Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,075)

Search Parameters:
Keywords = oncogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2792 KB  
Article
Baculovirus-Mediated Gene Therapy: Targeting BIRC6 for Lung and Breast Cancer
by Abril Marchesini, Santiago M. Gómez Bergna, Leslie C. Amorós Morales, María Florencia López, Larisa Vásquez, Silvana E. Tongiani, Florencia González Morán, Víctor Romanowski, María Florencia Gottardo and Matias L. Pidre
Viruses 2025, 17(11), 1458; https://doi.org/10.3390/v17111458 (registering DOI) - 31 Oct 2025
Abstract
BIRC6, a member of the inhibitor of apoptosis protein family (IAP), regulates apoptosis, autophagy and cytokinesis. IAPs are often overexpressed in tumors, contributing to oncogenesis, therapy resistance and worse prognosis. In particular, BIRC6 overexpression has been found in several tumor tissues. The aim [...] Read more.
BIRC6, a member of the inhibitor of apoptosis protein family (IAP), regulates apoptosis, autophagy and cytokinesis. IAPs are often overexpressed in tumors, contributing to oncogenesis, therapy resistance and worse prognosis. In particular, BIRC6 overexpression has been found in several tumor tissues. The aim of this study was to evaluate the effect of BIRC6 silencing on the apoptotic response of breast and lung tumor cells. We used RNA interference based on short hairpin RNA (shRNA) to knock down gene expression encoded by a recombinant baculovirus (BV), an insect-specific virus unable to replicate in mammalian hosts, to carry out preclinical validation tests in experimental models both in vitro and in vivo. Our results indicate that BIRC6 plays an antiapoptotic role in both breast and lung tumor cells. In vivo, treatment with BV-shBRIC6 reduced breast and lung tumor progression and increased overall survival. After histological analysis, BV-shBRIC6 was able to increase tumor necrosis. In addition, we demonstrated that BIRC6 expression correlates with antiapoptotic and tumor progression-relevant markers in lung and breast cancer patients. BV-based silencing of BIRC6 may have therapeutic value for the treatment of lung and breast tumors. Further translational studies of BV-shBIRC6 in lung and breast cancer are warranted. Full article
Show Figures

Figure 1

12 pages, 1898 KB  
Article
Molecular Characterization of Polyomavirus-Positive and Negative Merkel Cell Carcinoma
by Poorva Vaidya, Sharon Wu, Dave Bryant, Curtis J. Perry, Varsha Prakash, Emil Lou, Theresa Guo, Isaac Brownell, Sourat Darabi, Ling Gao, Farah Abdulla and Soo J. Park
Cancers 2025, 17(21), 3508; https://doi.org/10.3390/cancers17213508 (registering DOI) - 31 Oct 2025
Abstract
Background/Objectives: Immune checkpoint inhibitors (ICIs) are frontline treatment for advanced Merkel Cell Carcinoma (MCC), regardless of viral status. Frontline ICIs provide durable benefit to only half of patients, highlighting a need for alternative therapies. In this study, the objective is to leverage whole [...] Read more.
Background/Objectives: Immune checkpoint inhibitors (ICIs) are frontline treatment for advanced Merkel Cell Carcinoma (MCC), regardless of viral status. Frontline ICIs provide durable benefit to only half of patients, highlighting a need for alternative therapies. In this study, the objective is to leverage whole exome sequencing (WES) and transcriptome sequencing (WTS) to distinguish genomic alterations associated with ICI response. Investigate differential genomic alterations between virus-positive (VP) and virus-negative (VN)-MCC to identify novel therapeutic targets. Methods: A total of 95 MCC cases underwent WES and WTS. Utilizing computational pipelines applied to WES, we identified viral status and tumor mutational burden (TMB). RNA-seq data was used to characterize the immune microenvironment. Results: Of 95 MCC cases, 57 (60%) were VP-MCC and 38 (40%) were VN-MCC. Median TMB was higher in VN-MCC (27.5 vs. 1 Muts/Mb). Mutations in TP53, RB1, NOTCH1, KMTD2, KMT2C, and PIK3CA were primarily found in VN-MCC. MAPK Pathway Activity Score, NK cell infiltration, and the immune checkpoint gene CD276 in VN-MCC tumors were upregulated. No overall survival (OS) difference was identified between VP and VN-MCC, even after ICIs. Conclusions: MCC oncogenesis and treatment response transcend viral status. While mutational analysis confirms previous findings, assessment of the transcriptome and tumor microenvironment suggests alternate therapeutic targets. Full article
(This article belongs to the Special Issue Precision Oncology for Rare Skin Cancers)
Show Figures

Figure 1

17 pages, 1275 KB  
Article
miRNA Signatures in Endometrial Cancer: Implications for Oncogenesis and Polymerase Epsilon (POLE) Mutation Status
by Alexandros Lazaridis, Nikolas Dovrolis, Hector Katifelis, Despoina Myoteri, Iakovos Vlahos, Nikos F. Vlahos and Maria Gazouli
Int. J. Mol. Sci. 2025, 26(21), 10438; https://doi.org/10.3390/ijms262110438 - 27 Oct 2025
Viewed by 346
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression with critical roles in oncogenic signaling. Endometrial cancer (EC) has been redefined with the identification of POLE-ultramutated tumors which, despite their hypermutated phenotype, show more favorable prognosis. We profiled miRNA expression in tumor tissues from [...] Read more.
MicroRNAs (miRNAs) are key regulators of gene expression with critical roles in oncogenic signaling. Endometrial cancer (EC) has been redefined with the identification of POLE-ultramutated tumors which, despite their hypermutated phenotype, show more favorable prognosis. We profiled miRNA expression in tumor tissues from forty (40) EC patients and twenty (20) healthy controls using qPCR panels. POLE exonuclease domain mutations (P286R, V411L) were genotyped, and subgroup analyses were conducted between POLE-mutated (n = 7) and POLE-wild-type (n = 33) tumors. Bioinformatic analyses included validated miRNA–mRNA interactions, target enrichment, and Gene Ontology (GO) pathway mapping. Comparison of EC versus healthy endometrium revealed 50 significantly dysregulated (∣log2 (FoldReg)∣ > 1 and BH FDR < 0.05) miRNAs, including up-regulation of the oncogenic hsa-miR-181a-5p, hsa-miR-23a-3p, hsa-miR-200c-3p, and down-regulation of tumor-suppressive let-7 family members. Target enrichment implicated canonical oncogenic regulators such as MYC, TP53, and VEGFA. POLE-mutated tumor analysis demonstrated a miRNA signature, with 19 miRNAs significantly down-regulated, including let-7f-5p and hsa-miR-200b-3p. Findings for the EC versus healthy endometrium comparison were validated against TCGA-UCEC sequencing data which confirmed concordant dysregulation of key miRNAs across platforms. Our findings reveal that EC is characterized by widespread miRNA deregulation, with a unique global down-regulation signature in POLE-mutated tumors. These results highlight the potential of miRNAs as complementary biomarkers for classification and potential targets in EC. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Oncology)
Show Figures

Figure 1

25 pages, 1563 KB  
Review
JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms
by Michela Perrone, Sara Sergio, Beatrice Pranzo, Amalia Tarantino, Giuseppina Loglisci, Rosella Matera, Davide Seripa, Michele Maffia and Nicola Di Renzo
Int. J. Mol. Sci. 2025, 26(21), 10337; https://doi.org/10.3390/ijms262110337 - 23 Oct 2025
Viewed by 208
Abstract
The JAK2 46/1 (“GGCC”) haplotype is an inherited genetic variation within the Jak2 gene locus that has become a focal point in research related to oncogenesis, particularly in myeloproliferative neoplasms (MPNs). We conducted a narrative review of landmark discoveries in hematological malignancies [...] Read more.
The JAK2 46/1 (“GGCC”) haplotype is an inherited genetic variation within the Jak2 gene locus that has become a focal point in research related to oncogenesis, particularly in myeloproliferative neoplasms (MPNs). We conducted a narrative review of landmark discoveries in hematological malignancies and Jak2, focusing on its role in oncogenesis, risk stratification, and drug resistance in MPNs. This haplotype spans several polymorphisms within the Jak2 gene. It has been found to increase susceptibility to a variety of hematologic cancers, especially when linked with the somatic JAK2 V617F mutation, which results in the alteration of the JAK/STAT pathway, which is particularly essential for hematopoiesis. The “GGCC” part is characterized by four SNPs, with the G allele of the rs10974944 SNP in this haplotype correlated with MPNs progressing to myelofibrosis. Moreover, the G allele seems to be crucial for the predisposition to onco-drug resistance onset. To conclude, identifying the 46/1 haplotype in patients may not only enhance risk stratification for JAK2-driven cancers but also guide more effective, personalized therapeutic strategies to overcome resistance. Thus, this review aims to describe current knowledge about the JAK2 46/1 haplotype as a marker for diagnosis and the prediction of disease outcome. Full article
(This article belongs to the Special Issue Advancements in Hematology: Molecular Biology and Targeted Therapies)
Show Figures

Figure 1

17 pages, 2171 KB  
Review
The Role of mTOR Signaling in Tumor-Induced Alterations to Neuronal Function in Diffusely Infiltrating Glioma
by Hannah Haile, Sandra Leskinen, Arjun R. Adapa, Alexander R. Goldberg, Ashwin Viswanathan, Charlotte Milligan, Karen Conboy, Catherine Schevon, Peter Canoll and Brian J. A. Gill
Biomedicines 2025, 13(11), 2593; https://doi.org/10.3390/biomedicines13112593 - 23 Oct 2025
Viewed by 424
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that integrates metabolic and environmental signals to regulate cell growth and survival. In the central nervous system, mTOR plays a pivotal role in neuronal development, plasticity, and circuit homeostasis. In diffusely infiltrating gliomas, [...] Read more.
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that integrates metabolic and environmental signals to regulate cell growth and survival. In the central nervous system, mTOR plays a pivotal role in neuronal development, plasticity, and circuit homeostasis. In diffusely infiltrating gliomas, including glioblastomas, mTOR signaling is frequently dysregulated and contributes to malignant progression, therapeutic resistance, and metabolic adaptation. Beyond tumor-intrinsic effects, recent evidence reveals that gliomas actively reprogram peritumoral neurons via mTOR-dependent mechanisms, leading to synaptic remodeling, hyperexcitability, and neurological symptoms such as seizures and cognitive dysfunction. These results position mTOR as a central mediator of both oncogenesis and neurological dysfunction in diffusely infiltrating glioma. While clinical trials of mTOR inhibitors in gliomas have so far shown limited efficacy, emerging data suggest these agents may ameliorate tumor-associated neurological dysfunction. This review synthesizes current knowledge of mTOR signaling across tumor and neuronal compartments in diffusely infiltrating glioma and highlights its potential as a therapeutic target at the intersection of cancer biology and neuroscience. Full article
(This article belongs to the Special Issue mTOR Signaling in Disease and Therapy)
Show Figures

Graphical abstract

16 pages, 3581 KB  
Review
CTRP6 in Cancer: Mechanistic Insights and Therapeutic Potential
by Muhammad Zubair Mehboob and Xia Lei
Cancers 2025, 17(21), 3409; https://doi.org/10.3390/cancers17213409 - 23 Oct 2025
Viewed by 175
Abstract
C1q/TNF-related protein 6 (CTRP6) is emerging as a critical regulator of cancer biology with direct implications for clinical outcomes. Across a wide spectrum of malignancies, CTRP6 plays a central role in coordinating key oncogenic processes and linking metabolic, inflammatory, and signaling pathways that [...] Read more.
C1q/TNF-related protein 6 (CTRP6) is emerging as a critical regulator of cancer biology with direct implications for clinical outcomes. Across a wide spectrum of malignancies, CTRP6 plays a central role in coordinating key oncogenic processes and linking metabolic, inflammatory, and signaling pathways that drive tumor progression. While CTRP6 generally promotes oncogenic behavior in cancers such as hepatocellular carcinoma, lung cancer, and clear cell renal cell carcinoma, conflicting findings have been reported in gastric cancer and oral or head and neck squamous cell carcinoma, where its tumor-promoting versus tumor-suppressive roles remain unresolved. CTRP6 has been shown to modulate fundamental processes including angiogenesis, ferroptosis, proliferation, apoptosis, migration, invasion, and inflammation. These effects are primarily mediated through activation of the PI3K/AKT and MEK/ERK signaling pathways, which are central to tumor growth, metastasis, and therapeutic resistance. Beyond its mechanistic roles, CTRP6 demonstrates potential as a diagnostic and prognostic biomarker, with altered expression patterns linked to cancer initiation, progression, and patient survival. Inhibition of CTRP6 in preclinical models enhances ferroptotic cell death and suppresses tumor progression, highlighting its promise as a therapeutic target. By consolidating current evidence from multiple cancer models, this review provides a comprehensive overview of CTRP6’s contributions to oncogenesis and underscores its dual potential as both a biomarker and a therapeutic target. Advancing a deeper understanding of CTRP6 in specific tumor contexts will be critical for unlocking its clinical utility and may open new opportunities to improve diagnosis, optimize therapeutic strategies, and ultimately enhance patient outcomes. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

29 pages, 26886 KB  
Article
New Dihalogenated Derivatives of Condensed Benzimidazole Diones Promotes Cancer Cell Death Through Regulating STAT3/HK2 Axis/Pathway
by Yulia Aleksandrova, Luiza Savina, Inna Shagina, Anna Lyubina, Alla Zubishina, Svetlana Makarova, Anna Bagylly, Alexander Khokhlov, Roman Begunov and Margarita Neganova
Molecules 2025, 30(21), 4150; https://doi.org/10.3390/molecules30214150 - 22 Oct 2025
Viewed by 325
Abstract
An effective method for synthesizing dihalogenated derivatives of condensed benzimidazole diones with a nodal nitrogen atom has been developed. As a result, five new heterocyclic quinones were obtained, which differed in the structure of the heterocycle annelated to imidazole, as well as the [...] Read more.
An effective method for synthesizing dihalogenated derivatives of condensed benzimidazole diones with a nodal nitrogen atom has been developed. As a result, five new heterocyclic quinones were obtained, which differed in the structure of the heterocycle annelated to imidazole, as well as the nature and arrangement of halogen atoms. A comprehensive analysis of the anticancer potential of new heterocyclic quinones revealed pronounced cytotoxic activity of the molecules against tumor cells. Using in silico methods for predicting activity spectra, it was found that the synthesized compounds are capable of interacting with a number of key targets that play an important role in oncogenesis, with the highest probability of binding to STAT3, the central regulator of cell growth, proliferation and metabolism. Experimental studies have shown that, despite the lack of pronounced ability to induce apoptosis, these substances effectively inhibit the activity of allosteric glycolytic enzymes, disrupting metabolic adaptation and energy balance of tumor cells. The obtained results expand the understanding of the molecular basis of the antitumor action of heterocyclic compounds and lay a solid foundation for their use as promising modulators of tumor cell metabolism. Full article
Show Figures

Figure 1

20 pages, 1133 KB  
Review
Molecular Mechanisms of Thyroid Hormone Signaling in Thyroid Cancer: Oncogenesis, Progression, and Therapeutic Implications
by Changhao Zhou, Wei Liu, Jiaojiao Zheng, Qiao Wu and Zhilong Ai
Biomedicines 2025, 13(10), 2552; https://doi.org/10.3390/biomedicines13102552 - 20 Oct 2025
Viewed by 532
Abstract
Thyroid cancer, as a highly hormone-dependent malignancy, is significantly regulated by thyroid hormones (T3/T4) and thyroid-stimulating hormone (TSH) signaling in its initiation and progression. This article comprehensively reviews the roles of thyroid hormones and their regulatory factor TSH in thyroid carcinogenesis and development, [...] Read more.
Thyroid cancer, as a highly hormone-dependent malignancy, is significantly regulated by thyroid hormones (T3/T4) and thyroid-stimulating hormone (TSH) signaling in its initiation and progression. This article comprehensively reviews the roles of thyroid hormones and their regulatory factor TSH in thyroid carcinogenesis and development, addressing related research from molecular mechanisms and clinical correlations to therapeutic strategies. It focuses on elucidating the impact of key mechanisms—such as elevated integrin αvβ3 expression and TRβ receptor mutations under hyperthyroid or hypothyroid conditions—on tumor progression. Furthermore, it evaluates the clinical utility and potential risks of TSH suppression therapy in patients stratified by risk, aiming to provide a theoretical basis for optimizing individualized treatment strategies. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

13 pages, 1437 KB  
Review
HPV Oncoproteins and Mitochondrial Reprogramming: The Central Role of ROMO1 in Oxidative Stress and Metabolic Shifts
by Eva Tsoneva and Angel Yordanov
Cells 2025, 14(20), 1629; https://doi.org/10.3390/cells14201629 - 19 Oct 2025
Viewed by 845
Abstract
High-risk human papillomaviruses (HPVs), particularly types 16 and 18, drive carcinogenesis by rewiring host metabolism and mitochondrial function. The oncoproteins E5, E6, and E7 collectively induce mitochondrial fragmentation, increase reactive oxygen species (ROS), and promote a metabolic shift from oxidative phosphorylation (OXPHOS) to [...] Read more.
High-risk human papillomaviruses (HPVs), particularly types 16 and 18, drive carcinogenesis by rewiring host metabolism and mitochondrial function. The oncoproteins E5, E6, and E7 collectively induce mitochondrial fragmentation, increase reactive oxygen species (ROS), and promote a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis (the Warburg effect). A redox-sensitive mitochondrial protein, Reactive Oxygen Species Modulator 1 (ROMO1), has emerged as a key mediator of these processes. ROMO1 contributes to mitochondrial morphology, regulates ROS homeostasis, and interacts with key stress-response pathways. While ROMO1 is overexpressed in many cancers and correlates with poor prognosis, recent data suggest that HPV-associated cervical lesions exhibit a unique biphasic expression pattern, with high ROMO1 levels in early stages and reduced expression in advanced tumors. The underlying molecular mechanisms remain unclear, but may involve HPV genome integration, NF-κB suppression, or epigenetic silencing. Key mechanisms such as how HPV modulates ROMO1 expression and how this contributes to stage-dependent metabolic vulnerability remain incompletely understood. This review highlights the current understanding of how HPV oncoproteins impact mitochondrial structure and function, emphasizes the role of ROMO1 in this context, and compares findings with other cancer types. Although no ROMO1-targeted therapies currently exist, the protein may serve as a redox-sensitive biomarker and potential vulnerability in HPV-driven tumors. We propose that targeting mitochondrial fragmentation, ROS signaling, or metabolic reprogramming may offer new avenues for therapeutic intervention. Further research is needed to clarify ROMO1’s dual role in early vs. late-stage disease and to validate its relevance as a clinical target. Our review fills a gap in the current literature by being the first to systematically explore ROMO1’s contribution to HPV-induced mitochondrial dysfunction and metabolic rewiring, and we outline research priorities for future studies. Full article
Show Figures

Figure 1

19 pages, 914 KB  
Review
Epigenetic Factors in Pathogenesis of Retinoblastoma: DNA Methylation and Histone Acetylation
by Georgios Kiosis, Kanellos Skourtsidis, Despoina Ioannou, Vasilis-Spyridon Tseriotis, Konstantinos Stergiou, Fani Akritidou, Theodora Papamitsou, Maria Kourti and Sofia Karachrysafi
Curr. Issues Mol. Biol. 2025, 47(10), 844; https://doi.org/10.3390/cimb47100844 - 14 Oct 2025
Viewed by 363
Abstract
(Background) Retinoblastoma is the most common intraocular malignancy in childhood, primarily caused by mutations in the RB1 gene. However, increasing evidence highlights the significant role of epigenetic mechanisms, particularly DNA methylation and histone acetylation, in tumor initiation and progression. This review aims to [...] Read more.
(Background) Retinoblastoma is the most common intraocular malignancy in childhood, primarily caused by mutations in the RB1 gene. However, increasing evidence highlights the significant role of epigenetic mechanisms, particularly DNA methylation and histone acetylation, in tumor initiation and progression. This review aims to summarize and critically assess recent findings on how DNA methylation and histone acetylation contribute to the pathogenesis of retinoblastoma, and to explore their potential role as diagnostic biomarkers and therapeutic targets. (Methods) We searched the databases PubMed, Scopus, and ScienceDirect following PRISMA guidelines. Eligible studies were English-language, open-access articles published within the last ten years, including cohort studies, research articles, and case reports. After rigorous screening, 18 studies were included in the final analysis. (Results) Aberrant DNA methylation was found to inactivate tumor suppressor genes (RB1, RASSF1A, p16INK4A, MGMT) and promote oncogenesis through hypermethylation of regulatory elements. Similarly, histone acetylation’s dysregulation contributed to chromatin remodeling and overexpression of oncogenic factors such as SYK, GALNT8, and lincRNA-ROR. Elevated histone deacetylase (HDAC) activity was also linked to tumor cell proliferation, metastasis, and treatment resistance. Epigenetic inhibitors targeting these pathways demonstrated promising therapeutic potential. (Conclusions) DNA methylation and histone acetylation play a crucial role in the epigenetic regulation of genes implicated in retinoblastoma. Their dysregulation promotes tumorigenesis, and targeting these mechanisms represents a promising avenue for novel diagnostic and therapeutic strategies in pediatric oncology. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 976 KB  
Review
Current State-of-the-Art Animal Models of Pediatric Brain Tumors
by Tanusri Gudavalli, Fred C. Lam, Santosh Guru, Deyaldeen AbuReesh, Yusuke S. Hori, Susan Hiniker, David J. Park and Steven D. Chang
Brain Sci. 2025, 15(10), 1104; https://doi.org/10.3390/brainsci15101104 - 14 Oct 2025
Viewed by 572
Abstract
Brain tumors are unfortunately the most common types of solid tumors in the pediatric population, superseded only by leukemias, and largely bode a poor prognosis. Despite advances in our ability to diagnose and treat pediatric brain tumors, there remains a large unmet need [...] Read more.
Brain tumors are unfortunately the most common types of solid tumors in the pediatric population, superseded only by leukemias, and largely bode a poor prognosis. Despite advances in our ability to diagnose and treat pediatric brain tumors, there remains a large unmet need to develop novel therapies to improve patient outcomes. The recent understanding of the molecular drivers of oncogenesis for many of these tumors has led to the engineering of preclinical small animal models which serve as valuable tools for scientists to study the mechanisms of tumor biology, to understand interactions with the tumor microenvironment, and allow for translatable novel therapeutic discovery. This review focuses on the state-of-the art development of preclinical models of two difficult-to-treat pediatric brain tumors: (1) diffuse midline gliomas, the most lethal form of pediatric brain cancer; (2) medulloblastoma, the most common embryonal tumor of the central nervous system. We will then round off this review with a discussion on the emerging use of multi-omics and AI approaches to complement the testing of novel therapies using these in vivo animal models. Full article
(This article belongs to the Section Neuro-oncology)
Show Figures

Figure 1

36 pages, 774 KB  
Review
Targeting Ion Channels for Cancer Therapy: From Pathophysiological Mechanisms to Clinical Translation
by Sha Zhou, Xiong Song, Weian Zeng and Dongtai Chen
Pharmaceuticals 2025, 18(10), 1521; https://doi.org/10.3390/ph18101521 - 10 Oct 2025
Viewed by 529
Abstract
Cancer remains a major global health burden, representing one of the leading causes of mortality among noncommunicable diseases worldwide. Although conventional treatment modalities, including surgical resection, chemotherapy, radiotherapy, targeted therapy, and immunotherapeutic interventions, have demonstrated clinical benefits, their therapeutic efficacy is often constrained [...] Read more.
Cancer remains a major global health burden, representing one of the leading causes of mortality among noncommunicable diseases worldwide. Although conventional treatment modalities, including surgical resection, chemotherapy, radiotherapy, targeted therapy, and immunotherapeutic interventions, have demonstrated clinical benefits, their therapeutic efficacy is often constrained by inherent limitations such as low specificity, systemic toxicity, or tumor heterogeneity. These challenges underscore the imperative for developing innovative treatment strategies. Emerging evidence has implicated ion channels as critical players in oncogenesis and cancer progression. These proteins modulate diverse oncogenic phenotypes, including uncontrolled proliferation, metastatic dissemination, and apoptotic resistance. Their frequent dysregulation in malignancies correlates with disease aggressiveness and clinical outcomes, positioning them as promising targets for precision oncology. Notably, pharmacological modulation of ion channels exerts multifaceted antitumor effects, with several channel-targeting agents advancing through clinical trials. This review explores recent advances in ion channel-targeted therapies, emphasizing their mechanisms, clinical applications, and challenges. Furthermore, we examine the pathophysiological contributions of ion channels to tumor biology and evaluate their emerging utility as predictive biomarkers, providing perspectives on addressing critical gaps in current oncologic management. Full article
(This article belongs to the Special Issue Ion Channels as Pharmacological Targets in Cancer)
Show Figures

Graphical abstract

32 pages, 9450 KB  
Systematic Review
Systematic Review and Meta-Analysis of microRNA-7-5p Expression and Biological Significance in Head and Neck Squamous Cell Carcinoma
by Rikki A. M. Brown, Michael Phillips, Andrew J. Woo, Omar Kujan, Stephanie Flukes, Louise N. Winteringham, Larissa C. Dymond, Fiona Wheeler, Brianna Pollock, Dianne J. Beveridge, Elena Denisenko and Peter J. Leedman
Cancers 2025, 17(19), 3232; https://doi.org/10.3390/cancers17193232 - 4 Oct 2025
Viewed by 638
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with poor clinical outcomes. microRNA-7-5p (miR-7-5p) has been described as both a tumour suppressor and an oncomiR depending on the tissue context, but its role in HNSCC remains unclear. This [...] Read more.
Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with poor clinical outcomes. microRNA-7-5p (miR-7-5p) has been described as both a tumour suppressor and an oncomiR depending on the tissue context, but its role in HNSCC remains unclear. This study aimed to clarify the clinical significance and biological function of miR-7-5p in HNSCC by integrating data from multiple sources. Methods: A systematic review of the literature was conducted to identify studies analysing miRNA expression in human head and neck tissues. A meta-analysis of individual patient data from Gene Expression Omnibus (GEO), ArrayExpress, and The Cancer Genome Atlas (TCGA) was performed to assess miR-7-5p expression in tumours and normal tissues, and its associations with clinical parameters and prognostic outcomes. Bioinformatics analyses were used to predict miR-7-5p target genes, classify hub genes, and perform gene ontology enrichment analysis. MicroRNA in situ hybridisation (miRNA ISH) and real-time quantitative PCR (RT-qPCR) were conducted on tissue samples, HNSCC cell lines, and an in vitro model of oral oncogenesis to validate miR-7-5p expression patterns. Results: miR-7-5p was significantly upregulated in tumours compared to normal tissues and associated with larger tumour size, HPV-negative status, poor disease-specific survival, and shorter progression-free intervals. Bioinformatics analysis highlighted miR-7-5p target genes enriched in pathways related to cell growth, survival, and tumourigenesis. Despite evidence supporting the anti-cancer role of exogenous miR-7-5p in preclinical models, the observed endogenous upregulation in tumours suggests that miR-7-5p expression may represent a compensatory or stress-responsive mechanism during tumourigenesis, rather than acting as a primary oncogenic driver. Conclusions: This study provides new insights into the complex role of miR-7-5p in HNSCC, supporting its potential as both a biomarker and a therapeutic target. Understanding the context-specific functions of miR-7-5p is essential for its development as an RNA-based therapeutic in HNSCC. Full article
Show Figures

Figure 1

35 pages, 2877 KB  
Review
RNA-Targeting Techniques: A Comparative Analysis of Modern Approaches for RNA Manipulation in Cancer Research and Therapeutics
by Michaela A. Boti, Marios A. Diamantopoulos and Andreas Scorilas
Genes 2025, 16(10), 1168; https://doi.org/10.3390/genes16101168 - 2 Oct 2025
Viewed by 1148
Abstract
RNA-targeting techniques have emerged as powerful tools in cancer research and therapeutics, offering precise and programmable control over gene expression at the post-transcriptional level. Once viewed as passive intermediates in the central dogma, RNA molecules are now recognized as dynamic regulators of cellular [...] Read more.
RNA-targeting techniques have emerged as powerful tools in cancer research and therapeutics, offering precise and programmable control over gene expression at the post-transcriptional level. Once viewed as passive intermediates in the central dogma, RNA molecules are now recognized as dynamic regulators of cellular function, capable of influencing transcription, translation, and epigenetic regulation. Advances in high-throughput sequencing technologies, transcriptomics, and structural RNA biology have uncovered a diverse landscape of coding and non-coding RNAs involved in oncogenesis, drug resistance, and tumor progression. In response, several RNA-targeting strategies have been developed to modulate these transcripts, including antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR-Cas13 systems, small molecules, and aptamers. This review provides a comparative analysis of these technologies, highlighting their molecular mechanisms, therapeutic potential, and current limitations. Emphasis is placed on the translational progress of RNA-targeting agents, including recent FDA approvals and ongoing clinical trials for cancer indications. Through a critical comparison of these strategies, this review underscores the growing significance of RNA-targeting technologies as a foundation for next-generation cancer therapeutics and precision oncology. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

16 pages, 3832 KB  
Article
A Bioinformatics-Driven ceRNA Network in Stomach Adenocarcinoma: Identification of Novel Prognostic mRNA-miRNA-lncRNA Interactions
by Ebtihal Kamal, Zainab Mohammed Mahmoud Omar, Ayman Geddawy and Ahmad A. A. Omer
Med. Sci. 2025, 13(4), 214; https://doi.org/10.3390/medsci13040214 - 1 Oct 2025
Viewed by 412
Abstract
Background: Stomach adenocarcinoma is a major contributor to worldwide mortality and significantly impacts life expectancy. The main objective of the current study was to identify a prognostic biomarker for stomach adenocarcinoma to advance translational medicine and improve patient outcomes. Method: various databases (GEPIA, [...] Read more.
Background: Stomach adenocarcinoma is a major contributor to worldwide mortality and significantly impacts life expectancy. The main objective of the current study was to identify a prognostic biomarker for stomach adenocarcinoma to advance translational medicine and improve patient outcomes. Method: various databases (GEPIA, UALCAN, miRNet, StarBase, and Kaplan Meier plotter) bioinformatics tools (cytoscape) and were used in this study. Results: Ten novel unfavorable prognosis-associated genes were identified. In addition, 41 potential miRNAs were predicted. ELAVL3-hsa-mir-29a-3p and CALCR-hsa-mir-29a-3p were identified as the two critical networks in the oncogenesis of stomach adenocarcinoma via bioinformatics analysis. Subsequently, the binding of lncRNAs to hsa-mir-29a-3p was predicted utilizing the starBase and miRNet databases. Following the execution of both expression and survival analyses for the predicted lncRNAs, it was determined that only one lncRNA, KCNQ1OT1, exhibited significant overexpression in stomach adenocarcinoma, and its elevated expression was associated with an unfavorable prognosis. Subsequently, we constructed a triple ceRNA network involving mRNA, miRNA, and lncRNA, which is associated with the prognosis of stomach adenocarcinoma. Conclusions: In summary, the current study provides an extensive ceRNA network that highlights novel prognostic biomarkers for stomach adenocarcinoma. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
Show Figures

Figure 1

Back to TopTop