Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory
Abstract
:1. Introduction
2. Standard, Unifying, and Extended Models of MM Oncogenesis
2.1. Characteristics of MM and MM Cells
2.2. Standard Model
2.3. (Re)unifying Model
2.4. Extended Model to the BME
3. A Microenvironment-Based Model: The TiDiS Theory
3.1. General Scheme of the TiDiS Theory
3.2. The TiDiS Theory in MM
- (1)
- If genetic alterations pre-exist, the disease would develop more quickly, but differently, depending on the type of genetic disorder. It is expected to be more aggressive in the case of t(4;14), and more generally in cases where an oncogene playing on epigenetics, and therefore differentiation, is affected. Nevertheless, these disorders are not sufficient because they are present in healthy cells and patients.
- (2)
- No alteration preexists but the niche disruption is clastogenic and favors the appearance of genetic alterations. Here again, the disease cannot be considered as initiated by genetic modifications and cannot be understood without the initial environmental alteration.
- (3)
- The sole tissue disruption could generate abnormal proliferation and stabilization of MGUS without the pre-existence or appearance of genetic alterations in the expansion phase. The lack of full differentiation due to the lack of possibility to reside in the niche is sufficient to produce residual proliferation and phenotypic instability. This would allow cells to explore new phenotypes that could ultimately lead to transformation without specific and identifiable “driver” genetic alteration. Genetic changes would appear later because of a global destabilization of the cells [63,65].
4. Perspectives for the Management of MM
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kyle, R.A.; Larson, D.R.; Therneau, T.M.; Dispenzieri, A.; Kumar, S.; Cerhan, J.R.; Rajkumar, S.V. Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2018, 378, 241–249. [Google Scholar] [CrossRef]
- Dhodapkar, M.V. MGUS to myeloma: A mysterious gammopathy of underexplored significance. Blood 2016, 128, 2599–2606. [Google Scholar] [CrossRef]
- van Nieuwenhuijzen, N.; Spaan, I.; Raymakers, R.; Peperzak, V. From MGUS to Multiple Myeloma, a Paradigm for Clonal Evolution of Premalignant Cells. Cancer Res. 2018, 78, 2449–2456. [Google Scholar] [CrossRef] [Green Version]
- Barwick, B.G.; Gupta, V.A.; Vertino, P.M.; Boise, L.H. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front. Immunol. 2019, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Bataille, R.; Jego, G.; Robillard, N.; Barille-Nion, S.; Harousseau, J.L.; Moreau, P.; Amiot, M.; Pellat-Deceunynck, C. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica 2006, 91, 1234–1240. [Google Scholar]
- Borset, M.; Sundan, A.; Waage, A.; Standal, T. Why do myeloma patients have bone disease? A historical perspective. Blood Rev. 2020, 41, 100646. [Google Scholar] [CrossRef] [PubMed]
- Bergsagel, P.L.; Chesi, M.V. Molecular classification and risk stratification of myeloma. Hematol. Oncol. 2013, 31 (Suppl. 1), 38–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corre, J.; Munshi, N.; Avet-Loiseau, H. Genetics of multiple myeloma: Another heterogeneity level? Blood 2015, 125, 1870–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, G.; Munshi, N.C. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015, 125, 3049–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basak, G.W.; Srivastava, A.S.; Malhotra, R.; Carrier, E. Multiple myeloma bone marrow niche. Curr. Pharm. Biotechnol. 2009, 10, 345–346. [Google Scholar] [CrossRef]
- Zipori, D. The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenviron. 2010, 3, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, J.R.; Rozanski, C.H.; Lee, K.P. Under one roof: The bone marrow survival niche for multiple myeloma and normal plasma cells. Oncoimmunology 2012, 1, 388–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noll, J.E.; Williams, S.A.; Purton, L.E.; Zannettino, A.C. Tug of war in the haematopoietic stem cell niche: Do myeloma plasma cells compete for the HSC niche? Blood Cancer J. 2012, 2, e91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toscani, D.; Bolzoni, M.; Accardi, F.; Aversa, F.; Giuliani, N. The osteoblastic niche in the context of multiple myeloma. Ann. N. Y. Acad. Sci. 2015, 1335, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Orlowski, R.Z.; Wang, M.; Kwak, L.; McCarty, N. Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 2014, 123, 2204–2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez-Ferrer, S.; Bonnet, D.; Steensma, D.P.; Hasserjian, R.P.; Ghobrial, I.M.; Gribben, J.G.; Andreeff, M.; Krause, D.S. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 2020, 20, 285–298. [Google Scholar] [CrossRef]
- Drake, M.T. Unveiling skeletal fragility in patients diagnosed with MGUS: No longer a condition of undetermined significance? J. Bone Miner. Res. 2014, 29, 2529–2533. [Google Scholar] [CrossRef] [Green Version]
- Adamik, J.; Galson, D.L.; Roodman, G.D. Osteoblast suppression in multiple myeloma bone disease. J. Bone Oncol. 2018, 13, 62–70. [Google Scholar] [CrossRef]
- Merlo, L.M.; Pepper, J.W.; Reid, B.J.; Maley, C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 2006, 6, 924–935. [Google Scholar] [CrossRef]
- Olechnowicz, S.W.; Edwards, C.M. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res. 2014, 74, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Solary, E.; Lapane, L. The role of host environment in cancer evolution. Evol. Appl. 2020. [Google Scholar] [CrossRef]
- Bataille, R.; Chappard, D.; Basle, M.F. Quantifiable excess of bone resorption in monoclonal gammopathy is an early symptom of malignancy: A prospective study of 87 bone biopsies. Blood 1996, 87, 4762–4769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, T.L.; Soe, K.; Sondergaard, T.E.; Plesner, T.; Delaisse, J.M. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. Br. J. Haematol. 2010, 148, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Lawson, M.A.; McDonald, M.M.; Kovacic, N.; Hua Khoo, W.; Terry, R.L.; Down, J.; Kaplan, W.; Paton-Hough, J.; Fellows, C.; Pettitt, J.A.; et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 2015, 6, 8983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Strowig, T.; Verma, R.; Koduru, S.; Hafemann, A.; Hopf, S.; Kocoglu, M.H.; Borsotti, C.; Zhang, L.; Branagan, A.; et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat. Med. 2016, 22, 1351–1357. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, O.; Baz, R. Multiple Myeloma Genomics—A Concise Review. Acta Med. Acad. 2019, 48, 57–67. [Google Scholar] [CrossRef]
- Graham, R.C., Jr.; Bernier, G.M. The bone marrow in multiple myeloma: Correlation of plasma cell ultrastructure and clinical state. Medicine (Baltimore) 1975, 54, 225–243. [Google Scholar] [CrossRef]
- Israel, L. Tumour progression: Random mutations or an integrated survival response to cellular stress conserved from unicellular organisms? J. Theor. Biol. 1996, 178, 375–380. [Google Scholar] [CrossRef]
- Steensma, D.P.; Gertz, M.A.; Greipp, P.R.; Kyle, R.A.; Lacy, M.Q.; Lust, J.A.; Offord, J.R.; Plevak, M.F.; Therneau, T.M.; Witzig, T.E. A high bone marrow plasma cell labeling index in stable plateau-phase multiple myeloma is a marker for early disease progression and death. Blood 2001, 97, 2522–2523. [Google Scholar] [CrossRef] [Green Version]
- Dhodapkar, M.V.; Weinstein, R.; Tricot, G.; Jagannath, S.; Parfitt, A.M.; Manolagas, S.C.; Barlogie, B. Biologic and therapeutic determinants of bone mineral density in multiple myeloma. Leuk. Lymphoma 1998, 32, 121–127. [Google Scholar] [CrossRef]
- Campbell, G.M.; Pena, J.A.; Giravent, S.; Thomsen, F.; Damm, T.; Gluer, C.C.; Borggrefe, J. Assessment of Bone Fragility in Patients With Multiple Myeloma Using QCT-Based Finite Element Modeling. J. Bone Miner. Res. 2017, 32, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, W.M.; Bergsagel, P.L. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J. Clin. Investig. 2012, 122, 3456–3463. [Google Scholar] [CrossRef] [PubMed]
- Pawlyn, C.; Morgan, G.J. Evolutionary biology of high-risk multiple myeloma. Nat. Rev. Cancer 2017, 17, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Braggio, E.; Kortum, K.M.; Stewart, A.K. SnapShot: Multiple Myeloma. Cancer Cell 2015, 28, 678. [Google Scholar] [CrossRef] [Green Version]
- Robiou du Pont, S.; Cleynen, A.; Fontan, C.; Attal, M.; Munshi, N.; Corre, J.; Avet-Loiseau, H. Genomics of Multiple Myeloma. J. Clin. Oncol. 2017, 35, 963–967. [Google Scholar] [CrossRef]
- Maura, F.; Bolli, N.; Angelopoulos, N.; Dawson, K.J.; Leongamornlert, D.; Martincorena, I.; Mitchell, T.J.; Fullam, A.; Gonzalez, S.; Szalat, R.; et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 2019, 10, 3835. [Google Scholar] [CrossRef] [Green Version]
- Rasche, L.; Chavan, S.S.; Stephens, O.W.; Patel, P.H.; Tytarenko, R.; Ashby, C.; Bauer, M.; Stein, C.; Deshpande, S.; Wardell, C.; et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 2017, 8, 268. [Google Scholar] [CrossRef]
- Paner, A.; Patel, P.; Dhakal, B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020, 41, 100643. [Google Scholar] [CrossRef]
- Chesi, M.; Bergsagel, P.L. Many multiple myelomas: Making more of the molecular mayhem. Hematol. Am. Soc. Hematol. Educ. Program. 2011, 2011, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Decaux, O.; Lode, L.; Magrangeas, F.; Charbonnel, C.; Gouraud, W.; Jezequel, P.; Attal, M.; Harousseau, J.L.; Moreau, P.; Bataille, R.; et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: A study of the Intergroupe Francophone du Myelome. J. Clin. Oncol. 2008, 26, 4798–4805. [Google Scholar] [CrossRef]
- Kaufmann, H.; Ackermann, J.; Odelga, V.; Sagaster, V.; Nosslinger, T.; Pfeilstocker, M.; Keck, A.; Ludwig, H.; Gisslinger, H.; Drach, J. Cytogenetic patterns in multiple myeloma after a phase of preceding MGUS. Eur. J. Clin. Investig. 2008, 38, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Garand, R.; Avet-Loiseau, H.; Accard, F.; Moreau, P.; Harousseau, J.L.; Bataille, R. t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma. Leukemia 2003, 17, 2032–2035. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Kawano, Y.; Bianchi, G.; Roccaro, A.M.; Ghobrial, I.M. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr. Opin. Hematol. 2016, 23, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Lomas, O.C.; Tahri, S.; Ghobrial, I.M. The microenvironment in myeloma. Curr. Opin. Oncol. 2020, 32, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.A.; Mundy, G.R.; Lwin, S.T.; Edwards, C.M. Bone marrow stromal cells create a permissive microenvironment for myeloma development: A new stromal role for Wnt inhibitor Dkk1. Cancer Res. 2012, 72, 2183–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Calle, J.; Anderson, J.; Cregor, M.D.; Hiasa, M.; Chirgwin, J.M.; Carlesso, N.; Yoneda, T.; Mohammad, K.S.; Plotkin, L.I.; Roodman, G.D.; et al. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma. Cancer Res. 2016, 76, 1089–1100. [Google Scholar] [CrossRef] [Green Version]
- Bataille, R. Management of myeloma with bisphosphonates. N. Engl. J. Med. 1996, 334, 529–530. [Google Scholar] [CrossRef]
- Bataille, R.; Chappard, D.; Marcelli, C.; Dessauw, P.; Sany, J.; Baldet, P.; Alexandre, C. Mechanisms of bone destruction in multiple myeloma: The importance of an unbalanced process in determining the severity of lytic bone disease. J. Clin. Oncol. 1989, 7, 1909–1914. [Google Scholar] [CrossRef]
- Bataille, R.; Delmas, P.D.; Chappard, D.; Sany, J. Abnormal serum bone Gla protein levels in multiple myeloma. Crucial role of bone formation and prognostic implications. Cancer 1990, 66, 167–172. [Google Scholar] [CrossRef]
- Bataille, R.; Manolagas, S.C.; Berenson, J.R. Pathogenesis and management of bone lesions in multiple myeloma. Hematol. Oncol. Clin. N. Am. 1997, 11, 349–361. [Google Scholar] [CrossRef]
- Bataille, R.; Chappard, D.; Marcelli, C.; Rossi, J.F.; Dessauw, P.; Baldet, P.; Sany, J.; Alexandre, C. Osteoblast stimulation in multiple myeloma lacking lytic bone lesions. Br. J. Haematol. 1990, 76, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Bataille, R.; Chappard, D.; Marcelli, C.; Dessauw, P.; Baldet, P.; Sany, J.; Alexandre, C. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J. Clin. Investig. 1991, 88, 62–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, T.L.; Sondergaard, T.E.; Skorzynska, K.E.; Dagnaes-Hansen, F.; Plesner, T.L.; Hauge, E.M.; Plesner, T.; Delaisse, J.M. A physical mechanism for coupling bone resorption and formation in adult human bone. Am. J. Pathol. 2009, 174, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Calle, J.; Bellido, T.; Roodman, G.D. Role of osteocytes in multiple myeloma bone disease. Curr. Opin. Support. Palliat. Care 2014, 8, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys. 2014, 561, 3–12. [Google Scholar] [CrossRef]
- Maldonado, J.E.; Riggs, B.L.; Bayrd, E.D. Pseudomyeloma. Is association of severe osteoporosis with serum monoclonal gammopathy an entity or a coincidence? Arch. Intern. Med. 1975, 135, 267–270. [Google Scholar] [CrossRef]
- Luo, X.; Fu, Y.; Loza, A.J.; Murali, B.; Leahy, K.M.; Ruhland, M.K.; Gang, M.; Su, X.; Zamani, A.; Shi, Y.; et al. Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Rep. 2016, 14, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Asosingh, K.; De Raeve, H.; de Ridder, M.; Storme, G.A.; Willems, A.; Van Riet, I.; Van Camp, B.; Vanderkerken, K. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 2005, 90, 810–817. [Google Scholar]
- Tai, Y.T.; Cho, S.F.; Anderson, K.C. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Front. Immunol. 2018, 9, 1822. [Google Scholar] [CrossRef] [Green Version]
- Capp, J.P.; Bataille, R. Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event. Front. Oncol. 2018, 8, 355. [Google Scholar] [CrossRef]
- Pellat-Deceunynck, C.; Defrance, T. The origin of the plasma-cell heterogeneity. Front. Immunol. 2015, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zojer, N.; Ludwig, H.; Fiegl, M.; Stevenson, F.K.; Sahota, S.S. Patterns of somatic mutations in VH genes reveal pathways of clonal transformation from MGUS to multiple myeloma. Blood 2003, 101, 4137–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capp, J.P. Stochastic gene expression, disruption of tissue averaging effects and cancer as a disease of development. Bioessays 2005, 27, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Capp, J.P. Nouveau Regard sur le Cancer. Pour une Révolution des Traitements; Belin-Pour la science: Paris, France, 2012. [Google Scholar]
- Capp, J.P. Tissue disruption increases stochastic gene expression thus producing tumors: Cancer initiation without driver mutation. Int. J. Cancer 2017, 140, 2408–2413. [Google Scholar] [CrossRef]
- Khodadadi, L.; Cheng, Q.; Radbruch, A.; Hiepe, F. The Maintenance of Memory Plasma Cells. Front. Immunol. 2019, 10, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capp, J.P.; Laforge, B. A Darwinian and Physical Look at Stem Cell Biology Helps Understanding the Role of Stochasticity in Development. Front. Cell Dev. Biol. 2020, 8, 659. [Google Scholar] [CrossRef]
- Efroni, S.; Duttagupta, R.; Cheng, J.; Dehghani, H.; Hoeppner, D.J.; Dash, C.; Bazett-Jones, D.P.; Le Grice, S.; McKay, R.D.; Buetow, K.H.; et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008, 2, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Richard, A.; Boullu, L.; Herbach, U.; Bonnafoux, A.; Morin, V.; Vallin, E.; Guillemin, A.; Papili Gao, N.; Gunawan, R.; Cosette, J.; et al. Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process. PLoS Biol. 2016, 14, e1002585. [Google Scholar] [CrossRef]
- Moussy, A.; Cosette, J.; Parmentier, R.; da Silva, C.; Corre, G.; Richard, A.; Gandrillon, O.; Stockholm, D.; Paldi, A. Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment. PLoS Biol. 2017, 15, e2001867. [Google Scholar] [CrossRef] [Green Version]
- Capp, J.P. Phenotypic instability induced by tissue disruption at the origin of cancer. In Phenotypic Switching: Implications in Biology and Medicine; Levine, H., Kulkarni, P., Jolly, M., Nanjundiah, V., Eds.; Elsevier: San Diego, CA, USA, 2020. [Google Scholar]
- Featherstone, K.; Hey, K.; Momiji, H.; McNamara, A.V.; Patist, A.L.; Woodburn, J.; Spiller, D.G.; Christian, H.C.; McNeilly, A.S.; Mullins, J.J.; et al. Spatially coordinated dynamic gene transcription in living pituitary tissue. Elife 2016, 5, e08494. [Google Scholar] [CrossRef] [Green Version]
- Pellat-Deceunynck, C.; Jego, G.; Robillard, N.; Accard, F.; Amiot, M.; Bataille, R. Reactive plasmacytoses, a model for studying the biology of human plasma cell progenitors and precursors. Hematol. J. 2000, 1, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Capp, J.P. Stochastic gene expression stabilization as a new therapeutic strategy for cancer. Bioessays 2012, 34, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Shay, G.; Hazlehurst, L.; Lynch, C.C. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J. Mol. Med. 2016, 94, 21–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bataille, R.; Harousseau, J.L. Multiple myeloma. N. Engl. J. Med. 1997, 336, 1657–1664. [Google Scholar] [CrossRef]
- Roodman, G.D. Bone building with bortezomib. J. Clin. Investig. 2008, 118, 462–464. [Google Scholar] [CrossRef]
- Zangari, M.; Suva, L.J. The effects of proteasome inhibitors on bone remodeling in multiple myeloma. Bone 2016, 86, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Nemani, N.; Santo, L.; Eda, H.; Cirstea, D.; Mishima, Y.; Patel, C.; O’Donnell, E.; Yee, A.; Raje, N. Role of decorin in multiple myeloma (MM) bone marrow microenvironment. J. Bone Miner. Res. 2015, 30, 465–470. [Google Scholar] [CrossRef]
- Vallet, S.; Raje, N. Bone anabolic agents for the treatment of multiple myeloma. Cancer Microenviron. 2011, 4, 339–349. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.M.; Reagan, M.R.; Youlten, S.E.; Mohanty, S.T.; Seckinger, A.; Terry, R.L.; Pettitt, J.A.; Simic, M.K.; Cheng, T.L.; Morse, A.; et al. Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood 2017, 129, 3452–3464. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, S.; Lovendorf, M.B.; Park, J.; Salem, K.Z.; Reagan, M.R.; Manier, S.; Zavidij, O.; Rahmat, M.; Huynh, D.; Takagi, S.; et al. Inhibition of microRNA-138 enhances bone formation in multiple myeloma bone marrow niche. Leukemia 2018, 32, 1739–1750. [Google Scholar] [CrossRef]
- Hameed, A.; Brady, J.J.; Dowling, P.; Clynes, M.; O’Gorman, P. Bone disease in multiple myeloma: Pathophysiology and management. Cancer Growth Metastasis 2014, 7, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chromosomal Abnormalities and Ploidy | Chromosomal Instability | Differentiation Status | Natural History: MGUS Phase Duration | Relation to Micro-Environment |
---|---|---|---|---|
t(11;14), diploid | Low (33% of incidence of -13q) | Full differentiation | Long | Close to normal |
t(4;14), non-hyper-diploid | High (85%) | Lack of differentiation | Short | Strongly disrupted |
Trisomy (1, 3, 5, 7…), hyper-diploid | Just right (50%) | Intermediate differentiation | Intermediate | Vicious dependence |
Model of MM Oncogenesis | Standard | Unifying | Extended and Permissive | TiDiS |
---|---|---|---|---|
Initiation level | Cell | Cell | Cell | Tissue |
Initiating event | Genetics | Genetics | Genetics | Microenvironment |
Promoting event | Epigenetics | Epigenetics + microenvironment | Genetics + epigenetics | |
Supporting features of MM cells and their precursors | Genotype | Morphotype, phenotype, proliferation index | Extended phenotype to bones (LBL, generalized bone loss) | Abnormal cellular interactions within bone |
Cellular Events (Seeds): Natural History of MM | Pre-MGUS Stages: Reactive Plasmacytoses, Transient MGUS | Permanent MGUS (Transition from Transient MGUS) | Overt MM (Transition from Permanent MGUS) |
---|---|---|---|
Tissue events (soil): Mechanisms | Physiological disruption of the mesenchymal stromal to osteoblast transition | Disruption of the endosteal niche, shift from osteoblastic to osteoclastic status | Uncoupling between bone resorption and formation accentuation of the pre-existing disruption and shift of the bone remodeling complex |
Consequences | Bone senescence | Generalized bone loss (bone fragility) through accentuation of bone senescence | Lytic bone lesions Generalized bone loss |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capp, J.-P.; Bataille, R. Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers 2020, 12, 2158. https://doi.org/10.3390/cancers12082158
Capp J-P, Bataille R. Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers. 2020; 12(8):2158. https://doi.org/10.3390/cancers12082158
Chicago/Turabian StyleCapp, Jean-Pascal, and Régis Bataille. 2020. "Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory" Cancers 12, no. 8: 2158. https://doi.org/10.3390/cancers12082158
APA StyleCapp, J. -P., & Bataille, R. (2020). Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers, 12(8), 2158. https://doi.org/10.3390/cancers12082158