CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Anti-BCMACAR T-Cell Studies
2.1. Idecabtagene Vicleucel
2.2. Ciltacabtagene Autoleucel
2.3. Orvacabtagene Autoleucel
2.4. Results from the Last International Meeting and Novel BCMA-Targeted CAR T-Cell Product
2.5. Novel Anti-BCMACAR T Therapies
3. The Future
4. Expert Opinion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajkumar, S.V.; Kumar, S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.; Baljevic, M.; Campagnaro, E.; Castillo, J.J.; Chandler, J.C.; Costello, C.; Efebera, Y.; et al. Multiple Myeloma, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 1685–1717. [Google Scholar] [CrossRef] [PubMed]
- Bonello, F.; Grasso, M.; D’Agostino, M.; Celeghini, I.; Castellino, A.; Boccadoro, M.; Bringhen, S. The Role of Monoclonal Antibodies in the First-Line Treatment of Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Pharmaceuticals 2020, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Byun, J.M.; Yoon, S.; Kim, K.; Jung, S.; Lee, J.; Min, C. Daratumumab monotherapy for relapsed/refractory multiple myeloma, focussed on clinical trial-unfit patients and subsequent therapy. Br. J. Haematol. 2021, 193, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Thibaud, S. Anti-body building: The exercise of advancing immune based myeloma therapies. Blood Rev. 2020, 100789. [Google Scholar] [CrossRef] [PubMed]
- Zamagni, Z.; Tacchetti, T.; Deias, D.; Patriarca, P. The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma. Pharmaceuticals 2020, 13, 451. [Google Scholar] [CrossRef] [PubMed]
- Morè, S.; Petrucci, M.T.; Corvatta, L.; Fazio, F.; Offidani, M.; Olivieri, A. Monoclonal Antibodies: Leading Actors in the Relapsed/Refractory Multiple Myeloma Treatment. Pharmaceuticals 2020, 13, 426. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.L.; Soon, Y.Y.; Soekojo, C.Y.; Ooi, M.; Chng, W.J.; de Mel, S. Daratumumab-based induction therapy for multiple myeloma: A systematic review and meta-analysis. Crit. Rev. Oncol. 2021, 159, 103211. [Google Scholar] [CrossRef]
- Richard, S.; Jagannath, S.; Cho, H.J.; Parekh, S.; Madduri, D.; Richter, J.; Chari, A. A comprehensive overview of daratumumab and carfilzomib and the recently approved daratumumab, carfilzomib and dexamethasone regimen in relapsed/refractory multiple myeloma. Expert Rev. Hematol. 2021, 14, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Lonial, S.; White, D.; Moreau, P.; Weisel, K.; San-Miguel, J.; Shpilberg, O.; Grosicki, S.; Špička, I.; Walter-Croneck, A.; et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: Final overall survival results from the phase 3 randomized ELOQUENT-2 study. Blood Cancer J. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Beksaç, M.; Špička, I.; Mikhael, J. Isatuximab for the treatment of relapsed/refractory multiple myeloma. Expert Opin. Biol. Ther. 2020, 20, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.; Warcel, D.; Popat, R. Antibody-drug conjugates for multiple myeloma. Expert Opin. Biol. Ther. 2020, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.; Lebel, E.; Trudel, S. Belantamab mafodotin in the treatment of relapsed or refractory multiple myeloma. Future Oncol. 2020, 16, 2783–2798. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Jiang, T.; Liu, D. BCMA-targeted immunotherapy for multiple myeloma. J. Hematol. Oncol. 2020, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.O.; Evbuomwan, M.O.; Pittaluga, S.; Rose, J.J.; Raffeld, M.; Yang, S.; Gress, R.E.; Hakim, F.T.; Kochenderfer, J.N. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple mye- loma. Clin. Cancer Res. 2013, 19, 2048–2060. [Google Scholar] [CrossRef] [Green Version]
- Verkleij, C.; Frerichs, K.A.; Broekmans, M.; Absalah, S.; Maas-Bosman, P.; Kruyswijk, S.; Nijhof, I.S.; Mutis, T.; Zweegman, S.; van de Donk, N. T-cell redirecting bispecific antibodies targeting BCMA for the treatment of multiple myeloma. Oncotarget 2020, 11, 4076–4081. [Google Scholar] [CrossRef] [PubMed]
- Palma, B.; Marchica, V.; Catarozzo, M.T.; Giuliani, N.; Accardi, F. Monoclonal and Bispecific Anti-BCMA Antibodies in Multiple Myeloma. J. Clin. Med. 2020, 9, 3022. [Google Scholar] [CrossRef] [PubMed]
- Wudhikarn, K.; Mailankody, S.; Smith, E.L. Future of CAR T cells in multiple myeloma. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Roex, G.; Timmers, M.; Wouters, K.; Campillo-Davo, D.; Flumens, D.; Schroyens, W.; Chu, Y.; Berneman, Z.N.; Lion, E.; Luo, F.; et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. J. Hematol. Oncol. 2020, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Otero, P.; Prósper, F.; Alfonso, A.; Paiva, B.; San Miguel, J.F. CAR T-Cells in Multiple Myeloma Are Ready for Prime Time. J. Clin. Med. 2020, 9, 3577. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Biswas, M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol. 2020, 356, 104193. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, O.; Tai, Y.T.; Anderson, K.C. Immunotherapeutic and Targeted Approaches in Multiple Myeloma. Immunotargets Ther. 2020, 9, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of patients withmultiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Jagannath, S.; Berdeja, J.G.; Lonial, S.; Raje, N.S.; Siegel, D.S.; Lin, Y.; Oriol, A.; et al. Idecabtagenevicleucel, a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma: Initial KarMMa results. J. Clin. Oncol. 2020, 38 (Suppl. S15), 8503. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Alsina, M.; Shah, N.; Siegal, D.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Munshi, N.C.; Rosenblatt, J.; Jasielec, J.K.; et al. Updated Results from an Ongoing Phase 1 Clinical Study of bb21217 Anti-Bcma CAR T Cell Therapy. Blood 2019, 134 (Suppl. 1), 927. [Google Scholar] [CrossRef]
- Alsina, M.; Shah, N.; Raje, N.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Siegel, D.S.; Munshi, N.C.; Rosenblatt, J.; Lin, Y.; et al. Updated Results from the Phase I CRB-402 Study of Anti-Bcma CAR-T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma: Correlation of Expansion and Duration of Response with T Cell Phenotypes. Blood 2020, 136 (Suppl. 1), 25–26. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Singh, I.; Zudaire, E.; Yeh, T.M.; Allred, A.J.; Olyslager, Y.; Banerjee, A.; Goldberg, J.D.; et al. Update of CARTITUDE-1: A phase Ib/II study of JNJ-4528, a B-cell maturation antigen-directed CAR-T-cell therapy, in relapsed/refractory multiple myeloma. J. Clin. Oncol. 2020, 38 (Suppl. S15), 8505. [Google Scholar] [CrossRef]
- Madduri, D.; Berdeja, J.G.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.; Stewart, A.K.; Hari, P.; Htut, M.; O’Donnell, E.; et al. CARTITUDE-1: Phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen–directed chimeric antigen receptor T cell therapy, in relapsed/refractory multiple myeloma. Blood 2020, 136 (Suppl. S1), 22–25. [Google Scholar] [CrossRef]
- Mailankody, S.; Htut, M.; Lee, K.P.; Bensinger, W.; Devries, T.; Piasecki, J.; Ziyad, S.; Blake, M.; Byon, J.; Jakubowiak, A. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: Initial proof of concept results from a phase 1/2 multicenter study (EVOLVE). Blood 2018, 132 (Suppl. S1), 957. [Google Scholar] [CrossRef]
- Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.; Bensinger, W.; Cota, M.; et al. Orvacabtageneautoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol. 2020, 38 (Suppl. S15), 8504. [Google Scholar] [CrossRef]
- Lin, Y.; Raje, N.S.; Berdeja, J.G.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Massaro, M.; et al. Idecabtagene Vicleucel (ide-cel, bb2121), a BCMA-Directed CAR T Cell Therapy, in Patients with Relapsed and Refractory Multiple Myeloma: Updated Results from Phase 1 CRB-401. Blood 2020, 136 (Suppl. S1), 26–27. [Google Scholar] [CrossRef]
- Delforge, M.; Ludwig, H. How I manage the toxicities of myeloma drugs. Blood 2017, 129, 2359–2367. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Delforge, M.; San-Miguel, J.F.; Bertin, K.B.; Tahir, M.J.; Lewis, H.B.; Wang, J.; Braverman, J.; Campbell, T.B.; Dhanda, D.; et al. Secondary Quality-of-Life Domains in Patients with Relapsed and Refractory Multiple Myeloma Treated with the BCMA-Directed CAR T Cell Therapy Idecabtagene Vicleucel (ide-cel; bb2121): Results from the Karmma Clinical Trial. Blood 2020, 136 (Suppl. S1), 28–29. [Google Scholar] [CrossRef]
- Wang, B.Y.; Zhao, W.H.; Liu, J.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; et al. Long-term follow-up of a phase I, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T cell therapy targeting B-cell maturation antigen, in patients with relapsed/refractory multiple myeloma. Blood 2019, 134 (Suppl. S1), 579. [Google Scholar] [CrossRef]
- Madduri, D.; Usmani, S.Z.; Jagannath, S.; Singh, I.; Zudaire, E.; Yeh, T.M.; Allred, A.J.; Banerjee, A.; Goldberg, J.D.; Schecter, J.M.; et al. Results from CARTITUDE-1: A Phase 1b/2 Study of JNJ-4528, a CAR-T Cell Therapy Directed Against B-Cell Maturation Antigen (BCMA), in Patients with Relapsed and/or Refractory Multiple Myeloma (R/R MM). Blood 2019, 134 (Suppl. S1), 577. [Google Scholar] [CrossRef]
- Fraietta, J.A.; Lacey, S.F.; Orlando, E.J.; Pruteanu-Malinici, I.; Gohil, M.; Lundh, S.; Boesteanu, A.C.; Wang, Y.; O’Connor, R.S.; Hwang, W.T.; et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 2018, 4, 563–571. [Google Scholar] [CrossRef]
- Shah, N.; Alsina, M.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Turka, A.; Lam, L.P.; Massaro, M.; Kristen Hege, K.; et al. Initial Results from a Phase 1 Clinical Study of bb21217, a Next-Generation Anti Bcma CAR T Therapy. Blood 2018, 132 (Suppl. S1), 488. [Google Scholar] [CrossRef]
- Alsina, M.; Shah, N.; Raje, N.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Siegel, D.S.; Munshi, N.C. Updated Results from the Phase I CRB-402 Study of Anti-Bcma CAR-T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma: Correlation of Expansion and Duration of Response with T Cell Phenotypes. In Proceedings of the 62nd ASH Annual Meeting & Exposition, San Diego, CA, USA, 5–8 December 2020; p. 130. [Google Scholar]
- Lam, N.; Alabanza, L.; Trinklein, N.; Buelow, B.; Kochenderfer, J.N. T Cells Expressing Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptors with Antigen Recognition Domains Made up of Only Single Human Heavy Chain Variable Domains Specifically Recognize Bcma and Eradicate Tumors in Mice. Blood 2017, 130 (Suppl. S1), 504. [Google Scholar] [CrossRef]
- Mikkilineni, L.; Manasanch, E.; Vanasse, D.; Brudno, J.; Mann, J.; Sherry, R.; Goff, S.; Yang, J.; Lam, N.; Maric, I.; et al. Deep and Durable Remissions of Relapsed Multiple Myeloma on a First-in-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptor (CAR) with a Fully-Human Heavy-Chain-Only Antigen Recognition Domain. Blood 2019, 136 (Suppl. S1), 50–51. [Google Scholar] [CrossRef]
- Jie, J.; Hao, S.; Jiang, S.; Li, Z.; Yang, M.; Zhang, W.; Yu, K.; Xiao, J.; Meng, H.; Ma, L.; et al. Phase 1 Trial of the Safety and Efficacy of Fully Human Anti-Bcma CAR T Cells in Relapsed/Refractory Multiple Myeloma. Blood 2019, 134 (Suppl. S1), 4435. [Google Scholar] [CrossRef]
- Kumar, S.; Baz, R.; Orlowski, R.; Anderson, L.; Ma, H.; Shrewsbury, A.; Croghan, K.; Bilgi, M.; Kansagra, A.; Kapoor, P.; et al. Results from Lummicar-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 28–29. [Google Scholar] [CrossRef]
- Blaeschke, F.; Stenger, D.; Kaeuferle, T.; Willier, S.; Lotfi, R.; Kaiser, A.D.; Assenmacher, M.; Döring, M.; Feucht, J.; Feuchtinger, T. Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunol. Immunother. 2018, 67, 1053–1066. [Google Scholar] [CrossRef]
- Krishna, S.; Lowery, F.J.; Copeland, A.R.; Bahadiroglu, E.; Mukherjee, R.; Jia, L.; Anibal, J.T.; Sachs, A.; Adebola, S.O.; Gurusamy, D.; et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 2020, 370, 1328–1334. [Google Scholar] [CrossRef]
- Morrot, A. Human stem memory T cells (TSCM) as critical players in the long-term persistence of immune responses. Ann. Transl. Med. 2017, 5, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Sun, Z.; Chen, L. Memory T cells: Strategies for optimizing tumor immunotherapy. Protein Cell 2020, 11, 549–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, C.L.; Cohen, A.D.; Patel, K.K.; Ali, S.S.; Berdeja, J.G.; Shah, N.; Ganguly, S.; Kocoglu, M.H.; Abedi, M.; Ostertag, E.M.; et al. Phase 1/2 Study of the Safety and Response of P-BCMA-101 CAR-T Cells in Patients with Relapsed/Refractory (r/r) Multiple Myeloma (MM) (PRIME) with Novel Therapeutic Strategies. In Proceedings of the 62nd ASH Annual Meeting and Exposition, San Diego, CA, USA, 5–8 December 2020; p. 134. [Google Scholar]
- Clinical Trial “Efficacy and Safety Study of bb2121 Versus Standard Triplet Regimens in Subjects With Relapsed and Refractory Multiple Myeloma (RRMM) (KarMMa-3)”. Available online: https://clinicaltrials.gov/ct2/show/NCT03651128 (accessed on 23 April 2021).
- Clinical Trial “A Study Comparing JNJ-68284528, a CAR-T Therapy Directed Against B-cell Maturation Antigen (BCMA), Versus Pomalidomide, Bortezomib and Dexamethasone (PVd) or Daratumumab, Pomalidomide and Dexamethasone (DPd) in Participants With Relapsed and Lenalidomide-Refractory Multiple Myeloma (CARTITUDE-4)”. Available online: https://clinicaltrials.gov/ct2/show/NCT04181827 (accessed on 23 April 2021).
- Clinical Trial “A Study to Evaluate the Safety of bb2121 in Subjects With High Risk, Newly Diagnosed Multiple Myeloma (NDMM) (KarMMa-4) (KarMMa-4)”. Available online: https://clinicaltrials.gov/ct2/show/NCT04196491 (accessed on 23 April 2021).
- Clinical Trial “A Study of JNJ-68284528, a Chimeric Antigen Receptor T Cell (CAR-T) Therapy Directed Against B-cell Maturation Antigen (BCMA) in Participants With Multiple Myeloma (CARTITUDE-2)”. Available online: https://clinicaltrials.gov/ct2/show/NCT04133636 (accessed on 23 April 2021).
- Clinical Trial “Up-front CART-BCMA with or without huCART19 in High-risk Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT03549442 (accessed on 23 April 2021).
- Clinical Trial “BCMA Chimeric Antigen Receptor Expressing T Cells Therapy for Relapsed/Refractory Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT03943472 (accessed on 23 April 2021).
- Clinical Trial “BCMA Targeted CAR T Cells with or without Lenalidomide for the Treatment of Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT03070327 (accessed on 23 April 2021).
- Clinical Trial “BCMA-Specific CAR T-Cells Combined with a Gamma Secretase Inhibitor (JSMD194) to Treat Relapsed or Persistent Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT03502577 (accessed on 23 April 2021).
- Clinical Trial “CD4-specific CAR T Cells (CD4 CAR T Cells) for Relapsed/Refractory T Cell Malignancies”. Available online: https://clinicaltrials.gov/ct2/show/NCT04162340 (accessed on 23 April 2021).
- Clinical Trial “Study to Evaluate the Safety and Efficacy of Anti-CD38 CAR-T in Relapsed or Refractory Multiple Myeloma Patients”. Available online: https://clinicaltrials.gov/ct2/show/NCT03464916 (accessed on 23 April 2021).
- Clinical Trial “Study of CAR T-cell Therapy in Acute Myeloid Leukemia and Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT04097301 (accessed on 23 April 2021).
- Clinical Trial “Study of ATLCAR.CD138 Cells for Relapsed/Refractory Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT03672318 (accessed on 23 April 2021).
- Clinical Trial “T-cells Expressing an Anti-SLAMF7 CAR for Treating Multiple Myeloma”. Available online: https://clinicaltrials.gov/ct2/show/NCT03958656 (accessed on 23 April 2021).
- Shi, X.; Yan, L.; Shang, J.; Qu, S.; Kang, L.; Zhou, J.; Jin, S.; Yao, W.; Yao, Y.; Yan, S.; et al. Tandom Autologous Transplantation and Combined Infusion of CD19 and Bcma-Specific Chimeric Antigen Receptor T Cells for High Risk MM: Initial Safety and Efficacy Report. Blood 2018, 132 (Suppl. S1), 1009. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, B.; Gao, L.; Liu, L.; Ge, J.; He, A.; Du, J.; Li, L.; Lu, J.; Chen, X.; et al. Clinical Results of a Multicenter Study of the First-in-Human Dual BCMA and CD19 Targeted Novel Platform Fast CAR-T Cell Therapy for Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 25–26. [Google Scholar] [CrossRef]
- Mailankody, S.; Matous, J.V.; Liedtke, M.; Sidana, S.; Malik, S.; Nath, R.; Oluwole, O.O.; Karski, E.; Lovelace, W.; Zhou, X.; et al. Universal: An Allogeneic First-in-Human Study of the Anti-Bcma ALLO-715 and the Anti-CD52 ALLO-647 in Relapsed/Refractory Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 24–25. [Google Scholar] [CrossRef]
- Cho, S.F.; Lin, L.; Xing, L.; Li, Y.; Yu, T.; Anderson, K.C.; Tai, Y.T. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers 2020, 12, 1473. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Dong, H.; Liang, Y.; Ham, J.D.; Rizwan, R.; Chen, J. CAR-NK cells: A promising cellular immunotherapy for cancer. EbioMedicine 2020, 59, 102975. [Google Scholar] [CrossRef]
- Wang., W.; Jiang, J.; Wu, C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 2020, 472, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trial “Clinical Research of Adoptive BCMA CAR-NK Cells on Relapse/Refractory MM”. Available online: https://clinicaltrials.gov/ct2/show/NCT03940833 (accessed on 23 April 2021).
- Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 2018, 36, 2267–2280. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Pont, M.; Duke Sather, B.; Cowan, A.J.; Turtle, C.J.; Till, B.G.; Nagengast, A.M.; Libby, E.N.; Becker, P.S.; Coffey, D.G.; et al. Fully Human Bcma Targeted Chimeric Antigen Receptor T Cells Administered in a Defined Composition Demonstrate Potency at Low Doses in Advanced Stage High Risk Multiple Myeloma. Blood 2018, 132 (Suppl. S1), 1011. [Google Scholar] [CrossRef]
- Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B cell maturation antigen- specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 2019, 129, 2210–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmers, M.; Roex, G.; Wang, Y.; Campillo-Davo, D.; Van Tendeloo, V.; Chu, Y.; Berneman, Z.N.; Luo, F.; Van Acker, H.H.; Anguille, S. Chimeric antigen receptor-modified T cell therapy in multiple myeloma: Beyond B cell maturation antigen. Front. Immunol. 2019, 10, 1613. [Google Scholar] [CrossRef]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the im- munotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef]
- de Larrea, C.F.; Staehr, M.; Lopez, A.V.; Ng, K.Y.; Chen, Y.; Godfrey, W.D.; Purdon, T.J.; Ponomarev, V.; Wendel, H.G.; Brentjens, R.J.; et al. Defining an optimal dual- targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape–driven relapse in multiple mye- loma. Blood Cancer Discov. 2020, 1, 146–154. [Google Scholar] [CrossRef]
- Allo CAR T Therapy-The next revolution in cell therapy. Allogene Ther. 2020. Available online: https://www.allogene.com/allocar-t-therapy (accessed on 23 April 2021).
- Roth, T.L.; Puig-Saus, C.; Yu, R.; Shifrut, E.; Carnevale, J.; Li, P.J.; Hiatt, J.; Saco, J.; Krystofinski, P.; Li, H.; et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 2018, 559, 405–409, Epub 11 July 2018. [Google Scholar] [CrossRef] [PubMed]
- Themeli, M.; Kloss, C.C.; Ciriello, G.; Fedorov, V.D.; Perna, F.; Gonen, M.; Sadelain, M. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 2013, 31, 928–933. [Google Scholar] [CrossRef]
- Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature 2017, 545, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjordahl, R.; Gaidarova, S.; Goodridge, J.P.; Mahmood, S.; Bonello, G.; Robinson, M.; Ruller, C.; Pribadi, M.; Lee, T.; Abujarour, R.; et al. FT576: A novel multiplexed engineered off-the-shelf natural killer cell immunotherapy for the dual- targeting of CD38 and Bcma for the treatment of multiple myeloma. Blood 2019, 134 (Suppl. S1), 3214. [Google Scholar] [CrossRef]
- Mikkilineni, L.; Kochenderfer, J.N. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 2017, 130, 2594–2602, Epub 19 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Bustoros, M.; Mouhieddine, T.H.; Detappe, A.; Ghobrial, I.M. Established and Novel Prognostic Biomarkers in Multiple Myeloma. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 548–560. [Google Scholar] [CrossRef]
Idecabtagene Vicleucel (bb2121) | Ciltacabtagene Autoleucel (JNJ-4528) | Orvacabtagene Autoleucel (JCAR-H125) | Idecabtagene Vicleucel (ide-cel, bb2121) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author (year) | Munshi (2020) | Berdeja (2019) Alsina (2020) | Berdeja (2020) Madduri (2020) | Mailankody (2020) | Lin (2020) | ||||||
Reference | [24] | [25,26] | [27,28] | [29,30] | [31] | ||||||
Study Name | KarMMa | CRB-402 | CARTITUDE-1 | EVOLVE | CRB-401 | ||||||
Construct | The ide-cel CAR is comprised of a murine extracellular single-chain variable fragment (scFv) specific for recognizing BCMA, attached to a human CD8 α hinge and transmembrane domain fused to the T-cell cytoplasmic signaling domains of CD137 4-1BB and CD3-ζ chain, in tandem | Cells engineered with bb2121 construct are then ex vivo cultured with PI3K inhibitor bb007 | 2 BCMA-targeting single-domain antibodies to boost avidity plus a 4-1BB co-stimulatory domain | Comprising fully human BCMA-binding domain with low affinity for soluble BCMA, 4-1BB co-stimulatory domain, CD3ζ signaling domain | The same characteristics asthe KarMMa study | ||||||
Median Age | 61 (range 33–78) | 62 (range, 33–74) | 61 (range, 43–78) | 61 (range, 33–77) | 61 | ||||||
Cell Dose × 106 kg | 150 | 300 | 450 | 150 | 300 | 450 | 0.75 | 300 | 450 | 600 | 50, 150, 450, or 800 × 106 in the dose-escalation phase 150 to 450 × 106 in the dose-expansion phase. |
No. Patients | 4 | 70 | 55 | 12 | 28 | 20 | 97 (29 phase Ib/68 phase II) | 19 | 18 | 7 | 21 patients dose-escalation phase; 41 dose-expansion phase. |
Lymphodepletion | FLU + CY | FLU + CY | FLU + CY | FLU + CY | FLU + CY | ||||||
Median Followup | 13.3 | 8.5 | 11.5 | 9.5 | 8.8 | 2.3 | 14.7 |
Car t Cell Construct | Idecabtagene Vicleucel (bb2121) | Ciltacabtagene Autoleucel (JNJ-4528) | Orvacabtagene Autoleucel (JCAR-H125) | Idecabtagene Vicleucel (ide-cel, bb2121) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author (Year) | Munshi (2020) | Berdeja (2019) Alsina (2020) | Berdeja (2020) Madduri (2020) | Mailankody (2020) | Lin (2020) | ||||||
Study Name | KarMMa | CRB-402 | CARTITUDE-1 | EVOLVE | CRB-401 | ||||||
Reference | [24] | [25,26] | [27,28] | [29,30] | [31] | ||||||
Response Rate | |||||||||||
ORR | 50% | 69% | 82% | 83% | 43% | 73% | 97% | 95% | 89% | 92% | 76(%) |
CR | 25% | 29% | 39% | 18% | 67% | 37% | 42% | 29% | 39(%) | ||
Median DoR | NR | 9.9 | 11.3 | 11.9 | NR | NR | NR | NR | 10.3(%) | ||
Median PFS | 2.8 | 5.8 | 12.1 | NR | NR | NR | NR | 9.3 | NR | NR | 8.8 (%) |
Evaluable for MRD | 4 | 70 | 54 | 7 | 6 | 4 | 57 | 11 | 11 | 3 | 37 |
MRD- | 50% | 31% | 48% | 100% | 83.3% | 100% | 93% | 72.7% | 90.9% | 100% | 81% |
CRS Event | |||||||||||
All | 50% | 76% | 96% | 67% | 94.8% | 89% | 76(%) | ||||
Median Time to First Onset | 7 (2–12) | 2 (1–12) | 1 (1–10) | 3 (1–20) | 7 (1–12) | 2 (1–4) | Nk | ||||
Grade 3–4 | 0 | 4% | 6% | 2% | 4% | 3% | 6(%) | ||||
Grade 5 | 0 | 1% | 0 | 2% | 1% | 0 | 0 | ||||
Neurotoxicities | |||||||||||
All | 0 | 17% | 20% | 22% | 20.6% | 13% | 44% | ||||
Median Time to First Onset | NA | 3 (1–10) | 2 (1–5) | 7 (3–24) | 8 (3–12) | 4 (1–6) | Nk | ||||
Grade 3–4 | 0 | 7% | 12% | 4% | 10.3% | 3% | 3% | ||||
Grade 5 | 0 | 0 | 0 | 2% | 0 | 0 | 0 |
CAR T Product | NCT Reference | Trial Name | Phase | Patient Population | Study’s Design/Primary Outcome |
---|---|---|---|---|---|
bb2121 | NCT03651128 | KarMMa-3 | III | RRMM who had received 2–4 prior regimens, including ≥ 2 consecutive cycles of daratumumab, an immunomodulatory agent, and a Proteosm inhibitor, individually or in combinations | Arm A: bb2121 (est. enrolment: 254) Arm B: SOC therapy-DPd, DVd or IRd (est. enrolment: 127) |
JNJ-4528 | NCT04181827 | CARTITUDE-4 | III | RR/MM who have received 1 to 3 prior lines of therapy, including a proteasome inhibitor, and an immunomodulatory drug | Arm A: SOC therapy PVd or DPd Arm B: JNJ-4528 Primary outcome: PFS |
bb21218 With lenalidomide maintenance | NCT04196491 | KarMMa-4 | I | High-risk ND/MM defined as R-ISS stage III per IMWG criteria | Rate of DLTs |
JNJ-4528 Cohort D will also receive lenalidomide maintenance | NCT04133636 | CARTITUDE-2 | II | Cohort A: PD after 1–3 lines of therapy Cohort B: Early relapse after frontline therapy Cohort C: RR/MM after PI, IMiD, dara, and anti-BCMA therapy Cohort D: ND/MM after ASCT frontline therapy | Percentage of patients with negative MRD status |
Anti-BCMA CAR T ± huCART19 | NCT03549442 | Not listed | I | Patients responding to first- or second-line therapy for high-risk MM | Number of AEs |
Anti-BCMA CAR T Additional agent: Immune inhibitors | NCT03943472 | Not listed | I | RRMM following ≥3 prior therapies including alkylating agents, PIs, and IMiDs with disease progression in the past 60 days | Safety (by number of AEs) |
EGFRt/BCMA-41BBz CAR T-cell Additional agent:Lenalidomide | NCT03070327 | Not listed | I | RRMM following >2 prior lines of treatment including IMiD and PI with refractory, persistent, or progressive disease | Determine the MTD of CAR T-cells |
BCMA-specific CAR-expressing T Lymphocytes Additional agent: Gamma secretase inhibitor (JSMD194) | NCT03502577 | Not listed | I | RR/MM following ASCT or transplant, ineligible patients with persistent disease after 4 cycles of induction that are refractory to both PI and IMiD therapy | Determine the MTD |
CAR T Product | NCT Reference | Antigen Target | Phase | Patient Population | Primary Outcome |
---|---|---|---|---|---|
CAR2 anti-CD38 A2 CAR T Cells | NCT03464916 | CD38 | I | RR/MM (following prior lenalidomide, pomalidomide, bortezomib, carfilzomib, and daratumumab) or RR/MM (within 1 year of high-dosefirst-line or second-line therapy/ASCT) | Determine the MTD |
MLM-CAR44.1 T-cells | NCT04097301 | CD44v6 | I/II | RR/MM (≥4 different prior treatments in 3 treatment lines, or 4 treatments in 2 treatment lines in early relapsing patients) | MTD and recommended phase IIa dose |
Not Known | NCT03958656 | SLAMF7 | I | RR/MM ( ≥3 prior regimens) | Safety by frequency of AEs |
ATLCAR. CD138 cell | NCT03672318 | CD138 | I | RR/MM (up to 2 treatment lines if refractory to both IMiD and PI) | Proportion of participants with DLTs as a measure of MTD |
Issue | |
---|---|
CAR T-cell therapy failure | Reasons for failure: Malignancy; Immune-associated; Patient-factors; Antigen escape. Strategies to overcome antigenic loss: Sequential or combined infusion with CAR T-cells against targets other than BCMA; CAR T-cells with novel dual-targeting vector design; BCMA expression upregulation; New potential targets of immunotherapy: CD138, GPRC5D, transmembrane activator, calcium-modulator, cyclophilin ligand, signaling lymphocytic activation, and molecule); NKG2D ligands, CD229 and integrin β; Moving CAR T-cell therapy into the earlier treatment lines. |
Safety | CRS: tended to be grade 1 or 2; NT has not been a significant issue in MM CAR T-cell trials, Cytopenias; Hypogammaglobulinemias; The possibility that CAR T therapies are managed on an outpatient basis or with a reduction in the days of hospitalization. |
Extended timeline of the manufacturing process | Solutions: Novel bioengineering methods; Lymphocytes from allogeneic donors; Use of induced pluripotent stem cell (iPSC)-derived immune cells; CAR NK cells against. |
Access to therapy | Accredited centers are required; ICU and Neurology services; Support social; High cost. |
Patient selection | Patients with a lower disease burden to prevent early relapse. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martino, M.; Canale, F.A.; Alati, C.; Vincelli, I.D.; Moscato, T.; Porto, G.; Loteta, B.; Naso, V.; Mazza, M.; Nicolini, F.; et al. CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma. Cancers 2021, 13, 2639. https://doi.org/10.3390/cancers13112639
Martino M, Canale FA, Alati C, Vincelli ID, Moscato T, Porto G, Loteta B, Naso V, Mazza M, Nicolini F, et al. CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma. Cancers. 2021; 13(11):2639. https://doi.org/10.3390/cancers13112639
Chicago/Turabian StyleMartino, Massimo, Filippo Antonio Canale, Caterina Alati, Iolanda Donatella Vincelli, Tiziana Moscato, Gaetana Porto, Barbara Loteta, Virginia Naso, Massimiliano Mazza, Fabio Nicolini, and et al. 2021. "CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma" Cancers 13, no. 11: 2639. https://doi.org/10.3390/cancers13112639
APA StyleMartino, M., Canale, F. A., Alati, C., Vincelli, I. D., Moscato, T., Porto, G., Loteta, B., Naso, V., Mazza, M., Nicolini, F., Ghelli Luserna di Rorà, A., Simonetti, G., Ronconi, S., Ceccolini, M., Musuraca, G., Martinelli, G., & Cerchione, C. (2021). CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma. Cancers, 13(11), 2639. https://doi.org/10.3390/cancers13112639