PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. What Is the Role of PET/MRI in Breast Cancer?
3. PET/MRI in Axillary Staging: Current Evidence
4. The Rationale of SNB vs. PET/MRI Trials
5. Italian Experience on SNB vs. PET/MRI Trials: Two Comparative Studies between PET/MRI and Axillary Surgery
- -
- SNB vs. PET/MRI 1 trial (ClinicalTrials.gov Identifier: NCT04826211) evaluates axillary staging in nodal-positive BC patients receiving PST;
- -
- SNB vs. PET/MRI 2 trial (ClinicalTrials.gov Identifier: NCT04829643) evaluates axillary staging in early BC patients undergoing upfront surgery.
- The primary outcome was to compare the staging power between PET/MRI vs. SNB (or AD) in detecting axillary lymph node macro-metastases (>2 mm), evaluating the concordance rate between the two tools, which would indicate PET/MRI accuracy;
- The secondary outcome was to compare PET/MRI and Ax-US, evaluating the concordance rate between the two exams;
- The tertiary outcome was to investigate eventual associations between PET/MRI morphological or functional parameters and tumor prognostic features.
5.1. SNB vs. PET/MRI 1
5.2. SNB vs. PET/MRI 2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef]
- Veronesi, U.; Viale, G.; Paganelli, G.; Zurrida, S.; Luini, A.; Galimberti, V.; Veronesi, P.; Intra, M.; Maisonneuve, P.; Zucca, F.; et al. Sentinel lymph node biopsy in breast cancer: Ten-year results of a randomized controlled study. Ann. Surg. 2010, 251, 595–600. [Google Scholar] [CrossRef]
- Veronesi, U.; Stafyla, V.; Luini, A.; Veronesi, P. Breast cancer: From “maximum tolerable” to “minimum effective” treatment. Front. Oncol. 2012, 2, 125. [Google Scholar] [CrossRef] [Green Version]
- Gentilini, O.D.; Cardoso, M.J.; Poortmans, P. Less is more. Breast conservation might be even better than mastectomy in early breast cancer patients. Breast 2017, 35, 32–33. [Google Scholar] [CrossRef]
- Dihge, L.; Grabau, D.A.; Rasmussen, R.W.; Bendahl, P.O.; Rydén, L. The accuracy of preoperative axillary nodal staging in primary breast cancer by ultrasound is modified by nodal metastatic load and tumor biology. Acta Oncol. 2016, 55, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Houssami, N.; Ciatto, S.; Turner, R.M.; Cody, H.S.; Macaskill, P. Preoperative ultrasound-guided needle biopsy of axillary nodes in invasive breast cancer: Meta-analysis of its accuracy and utility in staging the axilla. Ann. Surg. 2011, 254, 243–251. [Google Scholar] [CrossRef]
- van Nijnatten, T.J.A.; Ploumen, E.H.; Schipper, R.J.; Goorts, B.; Andriessen, E.H.; Vanwetswinkel, S.; Schavemaker, M.; Nelemans, P.; de Vries, B.; Beets-Tan, R.G.H.; et al. Routine use of standard breast MRI compared to axillary ultrasound for differentiating between no, limited and advanced axillary nodal disease in newly diagnosed breast cancer patients. Eur. J. Radiol. 2016, 85, 2288–2294. [Google Scholar] [CrossRef]
- Koolen, B.B.; Vogel, W.V.; Vrancken Peeters, M.J.; Loo, C.E.; Rutgers, E.J.; Valdés Olmos, R.A. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET. J. Oncol. 2012, 2012, 438647. [Google Scholar] [CrossRef] [Green Version]
- Heusch, P.; Nensa, F.; Schaarschmidt, B.; Sivanesapillai, R.; Beiderwellen, K.; Gomez, B.; Köhler, J.; Reis, H.; Ruhlmann, V.; Buchbender, C. Diagnostic accuracy of whole-body PET/MRI and whole-body PET/CT for TNM staging in oncology. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 42–48. [Google Scholar] [CrossRef]
- Diepstraten, S.C.; Sever, A.R.; Buckens, C.F.; Veldhuis, W.B.; van Dalen, T.; van den Bosch, M.A.; Mali, W.P.; Verkooijen, H.M. Value of preoperative ultrasound-guided axillary lymph node biopsy for preventing completion axillary lymph node dissection in breast cancer: A systematic review and meta-analysis. Ann. Surg. Oncol. 2014, 21, 51–59. [Google Scholar] [CrossRef]
- Pilewskie, M.; Jochelson, M.; Gooch, J.C.; Patil, S.; Stempel, M.; Morrow, M. Is Preoperative Axillary Imaging Beneficial in Identifying Clinically Node-Negative Patients Requiring Axillary Lymph Node Dissection? J. Am. Coll. Surg. 2016, 222, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Jozsa, F.; Baker, R.; Rubio, I.T.; Benson, J.; Douek, M. Meta-analysis of tumour burden in pre-operative axillary ultrasound positive and negative breast cancer patients. Breast Cancer Res. Treat. 2017, 166, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudle, A.S.; Kuerer, H.M.; Le-Petross, H.T.; Yang, W.; Yi, M.; Bedrosian, I.; Krishnamurthy, S.; Fornage, B.D.; Hunt, K.K.; Mittendorf, E.A. Predicting the extent of nodal disease in early-stage breast cancer. Ann. Surg. Oncol. 2014, 21, 3440–3447. [Google Scholar] [CrossRef]
- Fisher, B.; Jeong, J.H.; Anderson, S.; Bryant, J.; Fisher, E.R.; Wolmark, N. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N. Engl. J. Med. 2002, 347, 567–575. [Google Scholar] [CrossRef]
- Krag, D.N.; Anderson, S.J.; Julian, T.B.; Brown, A.M.; Harlow, S.P.; Costantino, J.P.; Ashikaga, T.; Weaver, D.L.; Mamounas, E.P.; Jalovec, L.M.; et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Donker, M.; van Tienhoven, G.; Straver, M.E.; Meijnen, P.; van de Velde, C.J.; Mansel, R.E.; Cataliotti, L.; Westenberg, A.H.; Klinkenbijl, J.H.; Orzalesi, L.; et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): A randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014, 15, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA 2017, 318, 918–926. [Google Scholar] [CrossRef]
- Galimberti, V.; Cole, B.F.; Zurrida, S.; Viale, G.; Luini, A.; Veronesi, P.; Baratella, P.; Chifu, C.; Sargenti, M.; Intra, M.; et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): A phase 3 randomised controlled trial. Lancet Oncol. 2013, 14, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Montagna, G.; Mamtani, A.; Knezevic, A.; Brogi, E.; Barrio, A.V.; Morrow, M. Selecting Node-Positive Patients for Axillary Downstaging with Neoadjuvant Chemotherapy. Ann. Surg. Oncol. 2020, 27, 4515–4522. [Google Scholar] [CrossRef]
- Gentilini, O.; Veronesi, U. Abandoning sentinel lymph node biopsy in early breast cancer? A new trial in progress at the European Institute of Oncology of Milan (SOUND: Sentinel node vs Observation after axillary UltraSouND). Breast 2012, 21, 678–681. [Google Scholar] [CrossRef]
- Reimer, T.; Hartmann, S.; Stachs, A.; Gerber, B. Local treatment of the axilla in early breast cancer: Concepts from the national surgical adjuvant breast and bowel project B-04 to the planned intergroup sentinel mamma trial. Breast Care 2014, 9, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Gentilini, O.; Veronesi, U. Staging the Axilla in Early Breast Cancer: Will Imaging Replace Surgery? JAMA Oncol. 2015, 1, 1031–1032. [Google Scholar] [CrossRef] [PubMed]
- Delso, G.; Fürst, S.; Jakoby, B.; Ladebeck, R.; Ganter, C.; Nekolla, S.G.; Schwaiger, M.; Ziegler, S.I. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 2011, 52, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Ratib, O.; Beyer, T. Whole-body hybrid PET/MRI: Ready for clinical use? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 992–995. [Google Scholar] [CrossRef] [Green Version]
- Catalano, O.A.; Rosen, B.R.; Sahani, D.V.; Hahn, P.F.; Guimaraes, A.R.; Vangel, M.G.; Nicolai, E.; Soricelli, A.; Salvatore, M. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: Initial experience in 134 patients—A hypothesis—generating exploratory study. Radiology 2013, 269, 857–869. [Google Scholar] [CrossRef]
- Huellner, M.W.; Appenzeller, P.; Kuhn, F.P.; Husmann, L.; Pietsch, C.M.; Burger, I.A.; Porto, M.; Delso, G.; von Schulthess, G.K.; Veit-Haibach, P. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: Preliminary observations. Radiology 2014, 273, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Drzezga, A.; Souvatzoglou, M.; Eiber, M.; Beer, A.J.; Fürst, S.; Martinez-Möller, A.; Nekolla, S.G.; Ziegler, S.; Ganter, C.; Rummeny, E.J.; et al. First clinical experience with integrated whole-body PET/MR: Comparison to PET/CT in patients with oncologic diagnoses. J. Nucl. Med. 2012, 53, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Appenzeller, P.; Mader, C.; Huellner, M.W.; Schmidt, D.; Schmid, D.; Boss, A.; von Schulthess, G.; Veit-Haibach, P. PET/CT versus body coil PET/MRI: How low can you go? Insights Imaging 2013, 4, 481–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesmüller, M.; Quick, H.H.; Navalpakkam, B.; Lell, M.M.; Uder, M.; Ritt, P.; Schmidt, D.; Beck, M.; Kuwert, T.; von Gall, C.C. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 12–21. [Google Scholar] [CrossRef]
- Kirchner, J.; Grueneisen, J.; Martin, O.; Oehmigen, M.; Quick, H.H.; Bittner, A.K.; Hoffmann, O.; Ingenwerth, M.; Catalano, O.A.; Heusch, P.; et al. Local and whole-body staging in patients with primary breast cancer: A comparison of one-step to two-step staging utilizing. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2328–2337. [Google Scholar] [CrossRef]
- Grueneisen, J.; Sawicki, L.M.; Wetter, A.; Kirchner, J.; Kinner, S.; Aktas, B.; Forsting, M.; Ruhlmann, V.; Umutlu, L. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients. Eur. J. Radiol. 2017, 89, 14–19. [Google Scholar] [CrossRef]
- Botsikas, D.; Bagetakos, I.; Picarra, M.; Da Cunha Afonso Barisits, A.C.; Boudabbous, S.; Montet, X.; Lam, G.T.; Mainta, I.; Kalovidouri, A.; Becker, M. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur. Radiol. 2019, 29, 1787–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, E.J.; Chun, K.A.; Bom, H.S.; Lee, J.; Lee, S.J.; Cho, I.H. Initial experience of integrated PET/MR mammography in patients with invasive ductal carcinoma. Hell. J. Nucl. Med. 2014, 17, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, J.; Martin, O.; Umutlu, L.; Herrmann, K.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; Gauler, T.; Theurer, S.; Antke, C.; et al. Impact of. Eur. J. Radiol. 2020, 128, 108975. [Google Scholar] [CrossRef]
- Bruckmann, N.M.; Sawicki, L.M.; Kirchner, J.; Martin, O.; Umutlu, L.; Herrmann, K.; Fendler, W.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; et al. Prospective evaluation of whole-body MRI and. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2816–2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, L.; Nicolai, E.; Luongo, A.; Aiello, M.; Catalano, O.A.; Soricelli, A.; Salvatore, M. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: Lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur. J. Radiol. 2014, 83, 289–296. [Google Scholar] [CrossRef]
- Catalano, O.A.; Daye, D.; Signore, A.; Iannace, C.; Vangel, M.; Luongo, A.; Catalano, M.; Filomena, M.; Mansi, L.; Soricelli, A.; et al. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int. J. Oncol. 2017, 51, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Bruckmann, N.M.; Kirchner, J.; Umutlu, L.; Fendler, W.P.; Seifert, R.; Herrmann, K.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; Antke, C.; et al. Prospective comparison of the diagnostic accuracy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone metastases in the initial staging of primary breast cancer patients. Eur. Radiol. 2021. [Google Scholar] [CrossRef]
- Melsaether, A.N.; Raad, R.A.; Pujara, A.C.; Ponzo, F.D.; Pysarenko, K.M.; Jhaveri, K.; Babb, J.S.; Sigmund, E.E.; Kim, S.G.; Moy, L.A. Comparison of Whole-Body (18)F FDG PET/MR Imaging and Whole-Body (18)F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer. Radiology 2016, 281, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Botsikas, D.; Kalovidouri, A.; Becker, M.; Copercini, M.; Djema, D.A.; Bodmer, A.; Monnier, S.; Becker, C.D.; Montet, X.; Delattre, B.M.; et al. Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur. Radiol. 2016, 26, 2297–2307. [Google Scholar] [CrossRef]
- Taneja, S.; Jena, A.; Goel, R.; Sarin, R.; Kaul, S. Simultaneous whole-body ¹⁸F-FDG PET-MRI in primary staging of breast cancer: A pilot study. Eur. J. Radiol. 2014, 83, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Grueneisen, J.; Nagarajah, J.; Buchbender, C.; Hoffmann, O.; Schaarschmidt, B.M.; Poeppel, T.; Forsting, M.; Quick, H.H.; Umutlu, L.; Kinner, S. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging. Invest. Radiol. 2015, 50, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Möller, A.; Eiber, M.; Nekolla, S.G.; Souvatzoglou, M.; Drzezga, A.; Ziegler, S.; Rummeny, E.J.; Schwaiger, M.; Beer, A.J. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J. Nucl. Med. 2012, 53, 1415–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Nijnatten, T.J.A.; Goorts, B.; Vöö, S.; de Boer, M.; Kooreman, L.F.S.; Heuts, E.M.; Wildberger, J.E.; Mottaghy, F.M.; Lobbes, M.B.I.; Smidt, M.L. Added value of dedicated axillary hybrid 18F-FDG PET/MRI for improved axillary nodal staging in clinically node-positive breast cancer patients: A feasibility study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goorts, B.; Vöö, S.; van Nijnatten, T.J.A.; Kooreman, L.F.S.; de Boer, M.; Keymeulen, K.B.M.I.; Aarnoutse, R.; Wildberger, J.E.; Mottaghy, F.M.; Lobbes, M.B.I.; et al. Hybrid. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1796–1805. [Google Scholar] [CrossRef]
- Sawicki, L.M.; Grueneisen, J.; Schaarschmidt, B.M.; Buchbender, C.; Nagarajah, J.; Umutlu, L.; Antoch, G.; Kinner, S. Evaluation of ¹⁸F-FDG PET/MRI, ¹⁸F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur. J. Radiol. 2016, 85, 459–465. [Google Scholar] [CrossRef]
- Pujara, A.C.; Raad, R.A.; Ponzo, F.; Wassong, C.; Babb, J.S.; Moy, L.; Melsaether, A.N. Standardized Uptake Values from PET/MRI in Metastatic Breast Cancer: An Organ-based Comparison With PET/CT. Breast J. 2016, 22, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Beiderwellen, K.; Gomez, B.; Buchbender, C.; Hartung, V.; Poeppel, T.D.; Nensa, F.; Kuehl, H.; Bockisch, A.; Lauenstein, T.C. Depiction and characterization of liver lesions in whole body [¹⁸F]-FDG PET/MRI. Eur. J. Radiol. 2013, 82, e669–e675. [Google Scholar] [CrossRef]
- Chandarana, H.; Heacock, L.; Rakheja, R.; DeMello, L.R.; Bonavita, J.; Block, T.K.; Geppert, C.; Babb, J.S.; Friedman, K.P. Pulmonary nodules in patients with primary malignancy: Comparison of hybrid PET/MR and PET/CT imaging. Radiology 2013, 268, 874–881. [Google Scholar] [CrossRef]
- Rauscher, I.; Eiber, M.; Fürst, S.; Souvatzoglou, M.; Nekolla, S.G.; Ziegler, S.I.; Rummeny, E.J.; Schwaiger, M.; Beer, A.J. PET/MR imaging in the detection and characterization of pulmonary lesions: Technical and diagnostic evaluation in comparison to PET/CT. J. Nucl. Med. 2014, 55, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Catalano, O.A.; Nicolai, E.; Rosen, B.R.; Luongo, A.; Catalano, M.; Iannace, C.; Guimaraes, A.; Vangel, M.G.; Mahmood, U.; Soricelli, A.; et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br. J. Cancer 2015, 112, 1452–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raad, R.A.; Friedman, K.P.; Heacock, L.; Ponzo, F.; Melsaether, A.; Chandarana, H. Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J. Magn. Reson. Imaging 2016, 43, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Shimao, D.; Hara, T.; Miyajima, M.; Kikuchi, K.; Takawa, M.; Kumamoto, K.; Ito, H.; Shishido, F. Comparison of integrated whole-body PET/MR and PET/CT: Is PET/MR alternative to PET/CT in routine clinical oncology? Ann. Nucl. Med. 2016, 30, 225–233. [Google Scholar] [CrossRef]
- Kirchner, J.; Sawicki, L.M.; Deuschl, C.; Grüneisen, J.; Beiderwellen, K.; Lauenstein, T.C.; Herrmann, K.; Forsting, M.; Heusch, P.; Umutlu, L. 18 F-FDG PET/MR imaging in patients with suspected liver lesions: Value of liver-specific contrast agent Gadobenate dimeglumine. PLoS ONE 2017, 12, e0180349. [Google Scholar] [CrossRef]
- Sonni, I.; Minamimoto, R.; Baratto, L.; Gambhir, S.S.; Loening, A.M.; Vasanawala, S.S.; Iagaru, A. Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na [18 F] F and [18 F] FDG: A Focus on Skeletal Lesions. Mol. Imaging Biol. 2019, 22, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Schiano, C.; Franzese, M.; Pane, K.; Garbino, N.; Soricelli, A.; Salvatore, M.; de Nigris, F.; Napoli, C. Hybrid. Cancers 2019, 11, 1444. [Google Scholar] [CrossRef] [Green Version]
- Margolis, N.E.; Moy, L.; Sigmund, E.E.; Freed, M.; McKellop, J.; Melsaether, A.N.; Kim, S.G. Assessment of Aggressiveness of Breast Cancer Using Simultaneous 18F-FDG-PET and DCE-MRI: Preliminary Observation. Clin. Nucl. Med. 2016, 41, e355–e361. [Google Scholar] [CrossRef] [Green Version]
- Catalano, O.A.; Horn, G.L.; Signore, A.; Iannace, C.; Lepore, M.; Vangel, M.; Luongo, A.; Catalano, M.; Lehman, C.; Salvatore, M.; et al. PET/MR in invasive ductal breast cancer: Correlation between imaging markers and histological phenotype. Br. J. Cancer 2017, 116, 893–902. [Google Scholar] [CrossRef] [Green Version]
- Jena, A.; Taneja, S.; Singh, A.; Negi, P.; Sarin, R.; Das, P.K.; Singhal, M. Reliability of 18 F-FDG PET Metabolic Parameters Derived Using Simultaneous PET/MRI and Correlation With Prognostic Factors of Invasive Ductal Carcinoma: A Feasibility Study. AJR Am. J. Roentgenol. 2017, 209, 662–670. [Google Scholar] [CrossRef]
- Jena, A.; Taneja, S.; Singh, A.; Negi, P.; Mehta, S.B.; Sarin, R. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study. Eur. J. Radiol. 2017, 86, 261–266. [Google Scholar] [CrossRef]
- Kong, E.; Chun, K.A.; Bae, Y.K.; Cho, I.H. Integrated PET/MR mammography for quantitative analysis and correlation to prognostic factors of invasive ductal carcinoma. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 118–126. [Google Scholar] [CrossRef]
- Incoronato, M.; Grimaldi, A.M.; Cavaliere, C.; Inglese, M.; Mirabelli, P.; Monti, S.; Ferbo, U.; Nicolai, E.; Soricelli, A.; Catalano, O.A.; et al. Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: A PET/MRI study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1680–1693. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Cavaliere, C.; Monti, S.; Forte, E.; Incoronato, M.; Nicolai, E.; Salvatore, M.; Aiello, M. A multi-parametric PET/MRI study of breast cancer: Evaluation of DCE-MRI pharmacokinetic models and correlation with diffusion and functional parameters. NMR Biomed. 2019, 32, e4026. [Google Scholar] [CrossRef]
- Incoronato, M.; Grimaldi, A.M.; Mirabelli, P.; Cavaliere, C.; Parente, C.A.; Franzese, M.; Staibano, S.; Ilardi, G.; Russo, D.; Soricelli, A.; et al. Circulating miRNAs in Untreated Breast Cancer: An Exploratory Multimodality Morpho-Functional Study. Cancers 2019, 11, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morawitz, J.; Kirchner, J.; Martin, O.; Bruckmann, N.M.; Dietzel, F.; Li, Y.; Rischpler, C.; Herrmann, K.; Umutlu, L.; Bittner, A.K.; et al. Prospective Correlation of Prognostic Immunohistochemical Markers With SUV and ADC Derived From Dedicated Hybrid Breast 18F-FDG PET/MRI in Women With Newly Diagnosed Breast Cancer. Clin. Nucl. Med. 2021, 46, 201–205. [Google Scholar] [CrossRef]
- Murakami, W.; Tozaki, M.; Sasaki, M.; Hida, A.I.; Ohi, Y.; Kubota, K.; Sagara, Y. Correlation between. Eur. J. Radiol. 2020, 123, 108773. [Google Scholar] [CrossRef]
- Carmona-Bozo, J.C.; Manavaki, R.; Woitek, R.; Torheim, T.; Baxter, G.C.; Caracò, C.; Provenzano, E.; Graves, M.J.; Fryer, T.D.; Patterson, A.J.; et al. Hypoxia and perfusion in breast cancer: Simultaneous assessment using PET/MR imaging. Eur. Radiol. 2021, 31, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.; Taneja, S.; Singh, A.; Negi, P.; Mehta, S.B.; Ahuja, A.; Singhal, M.; Sarin, R. Association of pharmacokinetic and metabolic parameters derived using simultaneous PET/MRI: Initial findings and impact on response evaluation in breast cancer. Eur. J. Radiol. 2017, 92, 30–36. [Google Scholar] [CrossRef]
- Wang, J.; Shih, T.T.; Yen, R.F. Multiparametric Evaluation of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer Using Integrated PET/MR. Clin. Nucl. Med. 2017, 42, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Romeo, V.; D’Aiuto, M.; Frasci, G.; Imbriaco, M.; Nicolai, E. Simultaneous PET/MRI assessment of response to cytotoxic and hormone neo-adjuvant chemotherapy in breast cancer: A preliminary report. Med. Oncol. 2017, 34, 18. [Google Scholar] [CrossRef]
- Cho, N.; Im, S.A.; Cheon, G.J.; Park, I.A.; Lee, K.H.; Kim, T.Y.; Kim, Y.S.; Kwon, B.R.; Lee, J.M.; Suh, H.Y.; et al. Integrated. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, M.M.S.; Goa, P.E.; Sjøbakk, T.E.; Hedayati, R.; Eikesdal, H.P.; Deng, C.; Østlie, A.; Lundgren, S.; Bathen, T.F.; Jerome, N.P. Semi-automatic segmentation from intrinsically-registered 18F-FDG-PET/MRI for treatment response assessment in a breast cancer cohort: Comparison to manual DCE-MRI. MAGMA 2020, 33, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Roozendaal, L.M.; Vane, M.L.G.; van Dalen, T.; van der Hage, J.A.; Strobbe, L.J.A.; Boersma, L.J.; Linn, S.C.; Lobbes, M.B.I.; Poortmans, P.M.P.; Tjan-Heijnen, V.C.G.; et al. Clinically node negative breast cancer patients undergoing breast conserving therapy, sentinel lymph node procedure versus follow-up: A Dutch randomized controlled multicentre trial (BOOG 2013-08). BMC Cancer 2017, 17, 459. [Google Scholar] [CrossRef] [PubMed]
- Reimer, T.; Glass, A.; Botteri, E.; Loibl, S.; D Gentilini, O. Avoiding Axillary Sentinel Lymph Node Biopsy after Neoadjuvant Systemic Therapy in Breast Cancer: Rationale for the Prospective, Multicentric EUBREAST-01 Trial. Cancers 2020, 12, 3698. [Google Scholar] [CrossRef]
Category Group | Reference | Total Number of Patients Nr. BC/tot. pts. (%) | Study Design | Patient Position | Type of Acquisition |
---|---|---|---|---|---|
STAGING | Catalano, O.A., 2013 [25] Huellner, M.W., 2014 [26] Drzezga, A., 2012 [27] Appenzeller, P., 2013 [28] Wiesmuller, M., 2013 [29] Kirchner, J., 2018 [30] Botsikas, D., 2019 [32] Pace, L., 2014 [36] Kong, E., 2014 [33] Melsaether, A.N., 2016 [39] Van Nijnatten, T.J., 2018 [44] Taneja, S., 2014 [41] Grueneisen, J., 2015 [42] Botsikas, D., 2016 [40] Catalano, O.A., 2017 [37] Goorts B., 2017 [45] Kirchner, J., 2020 [34] Bruckmann, N.M., 2020 [35] Bruckmann, N.M., 2021 [38] | 35/134 (26.1%) 5/106 (4.8%) 3/32 (9.4%) 7/63 (11.1%) 3/46 (6.5%) 38/38 (100%) 80/80 (100%) 36/36 (100%) 42/42 (100%) 51/51 (100%) 12/12 (100%) 36/36 (100%) 49/49 (100%) 58/58 (100%) 51/51 (100%) 40/40 (100%) 56/56 (100%) 104/104 (100%) 154/154 (100%) | retrospective prospective prospective prospective prospective prospective prospective prospective prospective prospective prospective retrospective prospective retrospective retrospective prospective prospective prospective prospective | supine supine supine supine supine supine WB, prone B supine WB, prone B supine supine WB, prone B supine prone supine WB, prone B prone supine WB, prone B NA prone supine WB, prone B supine WB, prone B supine | simultaneous sequential simultaneous sequential simultaneous simultaneous sequential simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous sequential simultaneous simultaneous simultaneous simultaneous simultaneous |
FOLLOW-UP | Grueneisen, J., 2017 [31] Sawicki, L.M., 2016 [46] Pujara, A.C., 2016 [47] Beiderwellen, K., 2013 [48] Chandarana, H., 2013 [49] Rauscher, I., 2014 [50] Catalano, O.A., 2015 [51] Raad, R.A., 2016 [52] Ishii S., 2016 [53] Kirchner, J., 2017 [54] Sonni, I., 2019 [55] | 36/36 (100%) 21/21 (100%) 35/35 (100%) 10/70 (14%) 10/32 (31.2%) 4/40 (10%) 109/109 (100%) 15/208 (7.2%) 33/123 (26.8%) 2/41 (5%) 23/74 (31%) | prospective prospective retrospective prospective prospective prospective retrospective retrospective prospective prospective prospective | supine NA prone NA NA NA NA NA NA NA NA | simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous |
PROGNOSIS | Schiano, C., 2020 [56] Margolis, N.E., 2016 [57] Catalano, O.A., 2017 [58] Jena, A., 2017 [59] Jena, A., 2017 [60] Kong, E., 2018 [61] Incoronato, M., 2018 [62] Inglese, M., 2019 [63] Incoronato, M., 2019 [64] Morawitz, J., 2021 [65] Murakami, W., 2020 [66] Carmona-Bozo, J.C., 2021 [67] | 40/217 (18.4%) 12/12 (100%) 21/21 (100%) 69/69 (100%) 98//98 (100%) 46/46 (100%) 50/50 (100%) 46/46 (100%) 77/155(49.7%) 56/56 (100%) 55/55 (100%) 32/32 (100%) | retrospective prospective retrospective prospective prospective prospective prospective prospective prospective prospective retrospective prospective | NA prone supine WB, prone B supine WB, prone B prone prone prone prone supine WB, prone B prone supine WB, prone B prone | simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous simultaneous |
RESPONSE | Jena, A., 2017 [68] Wang, J., 2017 [69] Romeo, V., 2017 [70] Cho, N., 2018 [71] Andreassen, M.M.S., 2020 [72] | 50/50 (100%) 14/14 (100%) 4/4 (100%) 26/26 (100%) 24/24 (100%) | prospective prospective prospective prospective prospective | supine WB, prone B prone NA supine WB, prone B NA | simultaneous simultaneous simultaneous simultaneous simultaneous |
Authors | Total Number of Patients | Study Design | Patient Position | Type of Acquisition | Axillary Node Detection Sensitivity | Axillary Node Detection Specificity |
---|---|---|---|---|---|---|
Kirchner, J., 2018 [30] | 38 | prospective | supine WB, prone B | simultaneous | 93% | 95% |
Botsikas, D., 2019 [32] | 80 | prospective | supine WB, prone B | sequential | 0.85 (0.72–0.93) | 0.89 (0.82–0.94) |
Melsaether, A.N., 2016 [39] | 51 | prospective | supine | simultaneous | 88–100% (CI 69, 97) | 95% (CI 88, 98) |
Taneja, S., 2014 [41] | 36 | retrospective | supine WB, prone B | simultaneous | 60% on PET, 93.3% on MRI | 91% on PET and MRI |
Grueneisen, J., 2015 [42] | 49 | prospective | prone | simultaneous | 78% (CI 52, 94) | 90% (CI 74, 98) |
Botsikas, D., 2016 [40] | 58 | retrospective | supine WB, prone B | sequential | 79% | 100% |
Study | Study ID | Study Site | Status | Study Design | Inclusion Criteria | PET/MRI Timing | Primary Outcome | Secondary Outcome |
---|---|---|---|---|---|---|---|---|
SNB vs. PET/MRI 1 | ClinicalTrials.gov Identifier: NCT04826211 | Milan, Italy | Recruiting | Single arm 110 participants |
| Before and after PST | Concordance rate between SNB and PET/MRI |
|
SNB vs. PET/MRI 2 | ClinicalTrials.gov Identifier: NCT04829643 | Milan, Italy | Recruiting | Single arm 247 participants |
| Before surgery | Concordance rate between SNB and PET/MRI |
|
PET-MRI for Axillary Staging in Node Negative BC Patients | ClinicalTrials.gov Identifier: NCT03374826 | Maastricht, The Netherlands | Recruiting | Single arm 125 participants |
| Before surgery | PET/MRI accuracy in axillary staging | Accuracy of T2w MRI, DWI and Hybrid PET/MRI in axillary staging |
Dedicated Breast PET/MRI in Evaluation of Extent of Disease in Women With Newly Diagnosed BC | ClinicalTrials.gov Identifier: NCT03510988 | New York, USA | Suspended (due to COVID-19) | Single arm 147 participants | Women over age of 25 with newly diagnosed BC and for whom a breast MR has been ordered as standard of care | Prior to surgical and oncologic management | PET/MRI specificity by adding breast FDG PET to MR compared with breast MR alone for the diagnosis | Sensitivity in detection of axillary and internal mammary lymph node metastasis between the hybrid breast FDG PET/MRI vs. breast MRI alone |
Initial Assessment of 18FDG-PET/MRI in Determining the Extent of Systemic Disease in BC Patients | ClinicalTrials.gov Identifier: NCT01672021 | New York, USA | Active not recruiting | Single arm 80 participants | Patients with a history of BC undergoing PET/CT either for initial staging or for disease surveillance will perform PET/MRI | At diagnosis or onfollow-up | Number of metastatic lesions seen on PET/MRI compared with PET/CT | Patient stage as imaged by PET/MRI as compared with PET/CT |
Whole-body staging in BC patients using combined MRI-PET | German Clinical Trials Register (DRKS; register number: DRKS00005410) | Dusseldorf, Essen, Germany | Recruiting complete, follow-up continuing | Single arm 199 participants | Newly diagnosed BC with one of the following features:
| At diagnosis | Accuracy of combined whole-body 18F-FDG-MRI-PET for whole-body staging in BC | Comparison of combined whole-body 18F-FDG-MRI-PET and the diagnostic standard with regard to the diagnostic accuracy for whole-body tumor staging in breast cancer |
SNB vs. PET/MRI 1 | SNB vs. PET/MRI 2 | |
---|---|---|
Inclusion criteria |
|
|
Exclusion criteria |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Micco, R.; Santurro, L.; Gasparri, M.L.; Zuber, V.; Cisternino, G.; Baleri, S.; Morgante, M.; Rotmensz, N.; Canevari, C.; Gallivanone, F.; et al. PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers 2021, 13, 3571. https://doi.org/10.3390/cancers13143571
Di Micco R, Santurro L, Gasparri ML, Zuber V, Cisternino G, Baleri S, Morgante M, Rotmensz N, Canevari C, Gallivanone F, et al. PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers. 2021; 13(14):3571. https://doi.org/10.3390/cancers13143571
Chicago/Turabian StyleDi Micco, Rosa, Letizia Santurro, Maria Luisa Gasparri, Veronica Zuber, Giovanni Cisternino, Sara Baleri, Manuela Morgante, Nicole Rotmensz, Carla Canevari, Francesca Gallivanone, and et al. 2021. "PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials" Cancers 13, no. 14: 3571. https://doi.org/10.3390/cancers13143571
APA StyleDi Micco, R., Santurro, L., Gasparri, M. L., Zuber, V., Cisternino, G., Baleri, S., Morgante, M., Rotmensz, N., Canevari, C., Gallivanone, F., Scifo, P., Savi, A., Magnani, P., Neri, I., Ferjani, N., Venturini, E., Losio, C., Sassi, I., Bianchini, G., ... Gentilini, O. D. (2021). PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers, 13(14), 3571. https://doi.org/10.3390/cancers13143571