Analytical Performance of NGS-Based Molecular Genetic Tests Used in the Diagnostic Workflow of Pheochromocytoma/Paraganglioma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and the Genetic Testing of the RET, VHL, SDHB, SDHC, SDHD and TMEM127 Genes Using Sanger Sequencing
2.2. Whole Exome Sequencing
2.3. Developing the ENDOGENE Panel
3. Results
3.1. Whole Exome Sequencing
3.2. Depth of coverage
3.3. Analytical Validation
3.4. Optimization of Bioinformatical Workflow, Role of Allelic Ratio
3.5. Design of the ENDOGENE Panel v1.0
3.6. The Prospective Group of ENDOGENE Panel v1.0
3.7. Upgrading the ENDOGENE Panel v1.0 to v2.0
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toledo, R.A. Genetics of Pheochromocytomas and Paragangliomas: An Overview on the Recently Implicated Genes MERTK, MET, Fibroblast Growth Factor Receptor 1, and H3F3A. Endocrinol. Metab. Clin. North. Am. 2017, 46, 459–489. [Google Scholar] [CrossRef] [PubMed]
- Toledo, R.A.; Dahia, P.L. Next-generation sequencing for the diagnosis of hereditary pheochromocytoma and paraganglioma syndromes. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Neumann, H.P.; Bausch, B.; McWhinney, S.R.; Bender, B.U.; Gimm, O.; Franke, G.; Schipper, J.; Klisch, J.; Altehoefer, C.; Zerres, K.; et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 2002, 346, 1459–1466. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Roqueplo, A.P.; Dahia, P.L.; Robledo, M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm. Metab. Res. = Horm. Stoffwechs. = Horm. Metab. 2012, 44, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Dahia, P.L.M. Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity. Nat. Rev. Cancer 2014, 14, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Favier, J.; Amar, L.; Gimenez-Roqueplo, A.P. Paraganglioma and phaeochromocytoma: From genetics to personalized medicine. Nat. Rev. Endocrinol. 2015, 11, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Baysal, B.E.; Ferrell, R.E.; Willett-Brozick, J.E.; Lawrence, E.C.; Myssiorek, D.; Bosch, A.; van der Mey, A.; Taschner, P.E.; Rubinstein, W.S.; Myers, E.N.; et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000, 287, 848–851. [Google Scholar] [CrossRef]
- Niemann, S.; Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 2000, 26, 268–270. [Google Scholar] [CrossRef]
- Astuti, D.; Latif, F.; Dallol, A.; Dahia, P.L.; Douglas, F.; George, E.; Skoldberg, F.; Husebye, E.S.; Eng, C.; Maher, E.R. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 2001, 69, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [Green Version]
- Burnichon, N.; Briere, J.J.; Libe, R.; Vescovo, L.; Riviere, J.; Tissier, F.; Jouanno, E.; Jeunemaitre, X.; Benit, P.; Tzagoloff, A.; et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 2010, 19, 3011–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, I.T.; Lenci, R.E.; Qin, Y.; Buddavarapu, K.; Ligon, A.H.; Leteurtre, E.; Do Cao, C.; Cardot-Bauters, C.; Pigny, P.; Dahia, P.L. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum. Genet. 2008, 124, 279–285. [Google Scholar] [CrossRef]
- Ladroue, C.; Carcenac, R.; Leporrier, M.; Gad, S.; Le Hello, C.; Galateau-Salle, F.; Feunteun, J.; Pouyssegur, J.; Richard, S.; Gardie, B. PHD2 mutation and congenital erythrocytosis with paraganglioma. N. Engl. J. Med. 2008, 359, 2685–2692. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Yao, L.; King, E.E.; Buddavarapu, K.; Lenci, R.E.; Chocron, E.S.; Lechleiter, J.D.; Sass, M.; Aronin, N.; Schiavi, F.; et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat. Genet. 2010, 42, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Schiavi, F.; Cascon, A.; Qin, Y.; Inglada-Perez, L.; King, E.E.; Toledo, R.A.; Ercolino, T.; Rapizzi, E.; Ricketts, C.J.; et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010, 304, 2611–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comino-Mendez, I.; Gracia-Aznarez, F.J.; Schiavi, F.; Landa, I.; Leandro-Garcia, L.J.; Leton, R.; Honrado, E.; Ramos-Medina, R.; Caronia, D.; Pita, G.; et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 2011, 43, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vega, L.J.; Buffet, A.; De Cubas, A.A.; Cascon, A.; Menara, M.; Khalifa, E.; Amar, L.; Azriel, S.; Bourdeau, I.; Chabre, O.; et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 2014, 23, 2440–2446. [Google Scholar] [CrossRef] [Green Version]
- Cascon, A.; Comino-Mendez, I.; Curras-Freixes, M.; de Cubas, A.A.; Contreras, L.; Richter, S.; Peitzsch, M.; Mancikova, V.; Inglada-Perez, L.; Perez-Barrios, A.; et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J. Natl. Cancer Inst. 2015, 107, 1915–1942. [Google Scholar] [CrossRef] [Green Version]
- Juhlin, C.C.; Stenman, A.; Haglund, F.; Clark, V.E.; Brown, T.C.; Baranoski, J.; Bilguvar, K.; Goh, G.; Welander, J.; Svahn, F.; et al. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer 2015, 54, 542–554. [Google Scholar] [CrossRef] [Green Version]
- Toledo, R.A.; Qin, Y.; Srikantan, S.; Morales, N.P.; Li, Q.; Deng, Y.; Kim, S.W.; Pereira, M.A.; Toledo, S.P.; Su, X.; et al. In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. Endocr. Relat. Cancer 2013, 20, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Vega, L.J.; Lepoutre-Lussey, C.; Gimenez-Roqueplo, A.P.; Favier, J. Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene 2016, 35, 1080–1089. [Google Scholar] [CrossRef]
- Fishbein, L.; Leshchiner, I.; Walter, V.; Danilova, L.; Robertson, A.G.; Johnson, A.R.; Lichtenberg, T.M.; Murray, B.A.; Ghayee, H.K.; Else, T.; et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell 2017, 31, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Buffet, A.; Morin, A.; Castro-Vega, L.J.; Habarou, F.; Lussey-Lepoutre, C.; Letouze, E.; Lefebvre, H.; Guilhem, I.; Haissaguerre, M.; Raingeard, I.; et al. Germline Mutations in the Mitochondrial 2-Oxoglutarate/Malate Carrier SLC25A11 Gene Confer a Predisposition to Metastatic Paragangliomas. Cancer Res. 2018, 78, 1914–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nölting, S.; Bechmann, N.; Taieb, D.; Beuschlein, F.; Fassnacht, M.; Kroiss, M.; Eisenhofer, G.; Grossman, A.; Pacak, K. Personalized management of pheochromocytoma and paraganglioma. Endocr. Rev. 2021. [Google Scholar] [CrossRef]
- Toledo, R.A.; Burnichon, N.; Cascon, A.; Benn, D.E.; Bayley, J.P.; Welander, J.; Tops, C.M.; Firth, H.; Dwight, T.; Ercolino, T.; et al. Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat. Rev. Endocrinol. 2017, 13, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Lenders, J.W.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F., Jr. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef] [PubMed]
- Patócs, A.; Likó, I.; Butz, H.; Baghy, K.; Rácz, K. Novel methods and their applicability in the evaluation of the genetic background of endocrine system tumours. Új módszertani lehetőségek és ezek alkalmazása a hormonális rendszer daganatainak genetikai kivizsgálásában. Orv. Hetil. 2015, 156, 2063–2069. [Google Scholar] [CrossRef] [Green Version]
- Robson, M.E.; Storm, C.D.; Weitzel, J.; Wollins, D.S.; Offit, K. American Society of Clinical Oncology policy statement update: Genetic and genomic testing for cancer susceptibility. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 893–901. [Google Scholar] [CrossRef]
- Jafri, M.; Maher, E.R. The genetics of phaeochromocytoma: Using clinical features to guide genetic testing. Eur. J. Endocrinol. 2012, 166, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Amar, L.; Bertherat, J.; Baudin, E.; Ajzenberg, C.; Bressac-de Paillerets, B.; Chabre, O.; Chamontin, B.; Delemer, B.; Giraud, S.; Murat, A.; et al. Genetic testing in pheochromocytoma or functional paraganglioma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 8812–8818. [Google Scholar] [CrossRef]
- Erlic, Z.; Rybicki, L.; Peczkowska, M.; Golcher, H.; Kann, P.H.; Brauckhoff, M.; Mussig, K.; Muresan, M.; Schaffler, A.; Reisch, N.; et al. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 6378–6385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascon, A.; Lopez-Jimenez, E.; Landa, I.; Leskela, S.; Leandro-Garcia, L.J.; Maliszewska, A.; Leton, R.; de la Vega, L.; Garcia-Barcina, M.J.; Sanabria, C.; et al. Rationalization of genetic testing in patients with apparently sporadic pheochromocytoma/paraganglioma. Horm. Metab. Res. = Horm. Stoffwechs. = Horm. Metab. 2009, 41, 672–675. [Google Scholar] [CrossRef]
- Mannelli, M.; Castellano, M.; Schiavi, F.; Filetti, S.; Giacche, M.; Mori, L.; Pignataro, V.; Bernini, G.; Giache, V.; Bacca, A.; et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J. Clin. Endocrinol. Metab. 2009, 94, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Crona, J.; Verdugo, A.D.; Granberg, D.; Welin, S.; Stalberg, P.; Hellman, P.; Bjorklund, P. Next-generation sequencing in the clinical genetic screening of patients with pheochromocytoma and paraganglioma. Endocr. Connect. 2013, 2, 104–111. [Google Scholar] [CrossRef] [Green Version]
- McInerney-Leo, A.M.; Marshall, M.S.; Gardiner, B.; Benn, D.E.; McFarlane, J.; Robinson, B.G.; Brown, M.A.; Leo, P.J.; Clifton-Bligh, R.J.; Duncan, E.L. Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. Clin. Endocrinol. 2014, 80, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Remacha, L.; Comino-Mendez, I.; Richter, S.; Contreras, L.; Curras-Freixes, M.; Pita, G.; Leton, R.; Galarreta, A.; Torres-Perez, R.; Honrado, E.; et al. Targeted Exome Sequencing of Krebs Cycle Genes Reveals Candidate Cancer-Predisposing Mutations in Pheochromocytomas and Paragangliomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 6315–6324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennedbaek, M.; Rossing, M.; Rasmussen, A.K.; Gerdes, A.M.; Skytte, A.B.; Jensen, U.B.; Nielsen, F.C.; Hansen, T.V. Identification of eight novel SDHB, SDHC, SDHD germline variants in Danish pheochromocytoma/paraganglioma patients. Hered Cancer Clin. Pract. 2016, 14, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.-P.; Ma, J.-M.; Du, Z.-F.; Ying, R.-B.; Fei, J.; Jin, H.-Y.; Han, J.-S.; Wang, J.-Q.; Chen, X.-L.; Chen, C.-Y.; et al. RET Germline Mutations Identified by Exome Sequencing in a Chinese Multiple Endocrine Neoplasia Type 2A/Familial Medullary Thyroid Carcinoma Family. PLoS ONE 2011, 6, e20353. [Google Scholar] [CrossRef]
- Rattenberry, E.; Vialard, L.; Yeung, A.; Bair, H.; McKay, K.; Jafri, M.; Canham, N.; Cole, T.R.; Denes, J.; Hodgson, S.V.; et al. A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 2013, 98, E1248–E1256. [Google Scholar] [CrossRef]
- Latteyer, S.; Klein-Hitpass, L.; Khandanpour, C.; Zwanziger, D.; Poeppel, T.D.; Schmid, K.W.; Fuhrer, D.; Moeller, L.C. A 6-Base Pair in Frame Germline Deletion in Exon 7 Of RET Leads to Increased RET Phosphorylation, ERK Activation, and MEN2A. J. Clin. Endocrinol. Metab. 2016, 101, 1016–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, G.R.; Sciacovelli, M.; Gaude, E.; Walsh, D.M.; Kirby, G.; Simpson, M.A.; Trembath, R.C.; Berg, J.N.; Woodward, E.R.; Kinning, E.; et al. Germline FH mutations presenting with pheochromocytoma. J. Clin. Endocrinol. Metab. 2014, 99, E2046–E2050. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.; Benn, D.; Clifton-Bligh, R.; Robinson, B.; Trainer, A.H.; James, P.; Hogg, A.; Waldeck, K.; George, J.; Li, J.; et al. The genomic landscape of phaeochromocytoma. J. Pathol. 2015, 236, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, L.; Khare, S.; Wubbenhorst, B.; DeSloover, D.; D’Andrea, K.; Merrill, S.; Cho, N.W.; Greenberg, R.A.; Else, T.; Montone, K.; et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat. Commun. 2015, 6, 6140. [Google Scholar] [CrossRef] [Green Version]
- Wilzen, A.; Rehammar, A.; Muth, A.; Nilsson, O.; Tesan Tomic, T.; Wangberg, B.; Kristiansson, E.; Abel, F. Malignant pheochromocytomas/paragangliomas harbor mutations in transport and cell adhesion genes. Int. J. Cancer 2016, 138, 2201–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crona, J.; Delgado Verdugo, A.; Maharjan, R.; Stalberg, P.; Granberg, D.; Hellman, P.; Bjorklund, P. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J. Clin. Endocrinol. Metab. 2013, 98, E1266–E1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Vega, L.J.; Letouzé, E.; Burnichon, N.; Buffet, A.; Disderot, P.-H.; Khalifa, E.; Loriot, C.; Elarouci, N.; Morin, A.; Menara, M.; et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat. Commun. 2015, 6, 6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2013, 15, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2013, 15, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.M.; Van der Zwaag, B.; Jongbloed, J.D.; Vogel, M.J.; Bruggenwirth, H.T.; Lekanne Deprez, R.H.; Mook, O.; Ruivenkamp, C.A.; van Slegtenhorst, M.A.; van den Wijngaard, A.; et al. Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: A national collaborative study of Dutch genome diagnostic laboratories. Hum. Mutat. 2013, 34, 1313–1321. [Google Scholar] [CrossRef]
- Aziz, N.; Zhao, Q.; Bry, L.; Driscoll, D.K.; Funke, B.; Gibson, J.S.; Grody, W.W.; Hegde, M.R.; Hoeltge, G.A.; Leonard, D.G.; et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch. Pathol. Lab. Med. 2015, 139, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Matthijs, G.; Souche, E.; Alders, M.; Corveleyn, A.; Eck, S.; Feenstra, I.; Race, V.; Sistermans, E.; Sturm, M.; Weiss, M.; et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet. 2016, 24, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asan; Xu, Y.; Jiang, H.; Tyler-Smith, C.; Xue, Y.; Jiang, T.; Wang, J.; Wu, M.; Liu, X.; Tian, G.; et al. Comprehensive comparison of three commercial human whole-exome capture platforms. Genome. Biol. 2011, 12, R95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.J.; Chen, R.; Lam, H.Y.K.; Karczewski, K.J.; Chen, R.; Euskirchen, G.; Butte, A.J.; Snyder, M. Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 2011, 29, 908–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilamakuri, C.S.; Lorenz, S.; Madoui, M.A.; Vodák, D.; Sun, J.; Hovig, E.; Myklebost, O.; Meza-Zepeda, L.A. Performance comparison of four exome capture systems for deep sequencing. BMC Genom. 2014, 15, 449. [Google Scholar] [CrossRef] [Green Version]
- Biesecker, L.G.; Green, R.C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 2014, 371, 1170. [Google Scholar] [CrossRef] [Green Version]
- Patocs, A.; Lendvai, N.K.; Butz, H.; Liko, I.; Sapi, Z.; Szucs, N.; Toth, G.; Grolmusz, V.K.; Igaz, P.; Toth, M.; et al. Novel SDHB and TMEM127 Mutations in Patients with Pheochromocytoma/Paraganglioma Syndrome. Pathol. Oncol. Res. POR 2016, 22, 673–679. [Google Scholar] [CrossRef]
- Gergics, P.; Toke, J.; Szilagyi, A.; Szappanos, A.; Kender, Z.; Barta, G.; Toth, M.; Igaz, P.; Racz, K.; Patocs, A. Methods for the analysis of large gene deletions and their application in some hereditary diseases. Orv. Hetil. 2009, 150, 2258–2264. [Google Scholar] [CrossRef] [Green Version]
- Shen, R.; Fan, J.B.; Campbell, D.; Chang, W.; Chen, J.; Doucet, D.; Yeakley, J.; Bibikova, M.; Wickham Garcia, E.; McBride, C.; et al. High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 2005, 573, 70–82. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.E.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Chen, K.; Wylie, T.; Larson, D.E.; McLellan, M.D.; Mardis, E.R.; Weinstock, G.M.; Wilson, R.K.; Ding, L. VarScan: Variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009, 25, 2283–2285. [Google Scholar] [CrossRef] [Green Version]
- Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.; Ding, L.; Wilson, R.K. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome. Res. 2012, 22, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 10–11. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, R.A.; Belmont, J.W.; Hardenbol, P.; Willis, T.D.; Yu, F.; Yang, H.; Ch’ang, L.-Y.; Huang, W.; Liu, B.; Shen, Y.; et al. The International HapMap Project. Nature 2003, 426, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Fokkema, I.F.; Taschner, P.E.; Schaafsma, G.C.; Celli, J.; Laros, J.F.; den Dunnen, J.T. LOVD v.2.0: The next generation in gene variant databases. Hum. Mutat. 2011, 32, 557–563. [Google Scholar] [CrossRef]
- Gieldon, L.; William, D.; Hackmann, K.; Jahn, W.; Jahn, A.; Wagner, J.; Rump, A.; Bechmann, N.; Nolting, S.; Knosel, T.; et al. Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers 2019, 11, 809. [Google Scholar] [CrossRef] [Green Version]
- Ben Aim, L.; Pigny, P.; Castro-Vega, L.J.; Buffet, A.; Amar, L.; Bertherat, J.; Drui, D.; Guilhem, I.; Baudin, E.; Lussey-Lepoutre, C.; et al. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J. Med. Genet. 2019, 56, 513–520. [Google Scholar] [CrossRef]
- Richter, S.; Gieldon, L.; Pang, Y.; Peitzsch, M.; Huynh, T.; Leton, R.; Viana, B.; Ercolino, T.; Mangelis, A.; Rapizzi, E.; et al. Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 705–717. [Google Scholar] [CrossRef]
- Pillai, S.; Gopalan, V.; Lo, C.Y.; Liew, V.; Smith, R.A.; Lam, A.K. Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: A clinicopathological correlations. Exp. Mol. Pathol. 2017, 102, 41–46. [Google Scholar] [CrossRef]
- Di Resta, C.; Galbiati, S.; Carrera, P.; Ferrari, M. Next-generation sequencing approach for the diagnosis of human diseases: Open challenges and new opportunities. EJIFCC 2018, 29, 4–14. [Google Scholar]
- Wang, L.; Zhang, J.; Chen, N.; Wang, L.; Zhang, F.; Ma, Z.; Li, G.; Yang, L. Application of Whole Exome and Targeted Panel Sequencing in the Clinical Molecular Diagnosis of 319 Chinese Families with Inherited Retinal Dystrophy and Comparison Study. Genes 2018, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Graziola, F.; Garone, G.; Stregapede, F.; Bosco, L.; Vigevano, F.; Curatolo, P.; Bertini, E.; Travaglini, L.; Capuano, A. Diagnostic Yield of a Targeted Next-Generation Sequencing Gene Panel for Pediatric-Onset Movement Disorders: A 3-Year Cohort Study. Front. Genet. 2019, 10, 1026. [Google Scholar] [CrossRef]
- Gimenez-Roqueplo, A.P.; Favier, J.; Rustin, P.; Rieubland, C.; Crespin, M.; Nau, V.; Khau Van Kien, P.; Corvol, P.; Plouin, P.F.; Jeunemaitre, X. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003, 63, 5615–5621. [Google Scholar]
- Ayala-Ramirez, M.; Feng, L.; Johnson, M.M.; Ejaz, S.; Habra, M.A.; Rich, T.; Busaidy, N.; Cote, G.J.; Perrier, N.; Phan, A.; et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: Primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 2011, 96, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Sarkadi, B.; Meszaros, K.; Krencz, I.; Canu, L.; Krokker, L.; Zakarias, S.; Barna, G.; Sebestyen, A.; Papay, J.; Hujber, Z.; et al. Glutaminases as a Novel Target for SDHB-Associated Pheochromocytomas/Paragangliomas. Cancers 2020, 12, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plouin, P.F.; Amar, L.; Dekkers, O.M.; Fassnacht, M.; Gimenez-Roqueplo, A.P.; Lenders, J.W.M.; Lussey-Lepoutre, C.; Steichen, O. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur. J. Endocrinol. 2016, 174, G1–G10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Clark, P.; Londin, E.; Sponziello, M.; Kricka, L.J.; Fortina, P. Clinical exome performance for reporting secondary genetic findings. Clin. Chem. 2015, 61, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaDuca, H.; Farwell, K.D.; Vuong, H.; Lu, H.M.; Mu, W.; Shahmirzadi, L.; Tang, S.; Chen, J.; Bhide, S.; Chao, E.C. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS ONE 2017, 12, e0170843. [Google Scholar] [CrossRef]
- Considerations for Design, Development, and Analytical Validation of Next Generation Sequencing (NGS)—Based In Vitro Diagnostics (IVDs) Intended to Aid in the Diagnosis of Suspected Germline Diseases. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-development-and-analytical-validation-next-generation-sequencing-ngs-based (accessed on 22 May 2021).
- Welander, J.; Andreasson, A.; Juhlin, C.C.; Wiseman, R.W.; Bäckdahl, M.; Höög, A.; Larsson, C.; Gimm, O.; Söderkvist, P. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 2014, 99, E1352–E1360. [Google Scholar] [CrossRef] [PubMed]
- Wooderchak-Donahue, W.L.; O’Fallon, B.; Furtado, L.V.; Durtschi, J.D.; Plant, P.; Ridge, P.G.; Rope, A.F.; Yetman, A.T.; Bayrak-Toydemir, P. A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel- clinical diagnostics perspective. BMC Med. Genom. 2012, 5, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Deignan, J.L.; Dorrani, N.; Strom, S.P.; Kantarci, S.; Quintero-Rivera, F.; Das, K.; Toy, T.; Harry, B.; Yourshaw, M.; et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014, 312, 1880–1887. [Google Scholar] [CrossRef]
- Boedeker, C.C.; Erlic, Z.; Richard, S.; Kontny, U.; Gimenez-Roqueplo, A.-P.; Cascon, A.; Robledo, M.; de Campos, J.M.; van Nederveen, F.H.; de Krijger, R.R.; et al. Head and Neck Paragangliomas in Von Hippel-Lindau Disease and Multiple Endocrine Neoplasia Type 2. J. Clin. Endocrinol. Metab. 2009, 94, 1938–1944. [Google Scholar] [CrossRef]
- Trpkov, K.; Hes, O.; Williamson, S.R.; Adeniran, A.J.; Agaimy, A.; Alaghehbandan, R.; Amin, M.B.; Argani, P.; Chen, Y.B.; Cheng, L.; et al. New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod. Pathol. 2021, 34, 1392–1424. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.M.; Handler, M.Z.; Schwartz, R.A.; Lambert, W.C. Hereditary leiomyomatosis and renal cell cancer syndrome: An update and review. J. Am. Acad.Dermatol. 2017, 77, 149–158. [Google Scholar] [CrossRef]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Lendvai, N.; Tóth, M.; Valkusz, Z.; Bekő, G.; Szücs, N.; Csajbók, E.; Igaz, P.; Kriszt, B.; Kovács, B.; Rácz, K.; et al. Over-representation of the G12S polymorphism of the SDHD gene in patients with MEN2A syndrome. Clinics 2012, 67 (Suppl. 1), 85–89. [Google Scholar] [CrossRef]
- Toledo, R.A.; Hatakana, R.; Lourenço, D.M., Jr.; Lindsey, S.C.; Camacho, C.P.; Almeida, M.; Lima, J.V., Jr.; Sekiya, T.; Garralda, E.; Naslavsky, M.S.; et al. Comprehensive assessment of the disputed RET Y791F variant shows no association with medullary thyroid carcinoma susceptibility. Endocr. Relat. Cancer 2015, 22, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, T.; Iwasaki, M.; Yamamichi, A.; Yoshioka, Y.; Uesaka, T.; Bitoh, Y.; Maeda, K.; Fukumoto, T.; Takemoto, T.; Enomoto, H. Point mutagenesis in mouse reveals contrasting pathogenetic effects between MEN2B- and Hirschsprung disease-associated missense mutations of the RET gene. Dev. Growth Differ. 2020, 62, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.A.; Yang, Q.; Friedman, J.M. Mortality in neurofibromatosis 1: An analysis using U.S. death certificates. Am. J. Hum. Genet. 2001, 68, 1110–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient ID | Known Mutation Detected by Sanger Sequencing | NGS Platform Used | Library Preparation Kit Used | Characteristics of Mutation Identified by Exome Sequencing | ||
---|---|---|---|---|---|---|
Mutation Confirmed | ACMG Category | Coverage, Read Number (Ratio and Read Numbers for Wild Type and Mutant Alleles) | ||||
1/F1 | SDHB(NM_003000.3):c.586T>G (p.Cys196Gly) | Illumina Hiseq 2000 | Agilent 51 M SureSelect | Yes | Pathogenic | 50 (0.46: 27/23) |
2/F1 | SDHB(NM_003000.3):c.586T>G (p.Cys196Gly) | Yes | Pathogenic | 58 (0.55: 26/32) | ||
3/F1 | No mutation detected | No mutation detected | ||||
4/F1 | No mutation detected | No mutation detected | ||||
5 | SDHB(NM_003000.2):c.649C>T (p.Arg217Cys) | Complete Genomics | BGI 59Mb Exome kit | Yes | Pathogenic | 59 (0.38: 36/23) |
6 | SDHB(NM_003000.2):c.758G>A (p.Cys253Tyr) | Yes | Pathogenic | 56 (0.59: 23/33) | ||
7 | SDHB(NM_003000.3):c.728G>A (p.Cy243Tyr) | Yes | Pathogenic | 37 (0.62: 14/23) | ||
8 | SDHB(NM_003000.2):c.286+1G>A | Yes | Pathogenic | 34 (0.5: 17/17) | ||
9 | SDHB(NM_003000.2): c.607G>T (p.Gly203 *) | Yes | Pathogenic | 33 (0.36: 21/12) | ||
10 | SDHC(NM_003001.3):c.405+1G>T | Yes | Pathogenic | 50 (0.42:29/21) | ||
11 | SDHD(NM_003002.4): c.147_148dupA (p.His50fs) | Yes | Pathogenic | 33 (0.27: 24/9) | ||
12 | SDHD(NM_003002.4):c.149A>G (p.His50Arg) | Yes | VUS | 36 (0.47: 19/17) | ||
13 | No mutation detected | No mutation detected | ||||
14 | No mutation detected | No mutation detected | ||||
15 | No mutation detected | No mutation detected | ||||
16 | No mutation detected | No mutation detected | ||||
17 | No mutation detected | Illumina Hiseq 2000 | Rapid Capture Exome Library Preparation Kit | No mutation detected | ||
18/F2 | SDHB(NM_003000.3):c.586T>C (p.Cys196Arg) | Yes | Pathogenic | 185 (0.55:84/101) | ||
19/F2 | SDHB(NM_003000.3):c.586T>C (p.Cys196Arg) | Yes | Pathogenic | 102 (0.48:53/49) | ||
20/F2 | SDHB(NM_003000.3):c.586T>C (p.Cys196Arg) | Yes | Pathogenic | 170 (0.45:93/77) |
Agilent 51M SureSelect (n = 4) | Complete Genomics (n = 12) | Illumina Rapid Capture (n = 4) | ||||
---|---|---|---|---|---|---|
Allelic Ratio (%, Range) | 30–70 | 41.1–58.8 | 30–70 | 41.1–58.8 | 30–70 | 41.1–58.8 |
True variants (mutations and polymorphisms) detected by Sanger sequencing | 9 | 29 | 14 | |||
Variants detected by WES | 9 | 8 | 28 | 16 | 14 | 14 |
False positive variants | 0 | 0 | 4 | 2 | 0 | 0 |
False negative variants | 0 | 1 | 1 | 13 | 0 | 0 |
Sensitivity | 100 | 88.9 | 96.5 | 55 | 100 | 100 |
ID | Panel | Phenotype | ACMG Classification | Clinical Classification Based on PPGL Consensus Guideline [25] | |
---|---|---|---|---|---|
Pathogenic/Likely Pathogenic Variants | VUS | ||||
1 | EP 1.0V | malignant PGL | SDHB(NM_003000.3):c.728G>A (p.Cys243Tyr) | - | pathogenic |
2 | EP 1.0V | Pheo | - | - | |
3 | EP 1.0V | malignant PGL | SDHB(NM_003000.3):c.586T>G (p.Cys196Gly) | - | pathogenic |
4 | EP 1.0V | malignant PGL | - | - | |
5 | EP 1.0V | Pheo | - | - | |
6 | EP 1.0V | MEN2 | RET(NM_020975.6):c.1832G>A (p.Cys611Tyr) | - | pathogenic |
7 | EP 1.0V | Pheo | TMEM127(NM_001193304.3):c.419G>A (p.Cys140Tyr) | - | likely pathogenic |
8 | EP 1.0V | Pheo | - | - | |
9 | EP 1.0V | malignant PGL | SDHB(NM_003000.3):c.745T>C (p.Cys249Arg) | - | likely pathogenic |
10 | EP 1.0V | malignant PGL | SDHB(NM_003000.3):c.649C>T (p.Arg217Cys) | - | likely pathogenic |
11 | EP 1.0V | malignant PGL | SDHB(NM_003000.3):c.758G>A (p.Cys253Tyr) | - | pathogenic |
12 | EP 1.0V | MEN2B | RET(NM_020975.6):c.2753T>C (p.Met918Thr) | pathogenic | |
13 | EP 1.0V | Pheo | TMEM127(NM_001193304.3):c.320delG (p.Ser107Ilefs*17) | - | likely pathogenic |
14 | EP 1.0V | VHL | VHL(NM_000551.4):c.407T>G (p. Phe136Cys) | - | likely pathogenic |
15 | EP 1.0V | Pheo | - | - | |
16 | EP 1.0P | Pheo | - | - | |
17 | EP 1.0P | Pheo | - | - | |
18 | EP 1.0P | Pheo | - | - | |
19 | EP 1.0P | malignant PGL | SDHB(NM_003000.3):c.286+2T>A | - | likely pathogenic |
20 | EP 1.0P | PGL | - | - | |
21 | EP 1.0P | NF1 | NF1(NM_001042492.3):c.1756_1759delACTA (p.Thr586ValfsTer18) | - | pathogenic |
22 | EP 1.0P | NF1 | NF1(NM_001042492.2):c.5047_5053delinsGGAG (p.Asn1683_Ser1684_Trp1685delinsGlyGly) | - | VUS |
23 | EP 1.0P | NF1 | NF1(NM_001042492.2):c.4230_4231delCC (p.Leu1411GlnfsTer12) | - | likely pathogenic |
24 | EP 1.0P | NF1 | NF1(NM_001042492.2):c.1466A>G (p.Tyr489Cys) | - | pathogenic |
25 | EP 1.0P | NF1 | NF1(NM_001042492.2):c.2251+1G>A | - | likely pathogenic |
26 | EP 1.0P | NF1 | NF1(NM_001042492.2):c.7465_7466insG (p.Lys2489ArgfsTer13) | - | likely pathogenic |
27 | EP 1.0P | Pheo | - | - | |
28 | EP 1.0P | NF1 | NF1(NM_001042492.2):c.4175dupT (p.Val1393GlyfsTer2) | - | likely pathogenic |
29 | EP 1.0P | Pheo | - | - | |
30 | EP 1.0P | Pheo | - | - | |
31 | EP 1.0P | Pheo | - | - | |
32 | EP 1.0P | Pheo | - | - | |
33 | EP 1.0P | Pheo | - | - | |
34 | EP 1.0P | PGL-glomus caroticum | - | VHL(NM_000551.4):c.123_137dupAGAGTCCGGCCCGGA (p.Ser43_Glu47dup) = NM_000551.3(VHL):c.123_137dup (p.38_42SGPEE [3]) | VUS |
35 | EP 1.0P | Pheo | - | - | |
36 | EP 1.0P | malignant PGL | SDHB(NM_003000.3):c.263C>T (p.Thr88Ile) SDHB(NM_003000.3):c.268C>G (p.Arg90Gly) SDHB(NM_003000.3):c.271_273del (p.Arg91del) | - | VUS VUS likely pathogenic |
37 | EP 1.0P | Pheo | - | - | |
38 | EP 1.0P | Pheo | - | - | |
39 | EP 1.0P | Pheo | - | - | |
40 | EP 2.0 | Pheo | - | - | |
41 | EP 2.0 | Pheo | SDHB(NM_003000.3):c.193C>T (p.Leu65Phe) | - | likely pathogenic |
42 | EP 2.0 | Pheo | - | - | |
43 | EP 2.0 | Pheo | - | - | |
44 | EP 2.0 | Pheo | - | - | |
45 | EP 2.0 | Pheo | - | - | |
46 | EP 2.0 | Pheo | - | - | |
47 | EP 2.0 | Pheo | - | - | |
48 | EP 2.0 | Pheo | VHL(NM_000551.4):c.576delA (p.Asn193MetfsTer9) | - | likely pathogenic |
49 | EP 2.0 | Pheo | - | - | |
50 | EP 2.0 | Pheo&PGL | SDHB(NM_003000.3):c.286+2T>A | likely pathogenic | |
51 | EP 2.0 | Pheo | FH(NM_000143.4):c.1127A>C (p.Gln376Pro) | - | likely pathogenic |
52 | EP 2.0 | Pheo | - | - | |
53 | EP 2.0 | Pheo | - | - | |
54 | EP 2.0 | abdominal PGL | SDHB(NM_003000.3):c.689G>A(p.Arg230His) | - | pathogenic |
55 | EP 2.0 | Pheo | - | - | |
56 | EP 2.0 | Pheo | - | - | |
57 | EP 2.0 | malignant PGL | - | ||
58 | EP 2.0 | Pheo | - | - | |
59 | EP 2.0 | Pheo | - | - | |
60 | EP 2.0 | cervical PGL | - | - | |
61 | EP 2.0 | NF1 | NF1(NM_001042492.2):c.3456dupA (p.Leu1153ThrfsTer42) | - | pathogenic |
62 | EP 2.0 | Pheo | - | - | |
63 | EP 2.0 | NF1 | NF1(NM_001042492.2):c.888+2T>G | pathogenic | |
64 | EP 2.0 | Pheo | - | - | |
65 | EP 2.0 | Fumarase deficient leiomyoma | FH(NM_000143.4):c.1256C>T (p.Ser419Leu) | - | likely pathogenic |
66 | EP 2.0 | Pheo | - | - | |
67 | EP 2.0 | Pheo | - | MDH2(NM_005918.4):c.686G>A (p.Arg229Gln) | VUS |
68 | EP 2.0 | Pheo | - | SDHA(NM_004168.4):c.837G>T (p.Met279Ile) | VUS |
69 | EP 2.0 | Pheo | - | - | |
70 | EP 2.0 | Pheo | - | - | |
71 | EP 2.0 | Pheo | RET(NM_020975.6):c.2372A>T (p.Tyr791Phe)- | VUS | |
72 | EP 2.0 | NF1 | NF1(NM_001042492.2):c.6850_6853delACTT (p.Tyr2285fs) | SDHC(NM_003001.5):c.94A>G (p.Thr32Ala) | The NF1 variant pathogenic The SDHC variant VUS |
73 | EP 2.0 | Pheo | - | - | |
74 | EP 2.0 | Pheo | - | - | |
75 | EP 2.0 | Pheo | - | - | |
76 | EP 2.0 | NF1 | NF1(NM_001042492.3):c.2991-1G>C | - | pathogenic |
Sample ID | Manifestations | Age (Years) | Benign/Malignant | Genetic Variant | Clinical Significance |
---|---|---|---|---|---|
22 | Neurofibromatosis Type 1: multiple neurofibromas Adrenal pheochromocytoma | 30 30 | B B | NF1(NM_001042492.2):c.5047_5053delinsGGAG(p.Asn1683_Ser1684_Trp1685delinsGlyGly) | VUS |
23 | Neurofibromatosis Type 1: multiple neurofibromas | 32 | B | NF1(NM_001042492.2):c.4230_4231delCC (p.Leu1411GlnfsTer12) | likely pathogenic |
26 | Neurofibromatosis Type 1: Adrenal pheochromocytoma | 15 | B | NF1(NM_001042492.2):c.7465_7466insG (p.Lys2489ArgfsTer13) | likely pathogenic |
28 | Neurofibromatosis Type 1 | 26 | B | NF1(NM_001042492.2):c.4175dupT (p.Val1393GlyfsTer2) | likely pathogenic |
36 | Extra-adrenal PGL | 14 | M | SDHB(NM_003000.3):c.263C>T (p.Thr88Ile) SDHB(NM_003000.3):c.268C>G (p.Arg90Gly) SDHB(NM_003000.3):c.271_273del (p.Arg91del) | VUS VUS likely pathogenic |
48 | Adrenal pheochromocytoma | 15 | B | VHL(NM_000551.4):c.576delA (p.Asn193MetfsTer9) | likely pathogenic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkadi, B.; Liko, I.; Nyiro, G.; Igaz, P.; Butz, H.; Patocs, A. Analytical Performance of NGS-Based Molecular Genetic Tests Used in the Diagnostic Workflow of Pheochromocytoma/Paraganglioma. Cancers 2021, 13, 4219. https://doi.org/10.3390/cancers13164219
Sarkadi B, Liko I, Nyiro G, Igaz P, Butz H, Patocs A. Analytical Performance of NGS-Based Molecular Genetic Tests Used in the Diagnostic Workflow of Pheochromocytoma/Paraganglioma. Cancers. 2021; 13(16):4219. https://doi.org/10.3390/cancers13164219
Chicago/Turabian StyleSarkadi, Balazs, Istvan Liko, Gabor Nyiro, Peter Igaz, Henriett Butz, and Attila Patocs. 2021. "Analytical Performance of NGS-Based Molecular Genetic Tests Used in the Diagnostic Workflow of Pheochromocytoma/Paraganglioma" Cancers 13, no. 16: 4219. https://doi.org/10.3390/cancers13164219
APA StyleSarkadi, B., Liko, I., Nyiro, G., Igaz, P., Butz, H., & Patocs, A. (2021). Analytical Performance of NGS-Based Molecular Genetic Tests Used in the Diagnostic Workflow of Pheochromocytoma/Paraganglioma. Cancers, 13(16), 4219. https://doi.org/10.3390/cancers13164219