2012, 30, 2522–2529. [Google Scholar] [CrossRef]
- Dankort, D.; Curley, D.P.; Cartlidge, R.A.; Nelson, B.; Karnezis, A.N.; Damsky, W.E.; You, M.J.; DePinho, R.A.; McMahon, M.; Bosenberg, M. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 2009, 41, 544–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Chakravarti, N.; Aardalen, K.; Lazar, A.J.; Tetzlaff, M.T.; Wubbenhorst, B.; Kim, S.B.; Kopetz, S.; Ledoux, A.A.; Gopal, Y.N.; et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin. Cancer Res. 2014, 20, 5537–5546. [Google Scholar] [CrossRef] [Green Version]
- Kircher, D.A.; Trombetti, K.A.; Silvis, M.R.; Parkman, G.L.; Fischer, G.M.; Angel, S.N.; Stehn, C.M.; Strain, S.C.; Grossmann, A.H.; Duffy, K.L.; et al. AKT1. Mol. Cancer Res. 2019, 17, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Izraely, S.; Klein, A.; Sagi-Assif, O.; Meshel, T.; Tsarfaty, G.; Hoon, D.S.; Witz, I.P. Chemokine-chemokine receptor axes in melanoma brain metastasis. Immunol. Lett. 2010, 130, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Murry, B.P.; Blust, B.E.; Singh, A.; Foster, T.P.; Marchetti, D. Heparanase mechanisms of melanoma metastasis to the brain: Development and use of a brain slice model. J. Cell Biochem. 2006, 97, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.K.; Hart, J.R. PI3K and STAT3: A new alliance. Cancer Discov. 2011, 1, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.A.; Saiag, P.; Robert, C.; Grob, J.J.; Flaherty, K.T.; Arance, A.; Chiarion-Sileni, V.; Thomas, L.; Lesimple, T.; Mortier, L.; et al. Dabrafenib plus trametinib in patients with BRAF. Lancet Oncol. 2017, 18, 863–873. [Google Scholar] [CrossRef]
- Puzanov, I.; Amaravadi, R.K.; McArthur, G.A.; Flaherty, K.T.; Chapman, P.B.; Sosman, J.A.; Ribas, A.; Shackleton, M.; Hwu, P.; Chmielowski, B.; et al. Long-term outcome in BRAF(V600E) melanoma patients treated with vemurafenib: Patterns of disease progression and clinical management of limited progression. Eur. J. Cancer 2015, 51, 1435–1443. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.J.; Catalanotti, F.; Munhoz, R.R.; Cheng, D.T.; Yaqubie, A.; Kelly, N.; McDermott, G.C.; Kersellius, R.; Merghoub, T.; Lacouture, M.E.; et al. A Retrospective evaluation of vemurafenib as treatment for braf-mutant melanoma brain metastases. Oncologist 2015, 20, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva, J.; Vultur, A.; Lee, J.T.; Somasundaram, R.; Fukunaga-Kalabis, M.; Cipolla, A.K.; Wubbenhorst, B.; Xu, X.; Gimotty, P.A.; Kee, D.; et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010, 18, 683–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Hong, A.; Kong, X.; Koya, R.C.; Song, C.; Moriceau, G.; Hugo, W.; Yu, C.C.; Ng, C.; Chodon, T.; et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014, 4, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorka, E.; Fabó, D.; Gézsi, A.; Czirbesz, K.; Fedorcsák, I.; Liszkay, G. Dabrafenib therapy in 30 patients with melanoma metastatic to the brain: A single-centre controlled retrospective study in hungary. Pathol. Oncol. Res. 2018, 24, 401–406. [Google Scholar] [CrossRef]
- Dzienis, M.R.; Atkinson, V.G. Response rate to vemurafenib in patients with B-RAF-positive melanoma brain metastases: A retrospective review. Melanoma Res. 2014, 24, 349–353. [Google Scholar] [CrossRef]
- Gibney, G.T.; Gauthier, G.; Ayas, C.; Galebach, P.; Wu, E.Q.; Abhyankar, S.; Reyes, C.; Guérin, A.; Yim, Y.M. Treatment patterns and outcomes in BRAF V600E-mutant melanoma patients with brain metastases receiving vemurafenib in the real-world setting. Cancer Med. 2015, 4, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Martin-Algarra, S.; Hinshelwood, R.; Mesnage, S.; Cebon, J.; Ferrucci, P.F.; Aglietta, M.; Neyns, B.; Chiarion-Sileni, V.; Lindsay, C.R.; Del Vecchio, M.; et al. Effectiveness of dabrafenib in the treatment of patients with BRAF V600-mutated metastatic melanoma in a Named Patient Program. Melanoma Res. 2019, 29, 527–532. [Google Scholar] [CrossRef]
- Geukes Foppen, M.H.; Boogerd, W.; Blank, C.U.; van Thienen, J.V.; Haanen, J.B.; Brandsma, D. Clinical and radiological response of BRAF inhibition and MEK inhibition in patients with brain metastases from BRAF-mutated melanoma. Melanoma Res. 2018, 28, 126–133. [Google Scholar] [CrossRef]
- Drago, J.Z.; Lawrence, D.; Livingstone, E.; Zimmer, L.; Chen, T.; Giobbie-Hurder, A.; Amann, V.C.; Mangana, J.; Siano, M.; Zippelius, A.; et al. Clinical experience with combination BRAF/MEK inhibitors for melanoma with brain metastases: A real-life multicenter study. Melanoma Res. 2019, 29, 65–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holbrook, K.; Lutzky, J.; Davies, M.A.; Davis, J.M.; Glitza, I.C.; Amaria, R.N.; Diab, A.; Patel, S.P.; Amin, A.; Tawbi, H. Intracranial antitumor activity with encorafenib plus binimetinib in patients with melanoma brain metastases: A case series. Cancer 2020, 126, 523–530. [Google Scholar] [CrossRef]
- Seghers, A.C.; Wilgenhof, S.; Lebbé, C.; Neyns, B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res. 2012, 22, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Valpione, S.; Carlino, M.S.; Mangana, J.; Mooradian, M.J.; McArthur, G.; Schadendorf, D.; Hauschild, A.; Menzies, A.M.; Arance, A.; Ascierto, P.A.; et al. Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study. Eur. J. Cancer 2018, 91, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viñal, D.; Martinez, D.; Espinosa, E. Efficacy of rechallenge with BRAF inhibition therapy in patients with advanced BRAFV600 mutant melanoma. Clin. Transl. Oncol. 2019, 21, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Trefzer, U.; Davies, M.A.; Kefford, R.F.; Ascierto, P.A.; Chapman, P.B.; Puzanov, I.; Hauschild, A.; Robert, C.; Algazi, A.; et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 1087–1095. [Google Scholar] [CrossRef]
- McArthur, G.A.; Maio, M.; Arance, A.; Nathan, P.; Blank, C.; Avril, M.F.; Garbe, C.; Hauschild, A.; Schadendorf, D.; Hamid, O.; et al. Vemurafenib in metastatic melanoma patients with brain metastases: An open-label, single-arm, phase 2, multicentre study. Ann. Oncol. 2017, 28, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Long, G.V.; Flaherty, K.T.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2017, 28, 1631–1639. [Google Scholar] [CrossRef]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroyakovskiy, D.; Drucis, K. Three-year estimate of overall survival in COMBI-v, a randomized phase 3 study evaluating first-line dabrafenib (D) + trametinib (T) in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. Ann. Oncol. 2016, 27, 552–587. [Google Scholar] [CrossRef]
- Dummer, R.; Goldinger, S.M.; Turtschi, C.P.; Eggmann, N.B.; Michielin, O.; Mitchell, L.; Veronese, L.; Hilfiker, P.R.; Felderer, L.; Rinderknecht, J.D. Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: Final results of an open-label pilot study. Eur. J. Cancer 2014, 50, 611–621. [Google Scholar] [CrossRef]
- Falchook, G.S.; Long, G.V.; Kurzrock, R.; Kim, K.B.; Arkenau, T.H.; Brown, M.P.; Hamid, O.; Infante, J.R.; Millward, M.; Pavlick, A.C.; et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: A phase 1 dose-escalation trial. Lancet 2012, 379, 1893–1901. [Google Scholar] [CrossRef] [Green Version]
- Arance, A.M.; Berrocal, A.; Lopez-Martin, J.A.; de la Cruz-Merino, L.; Soriano, V.; Martín Algarra, S.; Alonso, L.; Cerezuela, P.; La Orden, B.; Espinosa, E. Safety of vemurafenib in patients with BRAF. Clin. Transl. Oncol. 2016, 18, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- How, J.; Mann, J.; Laczniak, A.N.; Baggstrom, M.Q. Pulsatile erlotinib in EGFR-Positive non-small-cell lung cancer patients with leptomeningeal and brain metastases: Review of the literature. Clin. Lung Cancer 2017, 18, 354–363. [Google Scholar] [CrossRef]
- Goldinger, S.M.; Valeska Matter, A.; Urner-Bloch, U.; Narainsing, J.; Micaletto, S.; Blume, I.; Mangana, J.; Dummer, R. Binimetinib in heavily pretreated patients with NRAS-mutant melanoma with brain metastases. Br. J. Dermatol. 2020, 182, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Alexander, B.M.; Hodi, F.S.; Buchbinder, E.I.; Ott, P.A.; Aizer, A.A. Rapid progression of intracranial melanoma metastases controlled with combined BRAF/MEK inhibition after discontinuation of therapy: A clinical challenge. J. Neurooncol. 2016, 129, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Sambade, M.J.; Peters, E.C.; Thomas, N.E.; Kaufmann, W.K.; Kimple, R.J.; Shields, J.M. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032. Radiother. Oncol. 2011, 98, 394–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayana, A.; Mathew, M.; Tam, M.; Kannan, R.; Madden, K.M.; Golfinos, J.G.; Parker, E.C.; Ott, P.A.; Pavlick, A.C. Vemurafenib and radiation therapy in melanoma brain metastases. J. Neurooncol. 2013, 113, 411–416. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Freilich, J.M.; Sloot, S.; Figura, N.; Gibney, G.T.; Weber, J.S.; Sarangkasiri, S.; Chinnaiyan, P.; Forsyth, P.A.; Etame, A.B.; et al. LINAC-based stereotactic radiosurgery to the brain with concurrent vemurafenib for melanoma metastases. J. Neurooncol. 2015, 122, 121–126. [Google Scholar] [CrossRef]
- Gaudy-Marqueste, C.; Carron, R.; Delsanti, C.; Loundou, A.; Monestier, S.; Archier, E.; Richard, M.A.; Regis, J.; Grob, J.J. On demand Gamma-Knife strategy can be safely combined with BRAF inhibitors for the treatment of melanoma brain metastases. Ann. Oncol. 2014, 25, 2086–2091. [Google Scholar] [CrossRef]
- Xu, Z.; Lee, C.C.; Ramesh, A.; Mueller, A.C.; Schlesinger, D.; Cohen-Inbar, O.; Shih, H.H.; Sheehan, J.P. BRAF V600E mutation and BRAF kinase inhibitors in conjunction with stereotactic radiosurgery for intracranial melanoma metastases. J. Neurosurg. 2017, 126, 726–734. [Google Scholar] [CrossRef]
- Ly, D.; Bagshaw, H.P.; Anker, C.J.; Tward, J.D.; Grossmann, K.F.; Jensen, R.L.; Shrieve, D.C. Local control after stereotactic radiosurgery for brain metastases in patients with melanoma with and without BRAF mutation and treatment. J. Neurosurg. 2015, 123, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Liebner, D.A.; Walston, S.A.; Cavaliere, R.; Powers, C.J.; Sauvageau, E.; Lehman, N.L.; Wayne Slone, H.; Xu-Welliver, M.; Xia, F.; Kendra, K.L. Radiation necrosis mimicking rapid intracranial progression of melanoma metastasis in two patients treated with vemurafenib. Melanoma Res. 2014, 24, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Peuvrel, L.; Ruellan, A.L.; Thillays, F.; Quereux, G.; Brocard, A.; Saint-Jean, M.; Aumont, M.; Drouet, F.; Dreno, B. Severe radiotherapy-induced extracutaneous toxicity under vemurafenib. Eur. J. Dermatol. 2013, 23, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.R.; Chowdhary, M.; Switchenko, J.M.; Kudchadkar, R.; Lawson, D.H.; Cassidy, R.J.; Prabhu, R.S.; Khan, M.K. BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis. Melanoma Res. 2016, 26, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, A.; Zia, S.; Verma, R.; Pavlick, A.; Wilson, M.; Golfinos, J.G.; Silverman, J.S.; Kondziolka, D. Impact on overall survival of the combination of BRAF inhibitors and stereotactic radiosurgery in patients with melanoma brain metastases. J. Neurooncol. 2016, 127, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Gillet, J.P.; Gottesman, M.M. Mechanisms of multidrug resistance in cancer. Methods Mol. Biol. 2010, 596, 47–76. [Google Scholar] [CrossRef]
- Larkin, J.M.; Hughes, S.A.; Beirne, D.A.; Patel, P.M.; Gibbens, I.M.; Bate, S.C.; Thomas, K.; Eisen, T.G.; Gore, M.E. A phase I/II study of lomustine and temozolomide in patients with cerebral metastases from malignant melanoma. Br. J. Cancer 2007, 96, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwala, S.S.; Kirkwood, J.M.; Gore, M.; Dreno, B.; Thatcher, N.; Czarnetski, B.; Atkins, M.; Buzaid, A.; Skarlos, D.; Rankin, E.M. Temozolomide for the treatment of brain metastases associated with metastatic melanoma: A phase II study. J. Clin. Oncol. 2004, 22, 2101–2107. [Google Scholar] [CrossRef]
- Schadendorf, D.; Hauschild, A.; Ugurel, S.; Thoelke, A.; Egberts, F.; Kreissig, M.; Linse, R.; Trefzer, U.; Vogt, T.; Tilgen, W.; et al. Dose-intensified bi-weekly temozolomide in patients with asymptomatic brain metastases from malignant melanoma: A phase II DeCOG/ADO study. Ann. Oncol. 2006, 17, 1592–1597. [Google Scholar] [CrossRef]
- Hofmann, M.; Kiecker, F.; Wurm, R.; Schlenger, L.; Budach, V.; Sterry, W.; Trefzer, U. Temozolomide with or without radiotherapy in melanoma with unresectable brain metastases. J. Neurooncol. 2006, 76, 59–64. [Google Scholar] [CrossRef]
- Hwu, W.J.; Lis, E.; Menell, J.H.; Panageas, K.S.; Lamb, L.A.; Merrell, J.; Williams, L.J.; Krown, S.E.; Chapman, P.B.; Livingston, P.O.; et al. Temozolomide plus thalidomide in patients with brain metastases from melanoma: A phase II study. Cancer 2005, 103, 2590–2597. [Google Scholar] [CrossRef]
- Queirolo, P.; Spagnolo, F.; Picasso, V.; Spano, L.; Tanda, E.; Fontana, V.; Giorello, L.; Merlo, D.F.; Simeone, E.; Grimaldi, A.M.; et al. Combined vemurafenib and fotemustine in patients with BRAF V600 melanoma progressing on vemurafenib. Oncotarget 2018, 9, 12408–12417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolin, K.; Ernstoff, M.S.; Hamid, O.; Lawrence, D.; McDermott, D.; Puzanov, I.; Wolchok, J.D.; Clark, J.I.; Sznol, M.; Logan, T.F.; et al. Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. Lancet Oncol. 2012, 13, 459–465. [Google Scholar] [CrossRef]
- Di Giacomo, A.M.; Ascierto, P.A.; Pilla, L.; Santinami, M.; Ferrucci, P.F.; Giannarelli, D.; Marasco, A.; Rivoltini, L.; Simeone, E.; Nicoletti, S.V.; et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): An open-label, single-arm phase 2 trial. Lancet Oncol. 2012, 13, 879–886. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Gettinger, S.N.; Mahajan, A.; Chiang, A.C.; Herbst, R.S.; Sznol, M.; Tsiouris, A.J.; Cohen, J.; Vortmeyer, A.; Jilaveanu, L.; et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Kluger, H.M.; Chiang, V.; Mahajan, A.; Zito, C.R.; Sznol, M.; Tran, T.; Weiss, S.A.; Cohen, J.V.; Yu, J.; Hegde, U.; et al. Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a Phase II Trial. J. Clin. Oncol. 2019, 37, 52–60. [Google Scholar] [CrossRef]
- Tawbi, H.A.H.; Forsyth, P.A.; Hodi, F.S.; Lao, C.D.; Moschos, S.J.; Hamid, O.; Jang, S. Efficacy and safety of the combination of nivolumab (NIVO) plus ipilimumab (IPI) inpatients with symptomatic melanoma brain metastases (CheckMate 204). Presented at ASCO 2019 Annual Meeting, Chicago, IL, USA, 31 May–4 June 2019. [Google Scholar]
- Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef]
- Mandalà, M.; De Logu, F.; Merelli, B.; Nassini, R.; Massi, D. Immunomodulating property of MAPK inhibitors: From translational knowledge to clinical implementation. Lab. Investig. 2017, 97, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Hu-Lieskovan, S.; Mok, S.; Homet Moreno, B.; Tsoi, J.; Robert, L.; Goedert, L.; Pinheiro, E.M.; Koya, R.C.; Graeber, T.G.; Comin-Anduix, B.; et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 2015, 7, 279ra241. [Google Scholar] [CrossRef] [Green Version]
- Ascierto, P.A.; Ferrucci, P.F.; Fisher, R.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Di Giacomo, A.M.; et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 2019, 25, 941–946. [Google Scholar] [CrossRef]
- Ribas, A.; Lawrence, D.; Atkinson, V.; Agarwal, S.; Miller, W.H.; Carlino, M.S.; Fisher, R.; Long, G.V.; Hodi, F.S.; Tsoi, J.; et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat. Med. 2019, 25, 936–940. [Google Scholar] [CrossRef]
- Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF. Lancet 2020, 395, 1835–1844. [Google Scholar] [CrossRef]
- Glitza, I.C.; Smalley, K.S.M.; Brastianos, P.K.; Davies, M.A.; McCutcheon, I.; Liu, J.K.C.; Ahmed, K.A.; Arrington, J.A.; Evernden, B.R.; Smalley, I.; et al. Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions. Pigment Cell Melanoma Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Taillibert, S.; Chamberlain, M.C. Carcinomatous meningitis: Leptomeningeal metastases in solid tumors. Surg. Neurol. Int. 2013, 4, S265–S288. [Google Scholar] [CrossRef]
- Sakji-Dupré, L.; Le Rhun, E.; Templier, C.; Desmedt, E.; Blanchet, B.; Mortier, L. Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma. Melanoma Res. 2015, 25, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Arasaratnam, M.; Hong, A.; Shivalingam, B.; Wheeler, H.; Guminksi, A.D.; Long, G.V.; Menzies, A.M. Leptomeningeal melanoma-A case series in the era of modern systemic therapy. Pigment Cell Melanoma Res. 2018, 31, 120–124. [Google Scholar] [CrossRef]
- Glitza, I.C.; Ferguson, S.D.; Guha-Thakurta, N. Rapid resolution of leptomeningeal disease with targeted therapy in a metastatic melanoma patient. J. Neurooncol. 2017, 133, 663–665. [Google Scholar] [CrossRef]
- Kim, D.W.; Barcena, E.; Mehta, U.N.; Rohlfs, M.L.; Kumar, A.J.; Penas-Prado, M.; Kim, K.B. Prolonged survival of a patient with metastatic leptomeningeal melanoma treated with BRAF inhibition-based therapy: A case report. BMC Cancer 2015, 15, 400. [Google Scholar] [CrossRef] [Green Version]
- Wilgenhof, S.; Neyns, B. Complete cytologic remission of V600E BRAF-mutant melanoma-associated leptomeningeal carcinomatosis upon treatment with dabrafenib. J. Clin. Oncol. 2015, 33, e109–e111. [Google Scholar] [CrossRef]
- Papadatos-Pastos, D.; Januszewski, A.; Dalgleish, A. Revisiting the role of systemic therapies in patients with metastatic melanoma to the CNS. Expert Rev. Anticancer Ther. 2013, 13, 559–567. [Google Scholar] [CrossRef]
- Mittapalli, R.K.; Vaidhyanathan, S.; Dudek, A.Z.; Elmquist, W.F. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: Implications for the treatment of melanoma brain metastases. J. Pharmacol. Exp. Ther. 2013, 344, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Wager, T.T.; Villalobos, A.; Verhoest, P.R.; Hou, X.; Shaffer, C.L. Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opin. Drug Discov. 2011, 6, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tsien, C.I.; Shen, Z.; Tatro, D.S.; Ten Haken, R.; Kessler, M.L.; Chenevert, T.L.; Lawrence, T.S. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. J. Clin. Oncol. 2005, 23, 4127–4136. [Google Scholar] [CrossRef] [PubMed]
- Smalley, K.S.; Fedorenko, I.V.; Kenchappa, R.S.; Sahebjam, S.; Forsyth, P.A. Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. Int. J. Cancer 2016, 139, 1195–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glitza, I.C.; Bucheit, A.D. Clinical response of central nervous system melanoma to anti-PD1 therapy in 2 melanoma patients. Arch. Immunol. 2017, 1, 1–3. [Google Scholar]
- Glitza, I.C.; Phillips, S.; Brown, C.; Haymaker, C.L.; Bassett, R.L.; Lee, J.J.; McCutcheon, I.E. Single-center phase I/Ib study of concurrent intrathecal (IT) and intravenous (IV) nivolumab (N) for metastatic melanoma (MM) patients (pts) with leptomeningeal disease (LMD). Presented at ASCO 2020, Chicago, IL, USA, 29–31 May 2020. [Google Scholar]
- Lim, S.Y.; Menzies, A.M.; Rizos, H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer 2017, 123, 2118–2129. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B.; Menzies, A.M.; Zimmer, L.; Eroglu, Z.; Ye, F.; Zhao, S.; Rizos, H.; Sucker, A.; Scolyer, R.A.; Gutzmer, R.; et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer 2015, 51, 2792–2799. [Google Scholar] [CrossRef] [Green Version]
- Welsh, S.J.; Rizos, H.; Scolyer, R.A.; Long, G.V. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: Where to next? Eur. J. Cancer 2016, 62, 76–85. [Google Scholar] [CrossRef]
- Carlino, M.S.; Todd, J.R.; Gowrishankar, K.; Mijatov, B.; Pupo, G.M.; Fung, C.; Snoyman, S.; Hersey, P.; Long, G.V.; Kefford, R.F.; et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol. Oncol. 2014, 8, 544–554. [Google Scholar] [CrossRef]
- Wong, D.J.; Robert, L.; Atefi, M.S.; Lassen, A.; Avarappatt, G.; Cerniglia, M.; Avramis, E.; Tsoi, J.; Foulad, D.; Graeber, T.G.; et al. Antitumor activity of the ERK inhibitor SCH772984 [corrected] against BRAF mutant, NRAS mutant and wild-type melanoma. Mol. Cancer 2014, 13, 194. [Google Scholar] [CrossRef] [Green Version]
- Rebecca, V.W.; Alicea, G.M.; Paraiso, K.H.; Lawrence, H.; Gibney, G.T.; Smalley, K.S. Vertical inhibition of the MAPK pathway enhances therapeutic responses in NRAS-mutant melanoma. Pigment Cell Melanoma Res. 2014, 27, 1154–1158. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Hugo, W.; Kong, X.; Hong, A.; Koya, R.C.; Moriceau, G.; Chodon, T.; Guo, R.; Johnson, D.B.; Dahlman, K.B.; et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014, 4, 80–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguissa-Touré, A.H.; Li, G. Genetic alterations of PTEN in human melanoma. Cell. Mol. Life Sci. 2012, 69, 1475–1491. [Google Scholar] [CrossRef] [PubMed]
- Frederick, D.T.; Piris, A.; Cogdill, A.P.; Cooper, Z.A.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 2013, 19, 1225–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, Z.A.; Frederick, D.T.; Juneja, V.R.; Sullivan, R.J.; Lawrence, D.P.; Piris, A.; Sharpe, A.H.; Fisher, D.E.; Flaherty, K.T.; Wargo, J.A. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology 2013, 2, e26615. [Google Scholar] [CrossRef] [Green Version]
- Choo, E.F.; Ly, J.; Chan, J.; Shahidi-Latham, S.K.; Messick, K.; Plise, E.; Quiason, C.M.; Yang, L. Role of P-glycoprotein on the brain penetration and brain pharmacodynamic activity of the MEK inhibitor cobimetinib. Mol. Pharm. 2014, 11, 4199–4207. [Google Scholar] [CrossRef]
- Gampa, G.; Vaidhyanathan, S.; Sarkaria, J.N.; Elmquist, W.F. Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities? Pharmacol. Res. 2017, 123, 10–25. [Google Scholar] [CrossRef]
- Almeida, F.V.; Douglass, S.M.; Fane, M.E.; Weeraratna, A.T. Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell Melanoma Res. 2019, 32, 237–247. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Peppicelli, S.; Bianchini, F.; Calorini, L. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach. Oncoscience 2015, 2, 225–232. [Google Scholar] [CrossRef]
- Ruzzolini, J.; Peppicelli, S.; Andreucci, E.; Bianchini, F.; Margheri, F.; Laurenzana, A.; Fibbi, G.; Pimpinelli, N.; Calorini, L. Everolimus selectively targets vemurafenib resistant BRAF. Cancer Lett. 2017, 408, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H.; Ravani, S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000, 60, 1254–1260. [Google Scholar] [PubMed]
- Krtolica, A.; Parrinello, S.; Lockett, S.; Desprez, P.Y.; Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc. Natl. Acad. Sci. USA 2001, 98, 12072–12077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohuchida, K.; Mizumoto, K.; Murakami, M.; Qian, L.W.; Sato, N.; Nagai, E.; Matsumoto, K.; Nakamura, T.; Tanaka, M. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004, 64, 3215–3222. [Google Scholar] [CrossRef] [Green Version]
- Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; Davis, A.; Mongare, M.M.; Gould, J.; Frederick, D.T.; et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012, 487, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Capparelli, C.; Rosenbaum, S.; Berger, A.C.; Aplin, A.E. Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma. J. Biol. Chem. 2015, 290, 24267–24277. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kim, J.; Hong, H.; Lee, S.H.; Lee, J.K.; Jung, E. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016, 35, 462–478. [Google Scholar] [CrossRef]
- Titz, B.; Lomova, A.; Le, A.; Hugo, W.; Kong, X.; Ten Hoeve, J.; Friedman, M.; Shi, H.; Moriceau, G.; Song, C.; et al. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discov. 2016, 2, 16028. [Google Scholar] [CrossRef] [Green Version]
- Fedorenko, I.V.; Wargo, J.A.; Flaherty, K.T.; Messina, J.L.; Smalley, K.S.M. BRAF Inhibition generates a host-tumor niche that mediates therapeutic escape. J. Investig. Dermatol. 2015, 135, 3115–3124. [Google Scholar] [CrossRef] [Green Version]
- Fedorenko, I.V.; Abel, E.V.; Koomen, J.M.; Fang, B.; Wood, E.R.; Chen, Y.A.; Fisher, K.J.; Iyengar, S.; Dahlman, K.B.; Wargo, J.A.; et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene 2016, 35, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Bendell, J.C.; Rodon, J.; Burris, H.A.; de Jonge, M.; Verweij, J.; Birle, D.; Demanse, D.; De Buck, S.S.; Ru, Q.C.; Peters, M.; et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 2012, 30, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Algazi, A.P.; Rotow, J.; Posch, C.; Ortiz-Urda, S.; Pelayo, A.; Munster, P.N.; Daud, A. A dual pathway inhibition strategy using BKM120 combined with vemurafenib is poorly tolerated in BRAF V600. Pigment Cell. Melanoma Res. 2019, 32, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.; Davies, M.A.; Grob, J.J.; Long, G.V.; Nathan, P.D.; Ribas, A.; Jane-Valbuena, J. Genomic analysis and 3-y efficacy and safety update of COMBI-d: A phase 3 study of dabrafenib (D) + trametinib (T) vs. D monotherapy in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. J. Clin. Oncol. 2016, 34, 9502. [Google Scholar] [CrossRef]
- Sheppard, K.E.; McArthur, G.A. The cell-cycle regulator CDK4: An emerging therapeutic target in melanoma. Clin. Cancer Res. 2013, 19, 5320–5328. [Google Scholar] [CrossRef] [Green Version]
- Young, R.J.; Waldeck, K.; Martin, C.; Foo, J.H.; Cameron, D.P.; Kirby, L.; Do, H.; Mitchell, C.; Cullinane, C.; Liu, W.; et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014, 27, 590–600. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Amaria, R.N. Abstract PR06: Phase 1b dose-escalation study of trametinib (MEKi) plus palbociclib (CDK4/6i) in patients with advanced solid tumors. In AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA, USA, 5–9 November 2015; American Association for Cancer Research: Philadelphia, PA, USA, December 2015. [Google Scholar]
- Haq, R.; Shoag, J.; Andreu-Perez, P.; Yokoyama, S.; Edelman, H.; Rowe, G.C.; Frederick, D.T.; Hurley, A.D.; Nellore, A.; Kung, A.L.; et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 2013, 23, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Ito, K.; Perez-Lorenzo, R.; Del Guzzo, C.; Lee, J.H.; Shen, C.H.; Bosenberg, M.W.; McMahon, M.; Cantley, L.C.; Zheng, B. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc. Natl. Acad. Sci. USA 2013, 110, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Lezcano, C.; Shoushtari, A.N.; Ariyan, C.; Hollmann, T.J.; Busam, K.J. Primary and Metastatic Melanoma With NTRK Fusions. Am. J. Surg. Pathol. 2018, 42, 1052–1058. [Google Scholar] [CrossRef]
- Siena, S.; Doebele, R.C.; Shaw, A.T.; Karapetis, C.S.; Tan, D.S.W.; Cho, B.C.; Garrido Lopez, P. Efficacy of entrectinib in patients (pts) with solid tumors and central nervous system (CNS) metastases: Integrated analysis from three clinical trials. J. Clin. Oncol. 2019, 37 (Suppl. 15), 3017. [Google Scholar] [CrossRef]
Study | Trial Design | Drug(s) | No. Patients | IORR % (CR+PR) | IDCR % (CR+PR+SD) | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|---|
Gorka E. (2018) [34] | retrospective | Dabrafenib | 30 | 43 | 83 | 5.5 | 8.8 |
Dzienis M.R. (2014) [35] | retrospective | Vemurafenib | 22 | 50 | NA | NA | NA |
Harding J.J. (2015) [31] | retrospective | Vemurafenib | 22 | 50 | 82 | 4.1 | 7.5 |
Gibney G.T. (2015) [36] | retrospective | Vemurafenib | 283 | 48.1 | 67.2 | NA | 59% at 12 months |
Martin- Algarra S. (2019) [37] | retrospective | Dabrafenib | 132 | NA | NA | 3.9 | 9.5 |
Geukes Foppen M.H. (2018) [38] | retrospective | Dabrafenib | 31 | NA | NA | 5.7 | 8.8 |
Vemurafenib | 85 | NA | NA | 3.6 | 5.7 | ||
Dabrafenib + Trametinib | 30 | NA | NA | 5.8 | 11.2 | ||
Drago J.Z. (2019) [39] | retrospective | Dabrafenib + Trametinib, Vemurafenib + Cobimetinib, Encorafenib + Binimetinib, Vemurafenib + Trametinib | 65 | NA | NA | 5.3 | 9.5 |
Holbrook K. (2020) [40] | retrospective | Encorafenib + Binimetinib | 24 | 33 | 79 | NA | NA |
Davies M.A. (2017) COMBI-MB [29] | Phase II | Dabrafenib + Trametinib | 125 | ||||
cohort A | 76 | 58 | 78 | 5.6 | 10.8 | ||
cohort B | 16 | 56 | 88 | 7.2 | 24.3 | ||
cohort C | 16 | 44 | 75 | 4.2 | 10.1 | ||
cohort D | 17 | 59 | 82 | 5.5 | 11.5 | ||
Dummer R. (2014) [49] | Pilot Study | Vemurafenib | 24 | 16 | 84 | 3.9 | 5.3 |
Long G.V. (2012) BREAK-MB [44] | Phase II | Dabrafenib | 172 | ||||
cohort A | 74 | 39.2 | 81.1 | 16.1 | 33.1 | ||
cohort B | 15 | 6.7 | 33.3 | 8.1 | 16.3 | ||
cohort C | 65 | 30.8 | 89.2 | 16.6 | 31.4 | ||
cohort D | 18 | 22.2 | 50 | 15.9 | 21.9 | ||
Falchook G.S. (2012) [50] | Phase II | Dabrafenib | 10 | NA | 90 | 4.2 | NA |
McArthur G.A. (2017) [45] | Phase II | Vemurafenib | 146 | ||||
cohort A | 90 | 18 | 61 | 3.7 | 8.9 | ||
cohort B | 56 | 18 | 59 | 4.0 | 9.6 | ||
Arance A.M. (2016) [51] | Phase III | Vemurafenib | 66 | 18 | NA | NA | NA |
Study | Trial Design | Drug(s) | RT | No. Patients | Adverse Events | Efficacy Data | Survival Results |
---|---|---|---|---|---|---|---|
Narayana A. (2013) [56] | retrospective | Vemurafenib | SRS- WBRT | 12 | 4 intratumoral bleed prior to therapy. 2 patients developed steroid dependence. 1 radiation necrosis. 2 deaths for cerebral edema. | Symptoms improved in 64%. Radiographic responses in 36/48 (75%) Responses of index lesions (48% CR; 27% PR) | Median OS 13.7 (months) |
Ahmed K.A. (2015) [57] | retrospective | Vemurafenib | SRS | 24 | 1 radiation necrosis | 75% local control at 12 months | Median OS 7.2 (months) |
Gaudy- Marqueste C. (2014) [58] | retrospective | Dabrafenib or Vemurafenib | GNRS | 30 | 3 Radiation necrosis. 3 edemas and 3 hemorrhages within 2 months after GNRS; 4 edemas and 7 hemorrhages later | Median OS from first GNRS under BRAF-I and first dose of BRAF-I: 24.8 and 48.8 weeks, respectively | NA |
Xu Z. (2017) [59] | retrospective | Dabrafenib or Vemurafenib | SRS | 17 | NA | Local tumor control rate at 1 year 92% | Median OS 13 (months) |
Ly D. (2015) [60] | retrospective | Dabrafenib or Vemurafenib | SRS | 17 | 39.3% free from intratumoral hemorrhage at 1 year | Local control rate 85% at 1 year | 1year-OS 50.2% |
Patel K.R. (2016) [63] | retrospective | Dabrafenib or Vemurafenib | SRS | 15 | Radiation necrosis (radiographic) 22.2% at 1 year; Radiation necrosis (symptomatic) 28.2% at 1 year | 1year-local failure 3.3% 1year-distant intracranial failure 63.9% | 1year-OS 64.3% |
Study | Trial Design | Drug(s) | No. Patients | IORR % (CR+PR) | IDCR (CR+PR+SD) | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|---|
Margolin K. (2012) [72] | Phase II | Ipilimumab | 72 | ||||
Cohort A | 51 | 16 | 24 | 2.7 | 7.0 | ||
Cohort B | 21 | 5 | 10 | 1.3 | 3.7 | ||
Di Giacomo A.M. (2012) NIBIT-M1 [73] | Phase II | Ipilimumab + Fotemustine | 20 | 40 | 50 | 4.5 | 13.4 |
Goldberg S.B. (2016) [74] | Phase II | Pembrolizumab | 23 | 26 | 30.4 | 2 | 17 |
Long G.V. (2018) ABC [77] | Phase II | Nivolumab + Ipilimumab | |||||
Cohort A | 35 | 46 | 57 | NR | NR | ||
Nivoluamb | |||||||
Cohort B | 25 | 20 | 20 | 2.5 | 18.5 | ||
Cohort C | 16 | 6 | 18 | 23 | 5.1 | ||
Tawbi H.A. (2018) Checkmate204 [8] | Phase II | Nivolumab + Ipilimumab | 94 | 55 | 57 | NR (56.6% at 12 months) | NR (81.5% at 12 months) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becco, P.; Gallo, S.; Poletto, S.; Frascione, M.P.M.; Crotto, L.; Zaccagna, A.; Paruzzo, L.; Caravelli, D.; Carnevale-Schianca, F.; Aglietta, M. Melanoma Brain Metastases in the Era of Target Therapies: An Overview. Cancers 2020, 12, 1640. https://doi.org/10.3390/cancers12061640
Becco P, Gallo S, Poletto S, Frascione MPM, Crotto L, Zaccagna A, Paruzzo L, Caravelli D, Carnevale-Schianca F, Aglietta M. Melanoma Brain Metastases in the Era of Target Therapies: An Overview. Cancers. 2020; 12(6):1640. https://doi.org/10.3390/cancers12061640
Chicago/Turabian StyleBecco, Paolo, Susanna Gallo, Stefano Poletto, Mirko Pio Manlio Frascione, Luca Crotto, Alessandro Zaccagna, Luca Paruzzo, Daniela Caravelli, Fabrizio Carnevale-Schianca, and Massimo Aglietta. 2020. "Melanoma Brain Metastases in the Era of Target Therapies: An Overview" Cancers 12, no. 6: 1640. https://doi.org/10.3390/cancers12061640
APA StyleBecco, P., Gallo, S., Poletto, S., Frascione, M. P. M., Crotto, L., Zaccagna, A., Paruzzo, L., Caravelli, D., Carnevale-Schianca, F., & Aglietta, M. (2020). Melanoma Brain Metastases in the Era of Target Therapies: An Overview. Cancers, 12(6), 1640. https://doi.org/10.3390/cancers12061640