Maternal Thyroid Disease and the Risk of Childhood Cancer in the Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Definition and Classification
2.3. Cancer Definition and Classification
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number of Cases 2029 | Number of Controls 10,103 | Crude OR 1 | 95% CI | Adjusted OR 2 | 95% CI | |
---|---|---|---|---|---|---|
Maternal hypothyroidism | 45 (2.2) | 155 (1.5) | 1.46 | 1.04–2.05 | 1.41 | 1.00–2.00 |
Maternal hyperthyroidism | 1 (0.05) | 13 (0.1) | 0.38 | 0.05–2.94 | 0.42 | 0.05–3.23 |
Other maternal thyroid disease | 3 (0.1) | 5 (0.05) | 3.00 | 0.72–12.55 | 3.61 | 0.80–16.26 |
References
- Strahm, B.; Malkin, D. Hereditary cancer predisposition in children: Genetic basis and clinical implications. Int. J. Cancer 2006, 119, 2001–2006. [Google Scholar] [CrossRef]
- Postema, F.A.M.; Hopman, S.M.J.; Aalfs, C.M.; Berger, L.P.V.; Bleeker, F.E.; Dommering, C.J.; Jongmans, M.C.J.; Letteboer, T.G.W.; Olderode-Berends, M.J.W.; Wagner, A.; et al. Childhood tumours with a high probability of being part of a tumour predisposition syndrome; reason for referral for genetic consultation. Eur. J. Cancer 2017, 80, 48–54. [Google Scholar] [CrossRef]
- Milne, E.; Greenop, K.R.; Metayer, C.; Schüz, J.; Petridou, E.; Pombo-De-Oliveira, M.S.; Infante-Rivard, C.; Roman, E.; Dockerty, J.D.; Spector, L.G.; et al. Fetal growth and childhood acute lymphoblastic leukemia: Findings from the childhood leukemia international consortium. Int. J. Cancer 2013, 133, 2968–2979. [Google Scholar] [CrossRef] [Green Version]
- Contreras, Z.A.; Ritz, B.; Virk, J.; Cockburn, M.; Heck, J.E. Maternal pre-pregnancy and gestational diabetes, obesity, gestational weight gain, and risk of cancer in young children: A population-based study in California. Cancer Causes Control 2016, 27, 1273–1285. [Google Scholar] [CrossRef] [Green Version]
- Spector, L.G.; Puumala, S.E.; Carozza, S.E.; Chow, E.J.; Fox, E.E.; Horel, S.; Johnson, K.J.; McLaughlin, C.C.; Reynolds, P.; Von Behren, J.; et al. Cancer risk among children with very low birth weights. Pediatrics 2009, 124, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paltiel, O.; Tikellis, G.; Linet, M.; Golding, J.; Lemeshow, S.; Phillips, G.; Lamb, K.; Stoltenberg, C.; Håberg, S.E.; Strøm, M.; et al. Birthweight and childhood cancer: Preliminary findings from the international childhood cancer cohort consortium (I4C). Paediatr. Perinat. Epidemiol. 2015, 29, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, L.K.; Vettenranta, K.; Leinonen, M.K.; Tommiska, V.; Madanat-Harjuoja, L. Preterm birth, neonatal therapies and the risk of childhood cancer. Int. J. Cancer 2021, 148, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Wu, L.-Q.; Liu, Y.-N.; Bi, Y.-Y.; Wang, H. Gestational age and childhood leukemia: A meta-analysis of epidemiologic studies. Hematology 2018, 23, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Mellemkjær, L.; Hasle, H.; Gridley, G.; Johansen, C.; Kjær, S.K.; Frederiksen, K.; Olsen, J.H. Risk of cancer in children with the diagnosis immaturity at birth. Paediatr. Perinat. Epidemiol. 2006, 20, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Luna-Gierke, R.E.; Chambers, T.M.; Tavelin, B.; Scheurer, M.E.; Melin, B.; Papworth, K. Perinatal and familial risk factors for soft tissue sarcomas in childhood through young adulthood: A population-based assessment in 4 million live births. Int. J. Cancer 2019, 146, 791–802. [Google Scholar] [CrossRef]
- Seppälä, L.K.; Vettenranta, K.; Pitkäniemi, J.; Hirvonen, E.; Leinonen, M.K.; Madanat-Harjuoja, L.-M. Maternal diabetes and risk of childhood cancer in the offspring. Int. J. Cancer 2020, 147, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Søegaard, S.H.; Rostgaard, K.; Kamper-Jørgensen, M.; Schmiegelow, K.; Hjalgrim, H. Maternal diabetes and risk of childhood acute lymphoblastic leukaemia in the offspring. Br. J. Cancer 2018, 118, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Bailey, H.D.; Fritschi, L.; Infante-Rivard, C.; Glass, D.C.; Miligi, L.; Dockerty, J.D.; Lightfoot, T.; Clavel, J.; Roman, E.; Spector, L.G.; et al. Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: Findings from the childhood leukemia international consortium. Int. J. Cancer 2014, 135, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Linabery, A.M.; Erhardt, E.B.; Fonstad, R.K.; Ambinder, R.F.; Bunin, G.R.; Ross, J.A.; Spector, L.G.; Grufferman, S. Infectious, autoimmune and allergic diseases and risk of Hodgkin lymphoma in children and adolescents: A Children’s Oncology Group study. Int. J. Cancer 2014, 135, 1454–1469. [Google Scholar] [CrossRef]
- Mellemkjær, L.; Alexander, F.; Olsen, J.H. Cancer among children of parents with autoimmune diseases. Br. J. Cancer 2000, 82, 1353–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppälä, L.K.; Madanat-Harjuoja, L.; Troisi, R.; Sampson, J.N.; Leinonen, M.K.; Vettenranta, K. Maternal autoimmune disease is not associated with cancer in the offspring. Acta Paediatr. 2021, 110, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Mellemkjaer, L.; Pfeiffer, R.M.; Engels, E.A.; Gridley, G.; Wheeler, W.; Hemminki, K.; Olsen, J.H.; Dreyer, L.; Linet, M.S.; Goldin, L.R.; et al. Autoimmune disease in individuals and close family members and susceptibility to non-Hodgkin’s lymphoma. Arthritis Rheum. 2008, 58, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Turunen, S.; Vääräsmäki, M.; Männistö, T.; Hartikainen, A.L.; Lahesmaa-Korpinen, A.M.; Gissler, M.; Suvanto, E. Pregnancy and perinatal outcome among hypothyroid mothers: A population-based cohort study. Thyroid 2019, 29, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Turunen, S.; Vääräsmäki, M.; Lahesmaa-Korpinen, A.M.; Leinonen, M.K.; Gissler, M.; Männistö, T.; Suvanto, E. Maternal hyperthyroidism and pregnancy outcomes: A population-based cohort study. Clin. Endocrinol. 2020, 93, 721–728. [Google Scholar] [CrossRef]
- Shinohara, D.R.; Santos, T.D.S.; de Carvalho, H.C.; Lopes, L.C.B.; Günther, L.S.A.; Aristides, S.M.A.; Teixeira, J.J.V.; Demarchi, I.G. Pregnancy Complications Associated With Maternal Hypothyroidism. Obstet. Gynecol. Surv. 2018, 73, 219–230. [Google Scholar] [CrossRef]
- Derakhshan, A.; Peeters, R.P.; Taylor, P.N.; Bliddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; Chen, L.; Knight, B.A.; Ghafoor, F.; et al. Association of maternal thyroid function with birthweight: A systematic review and individual-participant data meta-analysis. Lancet Diabetes Endocrinol. 2020, 8, 501–510. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cabral, H.J.; Aschengrau, A.; Pearce, E.N. Associations between Maternal Thyroid Function in Pregnancy and Obstetric and Perinatal Outcomes. J. Clin. Endocrinol. Metab. 2019, 105, e2015–e2023. [Google Scholar] [CrossRef] [PubMed]
- Perillat-Menegaux, F.; Clavel, J.; Auclerc, M.F.; Baruchel, A.; Leverger, G.; Nelken, B.; Philippe, N.; Sommelet, D.; Vilmer, E.; Hémon, D. Family history of autoimmune thyroid disease and childhood acute leukemia. Cancer Epidemiol. Biomarkers Prev. 2003, 12, 60–63. [Google Scholar]
- Westbom, L.; Åberg, A.; Källén, B. Childhood malignancy and maternal diabetes or other auto-immune disease during pregnancy. Br. J. Cancer 2002, 86, 1078–1080. [Google Scholar] [CrossRef]
- Zierhut, H.; Linet, M.S.; Robison, L.L.; Severson, R.K.; Spector, L. Family history of cancer and non-malignant diseases and risk of childhood acute lymphoblastic leukemia: A Children’s Oncology Group Study. Cancer Epidemiol. 2012, 36, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Azizi, G.; Malchoff, C.D. Autoimmune thyroid disease: A risk factor for thyroid cancer. Endocr. Pract. 2011, 17, 201–209. [Google Scholar] [CrossRef]
- Guilmette, J.; Nosé, V. Hereditary and familial thyroid tumours. Histopathology 2018, 72, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.N.; Olshan, A.F.; Guess, H.A.; Savitz, D.A.; Poole, C.; Blatt, J.; Bondy, M.L.; Pollock, B.H. Maternal medication use and neuroblastoma in offspring. Am. J. Epidemiol. 2004, 159, 721–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.A.; Xie, Y.; Davies, S.M.; Shu, X.O.; Pendergrass, T.W.; Robison, L.L. Prescription medication use during pregnancy and risk of infant leukemia (United States). Cancer Causes Control 2003, 14, 447–451. [Google Scholar] [CrossRef]
- Leinonen, M.K.; Miettinen, J.; Heikkinen, S.; Pitkäniemi, J.; Malila, N. Quality measures of the population-based Finnish Cancer Registry indicate sound data quality for solid malignant tumours. Eur. J. Cancer 2017, 77, 31–39. [Google Scholar] [CrossRef]
- Jokela, M.; Leinonen, M.K.; Malila, N.; Taskinen, M.; Madanat-Harjuoja, L.M. Completeness of pediatric cancer registration in the Finnish Cancer Registry. Acta Oncol. 2019, 58, 577–1580. [Google Scholar] [CrossRef] [PubMed]
- Gissler, M.; Shelley, J. Quality of data on subsequent events in a routine Medical Birth Register. Med. Inform. Internet Med. 2002, 27, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gissler, M.; Teperi, J.; Hemminki, E.; Meriläinen, J. Short Communication: Data Quality after Restructuring a National Medical Registry. Scand. J. Public Health 1995, 23, 75–80. [Google Scholar] [CrossRef]
- Leinonen, M.; Martikainen, V.; Ellfolk, M.; Heino, A.; Kiuru-Kuhlefelt, T.; Malm, H.; Saastamoinen, L.; Gissler, M. Raskausajan Lääkkeiden Käyttö ja Syntyneiden Lasten Terveys 1996–2016 [Maternal Medication Use during Pregnancy and Children’s Health 1996–2016]; Finnish Institute of Health and Welfare: Helsinki, Finland, 2020. [Google Scholar]
- Madanat, L.M.S.; Lähteenmäki, P.M.; Hurme, S.; Dyba, T.; Salmi, T.T.; Sankila, R. Hypothyroidism among pediatric cancer patients: A nationwide, registry-based study. Int. J. Cancer 2008, 122, 1868–1872. [Google Scholar] [CrossRef] [PubMed]
- Madanat, L.M.S.; Lähteenmäki, P.M.; Alin, J.; Salmi, T.T. The natural history of thyroid function abnormalities after treatment for childhood cancer. Eur. J. Cancer 2007, 43, 1161–1170. [Google Scholar] [CrossRef]
- Clausen, C.T.; Hasle, H.; Holmqvist, A.S.; Madanat-Harjuoja, L.; Tryggvadottir, L.; Wesenberg, F.; Bautz, A.; Winther, J.F.; Licht, S.d.F. Hyperthyroidism as a late effect in childhood cancer survivors—An Adult Life after Childhood Cancer in Scandinavia (ALiCCS) study. Acta Oncol. 2019, 58, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Pihkala, J.; Hakala, T.; Voutilainen, P.; Raivio, K. Characteristic of recent fetal growth curves in Finland. Duodecim 1989, 105, 1540–1546. [Google Scholar]
- Steliarova-Foucher, E.; Stiller, C.; Lacour, B.; Kaatsch, P. International classification of childhood cancer, third edition. Cancer 2005, 103, 1457–1467. [Google Scholar] [CrossRef]
- Contreras, Z.A.; Hansen, J.; Ritz, B.; Olsen, J.; Yu, F.; Heck, J.E. Parental age and childhood cancer risk: A Danish population-based registry study. Cancer Epidemiol. 2017, 49, 202–215. [Google Scholar] [CrossRef]
- Akre, O.; Forssell, L.; Kaijser, M.; Norén-Nilsson, I.; Lagergren, J.; Nyrén, O.; Ekbom, A. Perinatal Risk Factors for Cancer of the Esophagus and Gastric Cardia: A Nested Case-Control Study. Cancer Epidemiol. Prev. Biomarkers 2006, 15, 867–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, J.E.; Lee, P.C.; Wu, C.K.; Tsai, H.Y.; Ritz, B.; Arah, O.A.; Li, C.Y. Gestational risk factors and childhood cancers: A cohort study in Taiwan. Int. J. Cancer 2020, 147, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Xu, X.; Liu, X.; Wang, X.; Hua, S.; Wang, C.; Liu, X. The associations between maternal factors during pregnancy and the risk of childhood acute lymphoblastic leukemia: A meta-analysis. Pediatr. Blood Cancer 2015, 62, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Dessypris, N.; Papadakis, V.; Tragiannidis, A.; Bouka, E.; Hatzipantelis, E.; Moschovi, M.; Papakonstantinou, E.; Polychronopoulou, S.; Sgouros, S.; et al. Perinatal and early life risk factors for childhood brain tumors: Is instrument-assisted delivery associated with higher risk? Cancer Epidemiol. 2019, 59, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Paltiel, O.; Lemeshow, S.; Phillips, G.S.; Tikellis, G.; Linet, M.S.; Ponsonby, A.L.; Magnus, P.; Håberg, S.E.; Olsen, S.F.; Granström, C.; et al. The association between birth order and childhood leukemia may be modified by paternal age and birth weight. Pooled results from the International Childhood Cancer Cohort Consortium (I4C). Int. J. Cancer 2019, 144, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auger, N.; Goudie, C.; Low, N.; Healy-Profitós, J.; Lo, E.; Luu, T.M. Maternal use of illicit drugs, tobacco or alcohol and the risk of childhood cancer before 6 years of age. Drug Alcohol Depend. 2019, 200, 133–138. [Google Scholar] [CrossRef]
- Andersen, S.L.; Olsen, J.; Laurberg, P. Maternal thyroid disease in the Danish National Birth Cohort: Prevalence and risk factors. Eur. J. Endocrinol. 2016, 174, 203–212. [Google Scholar] [CrossRef]
- Monen, L.; Kuppens, S.M.; Hasaart, T.H.; Oosterbaan, H.P.; Oei, S.G.; Wijnen, H.; Hutton, E.K.; Vader, H.L.; Pop, V.J. Maternal thyrotropin is independently related to Small for Gestational Age neonates at term. Clin. Endocrinol. 2015, 82, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korevaar, T.I.M.; Derakhshan, A.; Taylor, P.N.; Meima, M.; Chen, L.; Bliddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; Shields, B.; et al. Association of Thyroid Function Test Abnormalities and Thyroid Autoimmunity with Preterm Birth: A Systematic Review and Meta-analysis. JAMA-J. Am. Med. Assoc. 2019, 322, 632–641. [Google Scholar] [CrossRef]
- Lanham, T.; Lanham, E.; Sullivan, A.; Magaji, V. Non-Hodgkin lymphoma of the thyroid in a patient with hyperthyroidism. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Rency, K.; Santha, S.; Dain, C.P. Morphological and immunohistochemical approaches to the diagnosis of Hashimoto thyroiditis and mucosa associated lymphoid tissue lymphomas: An audit. Rare Tumors 2020, 12, 203636132097256. [Google Scholar] [CrossRef] [PubMed]
Number of Cases = 2029 (%) | Number of Controls = 10,103 (%) | Fisher’s Exact p-Value | |
---|---|---|---|
Maternal characteristics | |||
Maternal age | 0.35 | ||
<25 | 355 (17.5) | 1872 (18.5) | |
25–29 | 639 (31.5) | 3246 (32.1) | |
≥30 | 1035 (51.0) | 4985 (49.3) | |
Parity | 0.32 | ||
Primiparous | 847 (41.7) | 4098 (40.6) | |
Multiparous | 1182 (58.3) | 6005 (59.4) | |
Maternal smoking | 0.77 | ||
Yes | 291 (14.3) | 1447 (14.3) | |
No | 1680 (82.8) | 8404 (83.2) | |
Unknown | 58 (2.9) | 252 (2.5) | |
Maternal thyroid disease subgroup | |||
Hypothyroidism | 45 (2.2) | 155 (1.5) | 0.04 |
Hyperthyroidism | 1 (0.05) | 13 (0.1) | 0.49 |
Other thyroid disease | 3 (0.1) | 5 (0.05) | 0.14 |
Maternal cancer | 64 (3.2) | 280 (2.8) | 0.34 |
Offspring characteristics | |||
Sex | 0.96 | ||
Male | 1092 (53.8) | 5431 (53.8) | |
Female | 937 (46.2) | 4672 (46.2) | |
Gestational age | 0.004 | ||
Full-term (≥37 weeks) | 1888 (93.1) | 9566 (94.7) | |
Preterm (<37 weeks) | 141 (6.9) | 537 (5.3) | |
Multiple pregnancy | 0.68 | ||
Yes | 67 (3.3) | 319 (3.2) | |
No | 1962 (96.7) | 9784 (96.8) | |
Delivery type | 0.13 | ||
Vaginal | 1906 (93.9) | 9571 (94.7) | |
Caesarian section | 123 (6.1) | 526 (5.2) | |
Unknown | 0 (0) | 6 (0.06) | |
Birth weight | <0.001 | ||
<2500 g | 110 (5.4) | 395 (3.9) | |
2500–4500 g | 1833 (90.3) | 9412 (93.2) | |
>4500 g | 86 (4.2) | 296 (2.9) |
Number of Cases 2029 | Number of Controls 10,103 | Adj. OR 1 | 95% CI | Adj.OR 2 | 95% CI | |
---|---|---|---|---|---|---|
Maternal hypothyroidism | 45 (2.2) | 155 (1.5) | 1.41 | 1.00–2.00 | 1.42 | 1.01–2.01 |
Maternal hyperthyroidism | 1 (0.05) | 13 (0.1) | 0.41 | 0.05–3.14 | 0.41 | 0.05–3.14 |
Other thyroid disease | 3 (0.1) | 5 (0.05) | 3.70 | 0.83–16.54 | 3.70 | 0.83–16.54 |
Number of Cases | Adj. OR 1 | 95% CI | Adj. OR 2 | 95% CI | |
---|---|---|---|---|---|
ALL | 8 | 0.93 | 0.41–2.13 | 0.96 | 0.42–2.21 |
Any leukemia | 13 | 1.24 | 0.64–2.39 | 1.27 | 0.66–2.45 |
Lymphoma | 7 | 3.66 | 1.29–10.38 | 3.66 | 1.29–10.38 |
CNS | 11 | 1.46 | 0.72–3.00 | 1.47 | 0.72–3.00 |
Other solid tumor | 10 | 1.19 | 0.66–2.15 | 1.19 | 0.66–2.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seppälä, L.K.; Madanat-Harjuoja, L.-M.; Leinonen, M.K.; Lääperi, M.; Vettenranta, K. Maternal Thyroid Disease and the Risk of Childhood Cancer in the Offspring. Cancers 2021, 13, 5409. https://doi.org/10.3390/cancers13215409
Seppälä LK, Madanat-Harjuoja L-M, Leinonen MK, Lääperi M, Vettenranta K. Maternal Thyroid Disease and the Risk of Childhood Cancer in the Offspring. Cancers. 2021; 13(21):5409. https://doi.org/10.3390/cancers13215409
Chicago/Turabian StyleSeppälä, Laura K., Laura-Maria Madanat-Harjuoja, Maarit K. Leinonen, Mitja Lääperi, and Kim Vettenranta. 2021. "Maternal Thyroid Disease and the Risk of Childhood Cancer in the Offspring" Cancers 13, no. 21: 5409. https://doi.org/10.3390/cancers13215409
APA StyleSeppälä, L. K., Madanat-Harjuoja, L. -M., Leinonen, M. K., Lääperi, M., & Vettenranta, K. (2021). Maternal Thyroid Disease and the Risk of Childhood Cancer in the Offspring. Cancers, 13(21), 5409. https://doi.org/10.3390/cancers13215409