Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Controls
4.3. Exome Sequencing
4.4. Genotyping
4.5. Statistical Analysis
4.6. Loss of Heterozygosity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Cartert, B.S.; Beatyt, T.H.; Steinbergt, G.D.; Childs, B.; Walsht, P.C. Mendelian Inheritance of Familial Prostate Cancer (Segregation Analysis/Genetic Epidemiology/Autosomal Dominant Inheritance). Proc. Natl. Acad. Sci. USA 1992, 89, 3367–3371. [Google Scholar] [CrossRef] [Green Version]
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries HHS Public Access Author Manuscript. JAMA 2017, 315, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association Analyses of More than 140,000 Men Identify 63 New Prostate Cancer Susceptibility Loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline Mutations in HOXB13 and Prostate-Cancer Risk. New Engl. J. Med. 2012, 366, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Wang, L.; Taniguchi, K.; Wang, X.; Cunningham, J.M.; McDonnell, S.K.; Qian, C.; Marks, A.F.; Slager, S.L.; Peterson, B.J.; et al. Mutations in CHEK2 associated with prostate cancer risk. Am. J. Human Genet. 2003, 72, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, C.; Górski, B.; Debniak, T.; Gliniewicz, B.; Mierzejewski, M.; Masojć, B.; Jakubowska, A.; Matyjasik, J.; Złowocka, E.; Sikorski, A.; et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 2004, 64, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Na, R.; Zheng, S.L.; Han, M.; Yu, H.; Jiang, D.; Shah, S.; Ewing, C.M.; Zhang, L.; Novakovic, K.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur. Urol. 2017, 71, 740–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, V.M.; Mukherjee, B.; Wang, F.; Huang, S.-C.; Stoffel, E.M.; Kastrinos, F.; Syngal, S.; Cooney, K.A.; Gruber, S.B. Elevated Risk of Prostate Cancer Among Men With Lynch Syndrome. J. Clin. Oncol. 2013, 31, 1713. [Google Scholar] [CrossRef] [Green Version]
- Struewing, J.P.; Hartge, P.; Wacholder, S.; Baker, S.M.; Berlin, M.; McAdams, M.; Timmerman, M.M.; Brody, L.C.; Tucker, M.A. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. New Engl. J. Med. 1997, 336, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.V.; Darst, B.F.; Moss, L.C.; Saunders, E.J.; Sheng, X.; Chou, A.; Schumacher, F.R.; Olama, A.A.A.; Benlloch, S.; Dadaev, T.; et al. Trans-Ancestry Genome-Wide Association Meta-Analysis of Prostate Cancer Identifies New Susceptibility Loci and Informs Genetic Risk Prediction. Nat. Genet. 2021, 53, 65–75. [Google Scholar] [CrossRef]
- Giri, V.N.; Knudsen, K.E.; Kelly, W.K.; Cheng, H.H.; Cooney, K.A.; Cookson, M.S.; Dahut, W.; Weissman, S.; Soule, H.R.; Petrylak, D.P.; et al. Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J. Clin. Oncol. 2020, 38, 2798–2811. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. New Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef]
- Adamovich, A.I.; Banerjee, T.; Wingo, M.; Duncan, K.; Ning, J.; Martins Rodrigues, F.; Huang, K.-L.; Lee, C.; Chen, F.; Ding, L.; et al. Functional Analysis of BARD1 Missense Variants in Homology-Directed Repair and Damage Sensitivity. PLoS Genet. 2019, 15, e1008049. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Wang, Z.W.; Tsan, J.T.; Spillman, M.A.; Phung, A.; Xu, X.L.; Yang, M.C.; Hwang, L.Y.; Bowcock, A.M.; Baer, R. Identification of a RING Protein That Can Interact in Vivo with the BRCA1 Gene Product. Nat. Genet. 1996, 14, 430–440. [Google Scholar] [CrossRef]
- Leongamornlert, D.; Mahmud, N.; Tymrakiewicz, M.; Saunders, E.; Dadaev, T.; Castro, E.; Goh, C.; Govindasami, K.; Guy, M.; O’Brien, L.; et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 2012, 106, 1697–1701. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.; Easton, D.F. Breast Cancer Linkage Consortium Cancer Incidence in BRCA1 Mutation Carriers. J. Natl. Cancer Inst. 2002, 94, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, T.; Frost, D.; Barrowdale, D.; Evans, D.G.; Bancroft, E.; Adlard, J.; Ahmed, M.; Barwell, J.; Brady, A.F.; Brewer, C.; et al. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. Eur. Urol. 2020, 77, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Suszynska, M.; Kozlowski, P. Summary of BARD1 Mutations and Precise Estimation of Breast and Ovarian Cancer Risks Associated with the Mutations. Genes 2020, 11, 798. [Google Scholar] [CrossRef] [PubMed]
- Suszynska, M.; Kluzniak, W.; Wokolorczyk, D.; Jakubowska, A.; Huzarski, T.; Gronwald, J.; Debniak, T.; Szwiec, M.; Ratajska, M.; Klonowska, K.; et al. BARD1 Is A Low/Moderate Breast Cancer Risk Gene: Evidence Based on An Association Study of the Central European p.Q564X Recurrent Mutation. Cancers 2019, 11, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alenezi, W.M.; Fierheller, C.T.; Recio, N.; Tonin, P.N. Literature Review of BARD1 as a Cancer Predisposing Gene with a Focus on Breast and Ovarian Cancers. Genes 2020, 11, 856. [Google Scholar] [CrossRef]
- Irminger-Finger, I.; Ratajska, M.; Pilyugin, M. New Concepts on BARD1: Regulator of BRCA Pathways and Beyond. Int. J. Biochem. Cell Biol. 2016, 72, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, F.; Formicola, D.; Capasso, M. Dualistic Role of BARD1 in Cancer. Genes 2017, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Steinfeld, J.B.; Liang, F.; Chen, X.; Maranon, D.G.; Jian Ma, C.; Kwon, Y.; Rao, T.; Wang, W.; Sheng, C.; et al. BRCA1-BARD1 Promotes RAD51-Mediated Homologous DNA Pairing. Nature 2017, 550, 360–365. [Google Scholar] [CrossRef]
- Feki, A.; Jefford, C.E.; Berardi, P.; Wu, J.-Y.; Cartier, L.; Krause, K.-H.; Irminger-Finger, I. BARD1 Induces Apoptosis by Catalysing Phosphorylation of P53 by DNA-Damage Response Kinase. Oncogene 2005, 24, 3726–3736. [Google Scholar] [CrossRef] [Green Version]
- Irminger-Finger, I.; Leung, W.C.; Li, J.; Dubois-Dauphin, M.; Harb, J.; Feki, A.; Jefford, C.E.; Soriano, J.V.; Jaconi, M.; Montesano, R.; et al. Identification of BARD1 as Mediator between Proapoptotic Stress and P53-Dependent Apoptosis. Mol. Cell 2001, 8, 1255–1266. [Google Scholar] [CrossRef]
- Couch, F.J.; Shimelis, H.; Hu, C.; Hart, S.N.; Polley, E.C.; Na, J.; Hallberg, E.; Moore, R.; Thomas, A.; Lilyquist, J.; et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017, 3, 1190–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, T.J.; Morozova, O.; Attiyeh, E.F.; Asgharzadeh, S.; Wei, J.S.; Auclair, D.; Carter, S.L.; Cibulskis, K.; Hanna, M.; Kiezun, A.; et al. The Genetic Landscape of High-Risk Neuroblastoma. Nat. Genet. 2013, 45, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Capasso, M.; Devoto, M.; Hou, C.; Asgharzadeh, S.; Glessner, J.T.; Attiyeh, E.F.; Mosse, Y.P.; Kim, C.; Diskin, S.J.; Cole, K.A.; et al. Common Variations in BARD1 Influence Susceptibility to High-Risk Neuroblastoma. Nat. Genet. 2009, 41, 718–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban-Jurado, C.; Vila-Casadesús, M.; Garre, P.; Lozano, J.J.; Pristoupilova, A.; Beltran, S.; Muñoz, J.; Ocaña, T.; Balaguer, F.; López-Cerón, M.; et al. Whole-Exome Sequencing Identifies Rare Pathogenic Variants in New Predisposition Genes for Familial Colorectal Cancer. Genet. Med. 2015, 17, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klonowska, K.; Ratajska, M.; Czubak, K.; Kuzniacka, A.; Brozek, I.; Koczkowska, M.; Sniadecki, M.; Debniak, J.; Wydra, D.; Balut, M.; et al. Analysis of Large Mutations in BARD1 in Patients with Breast and/or Ovarian Cancer: The Polish Population as an Example. Sci. Rep. 2015, 5, 10424. [Google Scholar] [CrossRef]
- Ratajska, M.; Matusiak, M.; Kuzniacka, A.; Wasag, B.; Brozek, I.; Biernat, W.; Koczkowska, M.; Debniak, J.; Sniadecki, M.; KozLowski, P.; et al. Cancer Predisposing BARD1 Mutations Affect Exon Skipping and Are Associated with Overexpression of Specific BARD1 Isoforms. Oncol. Rep. 2015, 34, 2609–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilyugin, M.; André, P.-A.; Ratajska, M.; Kuzniacka, A.; Limon, J.; Tournier, B.B.; Colas, J.; Laurent, G.; Irminger-Finger, I. Antagonizing Functions of BARD1 and Its Alternatively Spliced Variant BARD1δ in Telomere Stability. Oncotarget 2016, 8, 9339–9353. [Google Scholar] [CrossRef] [Green Version]
- Sartor, O.; Yang, S.; Ledet, E.; Moses, M.; Nicolosi, P. Inherited DNA-Repair Gene Mutations in African American Men with Prostate Cancer. Oncotarget 2020, 11, 440–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leongamornlert, D.A.; Saunders, E.J.; Wakerell, S.; Whitmore, I.; Dadaev, T.; Cieza-Borrella, C.; Benafif, S.; Brook, M.N.; Donovan, J.L.; Hamdy, F.C.; et al. Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel. Eur. Urol. 2019, 76, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darst, B.F.; Dadaev, T.; Saunders, E.; Sheng, X.; Wan, P.; Pooler, L.; Xia, L.Y.; Chanock, S.; Berndt, S.I.; Gapstur, S.M.; et al. Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer. J. Natl. Cancer Inst. 2021, 113, 616–625. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef]
- Yadav, S.; Hart, S.N.; Hu, C.; Hillman, D.; Lee, K.Y.; Gnanaolivu, R.; Na, J.; Polley, E.C.; Couch, F.J.; Kohli, M. Contribution of Inherited DNA-Repair Gene Mutations to Hormone-Sensitive and Castrate-Resistant Metastatic Prostate Cancer and Implications for Clinical Outcome. JCO Precis. Oncol. 2019, 3, PO.19.00067. [Google Scholar] [CrossRef]
- Wokołorczyk, D.; Kluźniak, W.; Huzarski, T.; Gronwald, J.; Szymiczek, A.; Rusak, B.; Stempa, K.; Gliniewicz, K.; Kashyap, A.; Morawska, S.; et al. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int. J. Cancer 2020, 147, 2793–2800. [Google Scholar] [CrossRef]
- Wokołorczyk, D.; Kluźniak, W.; Stempa, K.; Rusak, B.; Huzarski, T.; Gronwald, J.; Gliniewicz, K.; Kashyap, A.; Morawska, S.; Dębniak, T.; et al. PALB2 Mutations and Prostate Cancer Risk and Survival. Br. J. Cancer 2021, 125, 569–575. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Kluźniak, W.; Jakubowska, A.; Górski, B.; Gronwald, J.; Huzarski, T.; Kashyap, A.; Byrski, T.; Dȩbniak, T.; et al. An Inherited NBN Mutation Is Associated with Poor Prognosis Prostate Cancer. Br. J. Cancer 2013, 108, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cybulski, C.; Carrot-Zhang, J.; Kluźniak, W.; Rivera, B.; Kashyap, A.; Wokołorczyk, D.; Giroux, S.; Nadaf, J.; Hamel, N.; Zhang, S.; et al. Germline RECQL Mutations Are Associated with Breast Cancer Susceptibility. Nat. Genet. 2015, 47, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Kluźniak, W.; Wokołorczyk, D.; Rusak, B.; Huzarski, T.; Kashyap, A.; Stempa, K.; Rudnicka, H.; Jakubowska, A.; Szwiec, M.; Morawska, S.; et al. Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers 2019, 11, 1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Number Total | Number Positive | % | OR | 95% CI | p-Value |
---|---|---|---|---|---|---|
Unselected Cases | ||||||
c.1690 C>T | 5715 | 7 | 0.12% | 0.84 | 0.34–2.05 | 0.87 |
c.1972 C>T | 5715 | 39 | 0.68% | 1.15 | 0.77–1.72 | 0.57 |
c.1977 A>G | 5715 | 19 | 0.33% | 0.97 | 0.56–1.70 | 0.93 |
Familial cases | ||||||
c.1690 C>T | 711 | 0 | 0.00% | 0.46 | 0.03–7.78 | 0.62 |
c.1972 C>T | 711 | 3 | 0.42% | 0.71 | 0.22–2.26 | 0.74 |
c.1977 A>G | 711 | 4 | 0.56% | 1.65 | 0.59–4.66 | 0.53 |
Controls | ||||||
Males | ||||||
c.1690 C>T | 5545 | 8 | 0.14% | |||
c.1972 C>T | 5545 | 35 | 0.63% | |||
c.1977 A>G | 5545 | 21 | 0.38% | |||
Females | ||||||
c.1690 C>T | 4707 | 7 | 0.15% | |||
c.1972 C>T | 4707 | 26 | 0.55% | |||
c.1977 A>G | 4707 | 14 | 0.30% | |||
All controls | ||||||
c.1690 C>T | 15 | 10,252 | 0.15% | Ref. | - | - |
c.1972 C>T | 61 | 10,252 | 0.60% | Ref. | - | - |
c.1977 A>G | 35 | 10,252 | 0.34% | Ref. | - | - |
Category | c.1690 C>T Positive Cases (n = 7) | p-Value | c.1972 C>T Positive Cases (n = 39) | p-Value | c.1977 A>G Positive Cases (n = 19) | p-Value | BARD1 * Variant Negative Cases (n = 5650) | |
---|---|---|---|---|---|---|---|---|
Age of diagnosis | mean (range) | 68.9 (64–77) | 0.61 | 68.1 (51–93) | 0.52 | 64.6 (47–77) | 0.18 | 67.3 (35–93) |
<60 | 0.0% (0/7) | 0.60 | 12.8% (5/39) | 0.50 | 15.8% (3/19) | 0.99 | 18.5% (1047/5650) | |
61–70 | 71.4% (5/7) | 0.29 | 51.3% (20/39) | 0.48 | 68.4% (13/19) | 0.06 | 44.4% (2510/5650) | |
>70 | 28.6% (2/7) | 0.94 | 35.9% (14/39) | 0.88 | 15.8% (3/19) | 0.09 | 37.0% (2093/5650) | |
PSA at diagnosis | median (range) | 12.0 (3.1–443.3) | 0.66 | 11.0 (0.24–104.0) | 0.22 | 10.7 (0.33–42.0) | 0.93 | 10.7 (0.1–5000) |
≤4.0 | 14.3% (1/7) | 0.89 | 2.7% (1/37) | 0.64 | 11.1% (2/18) | 0.66 | 5.9% (153/2614) | |
4.1–10 | 28.6% (2/7) | 0.75 | 37.8% (14/37) | 0.76 | 38.9% (7/18) | 0.81 | 41.6% (1089/2614) | |
10.1–20.0 | 28.6% (2/7) | 0.81 | 24.3% (9/37) | 0.96 | 27.8% (5/18) | 0.97 | 24.6% (644/2614) | |
>20.0 | 28.6% (2/7) | 0.97 | 35.1% (13/37) | 0.43 | 22.2% (4/18) | 0.79 | 27.9% (728/2614) | |
Gleason score | <7 | 42.9% (3/7) | 0.82 | 50.0% (18/36) | 0.72 | 41.2% (7/17) | 0.40 | 54.4% (1647/3028) |
7 | 28.6% (2/7) | 0.65 | 27.8% (10/36) | 0.48 | 41.2% (7/17) | 0.09 | 27.4% (830/3028) | |
>7 | 28.6% (2/7) | 0.82 | 22.2% (8/36) | 0.68 | 17.6% (3/17) | 0.95 | 18.2% (551/3028) | |
Stage | T1/2 | 71.4% (5/7) | 0.80 | 78.8% (26/33) | 0.83 | 80.0% (12/15) | 0.92 | 75.6% (1726/2283) |
T3/4 | 28.6% (2/7) | 0.79 | 21.2% (7/33) | 0.83 | 20.0% (3/15) | 0.92 | 24.4% (557/2283) | |
Positive family history | positive | 0.0% (0/7) | 0.55 | 10.0% (3/30) | 0.59 | 23.5% (4/17) | 0.54 | 15.2% (704/4633) |
Category | Patients with c.1690 C>T Truncating Mutation (7 Cases) | Patients with c.1972 C>T Missense Variant (39 Cases) | Patients with c.1977 A>G Synonymous Variant (19 Cases) | BARD1 * Variant Negative Patients (5650 Cases) |
---|---|---|---|---|
Proportion of deceased | 42.9% (3/7) | 43.6% (17/39) | 36.8% (7/19) | 42.4% (2397/5650) |
Median survival | nd | 111 | nd | 140 |
5-year survival | 71% | 83% | 73% | 72% |
10-year survival | 57% | 55% | 49% | 54% |
Crude HR | 0.95 | 0.94 | 0.92 | |
95%CI | 0.31–2.92 | 0.59–1.51 | 0.44–1.92 | ref. |
p-value | 0.93 | 0.81 | 0.82 | |
Age adjusted | ||||
HR | 0.96 | 0.87 | 1.06 | |
95% CI | 0.21–2.96 | 0.54–1.40 | 0.51–2.22 | ref. |
p–value | 0.94 | 0.56 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stempa, K.; Wokołorczyk, D.; Kluźniak, W.; Rogoża-Janiszewska, E.; Malińska, K.; Rudnicka, H.; Huzarski, T.; Gronwald, J.; Gliniewicz, K.; Dębniak, T.; et al. Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer? Cancers 2021, 13, 5464. https://doi.org/10.3390/cancers13215464
Stempa K, Wokołorczyk D, Kluźniak W, Rogoża-Janiszewska E, Malińska K, Rudnicka H, Huzarski T, Gronwald J, Gliniewicz K, Dębniak T, et al. Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer? Cancers. 2021; 13(21):5464. https://doi.org/10.3390/cancers13215464
Chicago/Turabian StyleStempa, Klaudia, Dominika Wokołorczyk, Wojciech Kluźniak, Emilia Rogoża-Janiszewska, Karolina Malińska, Helena Rudnicka, Tomasz Huzarski, Jacek Gronwald, Katarzyna Gliniewicz, Tadeusz Dębniak, and et al. 2021. "Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer?" Cancers 13, no. 21: 5464. https://doi.org/10.3390/cancers13215464
APA StyleStempa, K., Wokołorczyk, D., Kluźniak, W., Rogoża-Janiszewska, E., Malińska, K., Rudnicka, H., Huzarski, T., Gronwald, J., Gliniewicz, K., Dębniak, T., Jakubowska, A., Lener, M., Tomiczek-Szwiec, J., Domagała, P., Suszynska, M., Kozlowski, P., Kluz, T., Naczk, M., Lubiński, J., ... on behalf of the Polish Hereditary Prostate Cancer Consortium. (2021). Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer? Cancers, 13(21), 5464. https://doi.org/10.3390/cancers13215464