Autoimmune Hemolytic Anemia in Chronic Lymphocytic Leukemia: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. CLL
1.2. Autoimmunity
1.3. CLL and Dysregulation
2. CLL and AIHA
2.1. Pathogenesis of AIHA
2.2. Drugs Associated with CLL-AIHA
2.3. Diagnosis of CLL-AIHA
2.4. Main Experiences of CLL-AIHA
3. Treatment
3.1. Warm AIHA
3.1.1. Warm AIHA First Line Treatment
3.1.2. Warm AIHA Second Line Treatment
3.1.3. Warm AIHA Treatment for Refractory Cases
3.2. Cold AIHA
3.3. Supportive Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Howell, D.; Patmore, R.; Jack, A.S.; Roman, E.P. Incidence of haematological malignancy by sub-type: A report from the haematological malignancy research network. Br. J. Cancer 2011, 105, 1684–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallek, M. Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2013, 88, 803–816. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallek, M.; Shanafelt, T.D.; Eichhorst, B. Chronic lymphocytic leukaemia. Lancet 2018, 391, 1524–1537. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.H.; Pillai, S. Cellular and Molecular Immunology, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Fattizzo, B.; Barcellini, W. Autoimmune Cytopenias in Chronic Lymphocytic Leukemia: Focus on Molecular Aspects. Front. Oncol. 2020, 9, 1435. [Google Scholar] [CrossRef]
- Visentin, A.; Imbergamo, S.; Gurrieri, C.; Frezzato, F.; Trimarco, V.; Martini, V.; Severin, F.; Raggi, F.; Scomazzon, E.; Facco, M.; et al. Major infections, secondary cancers and autoimmune diseases occur in different clinical subsets of chronic lymphocytic leukaemia patients. Eur. J. Cancer 2017, 72, 103–111. [Google Scholar] [CrossRef]
- Diehl, L.F.; Ketchum, L.H. Autoimmune disease and chronic lymphocytic leukemia: Autoimmune hemolytic anemia, pure red cell aplasia, and autoimmune thrombocytopenia. Semin. Oncol. 1998, 25, 80–97. [Google Scholar]
- Galton, D.A. The pathogenesis of chronic lymphocytic leukemia. Can. Med. Assoc. J. 1966, 94, 1005–1010. [Google Scholar]
- Barcellini, W.; Giannotta, J.A.; Fattizzo, B. Autoimmune Complications in HematologicNeoplasms. Cancers 2021, 13, 1532. [Google Scholar] [CrossRef]
- Hill, Q.A.; Hill, A.; Berentsen, S. Defining autoimmune hemolytic anemia: A systematic review of the terminology used for diagnosis and treatment Comparative Study. Blood Adv. 2019, 3, 1897–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, S.S.; Olewicz-Gawlik, A.A.; Rupa-Matysek, J.; Wolny-Rokicka, E.; Nowakowska, E.; Gil, L. Autoimmune hemolytic anemia: Current knowledge and perspectives. Rev. Immun. Ageing 2020, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- Hill, Q.A.; Stamps, R.; Massey, E.; Grainger, J.D.; Provan, D.; Hill, A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br. J. Haematol. 2017, 176, 395–411. [Google Scholar] [CrossRef]
- Barcellini, W.; Fattizzo, B. How I treat warm autoimmune hemolytic anemia. Blood 2021, 137, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Berentsen, S. How I manage patients with cold agglutinin disease. Br. J. Haematol. 2018, 181, 320–330. [Google Scholar] [CrossRef]
- Berentsen, S. How I Treat Cold Agglutinin Disease. Blood 2021, 137, 1295–1303. [Google Scholar] [CrossRef]
- Long, H.; Wang, X.; Chen, Y.; Wang, L.; Zhao, M.; Lu, Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 2018, 428, 90–103. [Google Scholar] [CrossRef]
- Robak, T.; Błasińska-Morawiec, M.; Krykowski, E.; Hellmann, A.; Konopka, L. Autoimmune haemolytic anaemia in patients with chronic lymphocytic eukaemia treated with 2-chlorodeoxyadenosine (cladribine). Eur. J. Haematol. 1997, 58, 109–113. [Google Scholar] [CrossRef]
- Borthakur, G.; O’Brien, S.; Wierda, W.G.; Thomas, D.A.; Cortes, J.E.; Giles, F.J.; Kantarjian, H.M.; Lerner, S.; Keating, M.J. Immune anaemias in patients with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab--incidence and predictors. Br. J. Haematol. 2007, 136, 800–805. [Google Scholar] [CrossRef]
- Dearden, C.; Wade, R.; Else, M.; Richards, S.; Milligan, D.; Hamblin, T.; Catovsky, D. The prognostic significance of a positive direct antiglobulin test in chronic lymphocytic leukemia: A beneficial effect of the combination of fludarabine and cyclophosphamide on the incidence of hemolytic anemia. Blood 2008, 111, 1820–1826. [Google Scholar] [CrossRef] [Green Version]
- Barcellini, W.; Giannotta, J.; Fattizzo, B. Autoimmune hemolytic anemia in adults: Primary risk factors and diagnostic procedures. Expert Rev. Hematol. 2020, 13, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Garratty, G. Drug-induced immune hemolytic anemia. Hematol. Am. Soc. Hematol. Educ. Program. 2009, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Jäger, U.; Barcellini, W.; Broome, C.M.; Gertz, M.A.; Hill, A.; Hill, Q.A.; Jilmaf, B.; Kuter, D.J.; Michelh, M.; Montillo, M.; et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020, 41, 100648. [Google Scholar] [CrossRef]
- Laurenti, L.; Autore, F.; Innocenti, I.; D’Arena, G.; Coscia, M.; Mondello, P.; Chiusolo, P.; Bellesi, S.; Efremov, D.G.; Sica, S.; et al. Autoimmune hemolytic anemia during bendamustine plus rituximab treatment in CLL patients: Multicenter experience. Leuk. Lymphoma 2016, 57, 2429–2431. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Silverstein, W.K.; Nikonova, A.; Pavenski, K.; Hicks, L.K. Bendamustine-induced immune hemolytic anemia: A case report and systematic review of the literature. Blood Adv. 2020, 4, 1756–1759. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, N.; Gural, A.; Ben-Yehuda, D.; Gatt, M.E. Short communication: Bendamustine-related hemolytic anemia in chronic lymphocytic leukemia. Cancer Chemother. Pharmacol. 2013, 72, 709–713. [Google Scholar] [CrossRef]
- Quinquenel, A.; Willekens, C.; Dupuis, J.; Royer, B.; Ysebaert, L.; DeGuibert, S.; Michallet, A.S.; Feugier, P.; Guieze, R.; Levy, V.; et al. Bendamustine and rituximab combination in the management of chronic lymphocytic leukemia-associated autoimmune hemolytic anemia: A multicentric retrospective study of the French CLL intergroup (GCFLLC/MW and GOELAMS). Am. J. Hematol. 2015, 90, 204–207. [Google Scholar] [CrossRef]
- Noto, A.; Cassin, R.; Mattiello, V.; Reda, G. The Role of Novel Agents in Treating CLL-Associated Autoimmune Hemolytic Anemia. J. Clin. Med. 2021, 10, 2064. [Google Scholar] [CrossRef]
- Vitale, C.; Salvetti, C.; Griggio, V.; Scamuffa, M.C.; Zamprogna, G.; Visentin, A.; Cassin, R.; Laurenti, L.; Murru, R.; Rivela, P.; et al. Pre-Existing and Treatment-Emergent Autoimmune Cytopenias in Patients with Chronic Lymphocytic Leukemia Treated with Targeted Drugs Pre-Existing and Treatment-Emergent Autoimmune Cytopenias in Patients with Chronic Lymphocytic Leukemia Treated with Targeted Drugs. Blood 2021, 137, 3507–3517. [Google Scholar] [PubMed]
- Mauro, F.R.; Foa, R.; Cerretti, R.; Giannarelli, D.; Coluzzi, S.; Mandelli, F.; Girelli, G. Autoimmune hemolytic anemia in chroniclymphocyticleukemia: Clinical, therapeutic, and prognostic features. Blood 2000, 95, 2786–2792. [Google Scholar] [CrossRef]
- Barcellini, W.; Capalbo, S.; Agostinelli, R.M.; Mauro, F.R.; Ambrosetti, A.; Calori, R.; Cortelezzi, A.; Laurenti, L.; Pogliani, E.M.; Pedotti, P.; et al. Relationship between autoimmune phenomena and disease stage and therapy in B-cell chronic lymphocytic leukemia. Haematologica 2006, 91, 1689–1692. [Google Scholar]
- Duek, A.; Shvidel, L.; Braester, A.; Berrebi, A. Clinical and immunologic aspects of B chronic lymphocytic leukemia associated with autoimmune disorders. Isr. Med. Assoc. J. 2006, 8, 828–831. [Google Scholar] [PubMed]
- Zent, C.S.; Ding, W.; Reinalda, M.S.; Schwager, S.M.; Hoyer, J.D.; Bowen, D.A.; Jelinek, D.F.; Tschumper, R.C.; Call, T.G.; Shanafelt, T.D.; et al. Autoimmune cytopenia in chronic lymphocytic leukemia/small lymphocytic lymphoma: Changes in clinical presentation and prognosis. Leuk. Lymphoma 2009, 50, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Hodgson, K.; Ferrer, G.; Elena, M.; Filella, X.; Pereira, A.; Baumann, T.; Montserrat, E. Autoimmune cytopenia in chroniclymphocyticleukemia: Prevalence clinical associations, and prognosticsignificance. Blood 2010, 116, 4771–4776. [Google Scholar] [CrossRef]
- Shvidel, L.; Tadmor, T.; Braester, A.; Bairey, O.; Rahimi-Levene, N.; Herishanu, Y.; Klepfish, A.; Shtalrid, M.; Berrebi, A.; Polliack, A. Pathogenesis, prevalence, and prognostic significance of cytopenias in chronic lymphocytic leukemia (CLL): A retrospective comparative study of 213 patients from a national CLL database of 1518 cases. Ann. Hematol. 2013, 92, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Demir, C.; Ekinci, O. Clinical and serological autoimmune complications inchronic lymphocytic leukemia. Wien. Klin. Wochenschr. 2017, 129, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Atef, B.; Azmy, E.; Aladle, D.; Mabed, M. The prevalence and prognostic significance of autoimmune cytopenias in a cohort of Egyptian patients with chronic lymphocytic leukemia. Hematol. Oncol. Stem Cell Ther. 2019, 12, 97–104. [Google Scholar] [CrossRef]
- Visco, C.; Barcellini, W.; Maura, F.; Neri, A.; Cortelezzi, A.; Rodeghiero, F. Autoimmune cytopenias inchronic lymphocytic leukemia. Am. J. Hematol. 2014, 89, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Lechner, K.; Jager, U. How I treat autoimmune hemolytic anemias in adults. Blood 2010, 116, 1831. [Google Scholar] [CrossRef]
- Petz, L.D. A physician’s guide to transfusion in autoimmune haemolytic anaemia. Br. J. Haematol. 2004, 124, 712–716. [Google Scholar] [CrossRef]
- Rogers, K.A.; Woyach, J.A. Secondary autoimmune cytopenias in chronic lymphocytic leukemia. Semin. Oncol. 2016, 43, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.; Hartnack, D.; Lindemann, H.W.; Lange, H.J.; Rummel, M.; Loew, A. The Effect of Erythropoiesis-Stimulating Agents in Patients with Therapy-Refractory Autoimmune Hemolytic Anemia. Transfus. Med. Hemother. 2014, 41, 462–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattizzo, B.; Michel, M.; Zaninoni, A.; Giannotta, J.A.; Guillet, S.; Frederiksen, H.; Vos, J.M.I.; Mauro, F.R.; Jilma, B.; Patriarca, A.; et al. Efficacy of recombinant erythropoietin in autoimmune hemolytic anemia: A multicenter international study. Haematologica 2021, 106, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Crowther, M.; Chan, Y.L.T.; Garbett, I.K.; Lim, W.; Vickers, M.A.; Crowther, M.A. Evidence-based focused review of the treatment of idiopathic warm immune hemolytic anemia in adults. Blood 2011, 118, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcellini, W.; Zaninoni, A.; Fattizzo, B.; Giannotta, J.A.; Lunghi, M.; Ferrari, A.; Leporace, A.P.; Maschio, N.; Scaramucci, L.; Cantoni, S.; et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am. J. Hematol. 2018, 93, E243–E246. [Google Scholar] [CrossRef] [Green Version]
- Birgens, H.; Frederiksen, H.; Hasselbalch, H.C.; Rasmussen, I.H.; Nielsen, O.J.; Kjeldsen, L.; Larsen, H.; Mourits-Andersen, T.; Plesner, T.; Rønnov-Jessen, D.; et al. A phase III randomized trial comparing glucocorticoid monotherapy versus glucocorticoid and rituximab in patients with autoimmune haemolyticanaemia. Br. J. Haematol. 2013, 163, 393–399. [Google Scholar] [CrossRef]
- Meyer, O.; Stahl, D.; Beckhove, P.; Huhn, D.; Salama, A. Pulsed high-dose dexamethasone in chronic autoimmune haemolyticanaemia of warm type. Br. J. Haematol. 1997, 98, 860–862. [Google Scholar] [CrossRef] [Green Version]
- Michel, M.; Terriou, L.; Roudot-Thoraval, F.; Hamidou, M.; Ebbo, M.; Le Guenno, G.; Galicier, L.; Audia, S.; Royer, B.; Morin, A.S.; et al. A randomized and double-blind controlled trial evaluating the safety and efficacy of rituximab for warm auto-immune hemolytic anemia in adults (the RAIHA study). Am. J. Hematol. 2017, 92, 23–27. [Google Scholar] [CrossRef]
- D’Arena, G.; Laurenti, L.; Capalbo, S.; D’Arco, A.M.; De Filippi, R.; Marcacci, G.; Di Renzo, N.; Storti, S.; Califano, C.; Vigliotti, M.L.; et al. Rituximab Therapy for Chronic Lymphocytic Leukemia-Associated Autoimmune Hemolytic Anemia. Am. J. Hematol. 2006, 81, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Österborg, A.; Karlsson, C.; Lundin, J. Alemtuzumab to Treat RefractoryAutoimmune Hemolytic Anemiaor Thrombocytopenia in ChronicLymphocytic Leukemia. Curr. Hematol. Malig. Rep. 2009, 4, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Church, A.K.; VanDerMeid, K.R.; Baig, N.A.; Baran, A.M.; Witzig, T.E.; Nowakowski, G.S.; Zent, C.S. Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages. Clin. Exp. Immunol. 2015, 183, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamuk, G.E.; Turgut, B.; Demir, M.; Tezcan, F.; Vural, O. The Successful Treatment of Refractory Autoimmune Hemolytic Anemia with Rituximab in a Patient with Chronic Lymphocytic Leukemia. Am. J. Hematol. 2006, 81, 631–633. [Google Scholar] [CrossRef]
- Berentsen, S.; Randen, U.; Oksman, M.; Birgens, H.; Tvedt, H.T.A.; Dalgaard, J.; Galteland, E.; Hauk, E.; Brudevold, R.; Sørbø, J.H.; et al. Bendamustine plus rituximab for chronic cold agglutinin disease: Results of a Nordic prospective multicenter trial. Blood 2017, 130, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berentsen, S.; Randen, U.; Vågan, A.M.; Hjorth-Hansen, H.; Vik, A.; Dalgaard, J.; Jacobsen, E.M.; Thoresen, A.S.; Beiske, K.; Tjønnfjord, G.E. High response rate and durable remissions following fludarabine and rituximabcombination therapy for chronic cold agglutinin disease. Blood 2010, 116, 3180–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinquenel, A.; Godet, S.; Dartigeas, C.; Ysebaert, L.; Dupuis, J.; Ohanyan, H.; Collignon, A.; Gilardin, L.; Lepretre, S.; Dilhuydy, M.-S.; et al. Ibrutinib and idelalisib in the management of CLL associated autoimmunecytopenias: A study from the FILO group. Am. J. Hematol. 2019, 94, E183–E185. [Google Scholar]
- Lacerda, M.P.; Guedes, N.R.; Yamakawa, P.E.; Pereira, A.D.; Fonseca, A.; Chau_aille, M.; Goncalves, M.V.; Yamamoto, M.; Rodrigues, C.A. Treatment of refractory autoimmune hemolytic anemia with venetoclaxin relapsed chronic lymphocytic leukemia with del(17p). Ann. Hematol. 2017, 96, 1577–1578. [Google Scholar] [CrossRef] [PubMed]
- Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Coutre, S.; Seymour, J.F.; Munir, T.; Puvvada, S.D.; Wendtner, C.-M.; Roberts, A.W.; Jurczak, W.; et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study. Lancet Oncol. 2016, 17, 768–778. [Google Scholar] [CrossRef]
- Rossignol, J.; Michallet, A.S.; Oberic, L.; Picard, M.; Garon, A.; Willekens, C.; Dulery, R.; Leleu, X.; Cazin, B.; Ysebaert, L. Rituximab–cyclophosphamide–dexamethasone combination in the management of autoimmune cytopenias associated with chronic lymphocytic leukemia. Leukemia 2011, 25, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, M.; Limaye, S.A.; Driscoll, N.; Johnson, C.; Caramanica, A.; Lebowicz, Y.; Patel, D.; Kohn, N.; Rai, K. A combination of rituximab, cyclophosphamide and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk. Lymphoma 2009, 50, 892–899. [Google Scholar] [CrossRef]
- Bowen, D.A.; Call, T.G.; Shanafelt, T.D.; Kay, N.E.; Schwager, S.M.; Reinalda, M.S.; Rabe, K.G.; Slager, S.L.; Zent, C.S. Treatment of autoimmune cytopenia complicating progressive chronic lymphocytic leukemia/small lymphocytic lymphoma with rituximab, cyclophosphamide, vincristine, and prednisone. Leuk. Lymphoma 2010, 51, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, C.; Hansson, L.; Celsing, F.; Lundin, J. Treatment of severe refractory autoimmune hemolytic anemia in B-cell chronic lymphocytic leukemia with alemtuzumab (humanized CD52 monoclonal antibody). Leukemia 2007, 21, 511–514. [Google Scholar] [CrossRef]
- Cortes, J.; O’Brien, S.; Loscertales, J.; Kantarjian, H.; Giles, F.; Thomas, D.; Koller, C.; Keating, M. Cyclosporin A for the Treatment of Cytopenia Associated with Chronic Lymphocytic Leukemia. Cancer 2001, 92, 2016–2022. [Google Scholar] [CrossRef]
- Treon, S.P.; Tripsas, C.K.; Meid, K.; Warren, D.; Varma, G.; Green, R.; Argyropoulos, K.V.; Yang, G.; Cao, Y.; Xu, L.; et al. Ibrutinib in Previously Treated Waldenström’s Macroglobulinemia. N. Engl. J. Med. 2015, 372, 1430–1440. [Google Scholar] [CrossRef] [Green Version]
- Röth, A.; Hüttmann, R.; Rother, R.P.; Dührsen, U.; Philipp, T. Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease. Blood 2009, 113, 16. [Google Scholar] [CrossRef] [PubMed]
- Röth, A.; Bommer, M.; Hüttmann, A.; Herich-Terhürne, D.; Kuklik, N.; Rekowski, J.; Lenz, V.; Schrezenmeier, H.; Dührsen, U. Eculizumab in cold agglutinin disease (DECADE): An open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018, 2, 2543–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roumier, V.L.; Guillaud, C.; Languille, L.; Mahevas, M.; Khellaf, M.; Limal, N.; Noizat-Pirenne, F.; Godeau, B.; Michel, M. Characteristics and outcome of warm autoimmune hemolytic anemia in adults: New insights based on a single-center experience with 60 patients. Am. J. Hematol. 2014, 89, E150–E155. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.H.; Parry-Jones, N.; Appleby, N.; Bloor, A.; Dearden, C.E.; Fegan, C.; Follows, G.; Fox, C.P.; Iyengar, S.; Kennedy, B.; et al. Guideline for the treatment of chronic lymphocytic leukaemia. Br. J. Haematol. 2018, 182, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Kavuru, S.; Patel, D.; Janson, D.; Driscoll, N.; Ahmed, S.; Rai, K.R. Rituximab-based chemotherapy for steroid-refractory autoimmune hemolytic anemia of chronic lymphocytic leukemia. Leukemia 2002, 16, 2092–2095. [Google Scholar] [CrossRef] [Green Version]
- Montillo, M.; O’Brien, S.; Tedeschi, A.; Byrd, J.C.; Dearden, C.; Gill, D.; Brown, J.R.; Barrientos, J.C.; Mulligan, S.P.; Furman, R.R.; et al. Ibrutinib in previously treated chronic lymphocytic leukemia patients with autoimmune cytopenias in the RESONATE study. Blood Cancer J. 2017, 7, e524. [Google Scholar] [CrossRef]
- Rogers, K.A.; Ruppert, A.S.; Bingman, A.; Andritsos, L.A.; Awan, F.T.; Blum, K.A.; Flynn, J.M.; Jaglowski, S.M.; Lozanski, G.; Maddocks, K.J.; et al. Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia. Leukemia 2016, 30, 346–350. [Google Scholar] [CrossRef]
- Manda, S.; Dunbar, N.; Marx-Wood, C.R.; Danilov, A.V. Ibrutinib is an effective treatment of autoimmune haemolyticanaemia in chronic lymphocytic leukaemia. Br. J. Haematol. 2015, 170, 727–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, P.J.; Larson, M.C.; Kabat, B.; Call, T.G.; Ding, W.; Kenderian, S.S.; Bowen, D.; Boysen, J.; Schwager, S.M.; Leis, J.F.; et al. Autoimmune cytopenias in patients with chronic lymphocytic leukaemiatreated with ibrutinib in routine clinical practice at an academic medical centre. Br. J. Haematol. 2018, 183, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Bernard, R.; Hsia, C.C. Safe utilization of ibrutinib with or without steroids in chronic lymphocyticleukemia patients with autoimmune hemolytic anemia. Ann. Hematol. 2015, 94, 2077–2079. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Wierda, W.G.; Schuh, A.; Devereux, S.; Chaves, J.M.; Brown, J.R.; Hillmen, P.; Martin, P.; Awan, F.T.; Stephens, D.M.; et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocyticleukemia: Updated phase 2 results. Blood 2020, 135, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Tsang, M.; Parikh, S.A. A Concise Review of Autoimmune Cytopenias in Chronic Lymphocytic Leukemia. Curr. Hematol. Malig. Rep. 2017, 12, 29–38. [Google Scholar] [CrossRef]
- Kjellander, C.; Björkholm, M.; Källman, O.; Giske, C.G.; Weibull, C.E.; Löve, T.J.; Landgren, O.; Kristinsson, S.Y. Bloodstream infections in patients with chronic lymphocytic leukemia: A longitudinal single-center study. Ann. Hematol. 2016, 95, 871–879. [Google Scholar] [CrossRef]
- Ulvestad, E.; Berensten, S.; Mollness, T.E. Acute Phase Haemolysis in Chronic Cold Agglutinin Disease. Scand. J. Immunol. 2001, 54, 239–242. [Google Scholar] [CrossRef]
- Barbara, D.W.; Mauermann, W.J.; Neal, J.R.; Abel, M.D.; Schaff, H.V.; Winters, J.L. Cold agglutinins in patients undergoing cardiac surgery requiring cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2013, 146, 3. [Google Scholar] [CrossRef] [Green Version]
- Szczepiorkowski, Z.M.; Winters, J.L.; Bandarenko, N.; Kim, H.C.; Linenberger, M.L.; Marques, M.B.; Sarode, R.; Schwartz, J.; Weinstein, R.; Shaz, B.H. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Apheresis Applications Committee of the American Society for Apheresis. J. Clin.Apher. 2010, 25, 83–177. [Google Scholar] [CrossRef] [PubMed]
- Berentsen, S.; Röth, A.; Randen, U.; Jilma, B.; Tjønnfjord, G.E. Cold agglutinin disease: Current challenges and future prospects. J. Blood Med. 2019, 10, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjonnfjord, E.; Vengen, O.A.; Berentsen, S.; Tjonnfjord, G.E. Prophylactic use of eculizumab during surgery in chronic cold agglutinin disease. BMJ Case Rep. 2017, 2017, bcr2016219066. [Google Scholar] [CrossRef]
- Gupta, N.; Wang, E.S. Long-term response of refractory primary cold agglutinindisease to eculizumab therapy. Ann. Hematol. 2014, 93, 343–344. [Google Scholar] [CrossRef] [PubMed]
- Berentsen, S.; Ulvestad, E.; Gjertsen, B.T.; Hjorth-Hansen, H.; Langholm, R.; Knutsen, H.; Ghanima, W.; Shammas, F.V.; Tjønnfjord, G.E. Rituximab for primary chronic cold agglutinin disease: A prospective studyof 37 courses of therapy in 27 patients. Blood 2004, 103, 2925–2928. [Google Scholar] [CrossRef] [Green Version]
- Treon, S.P.; Branagan, A.R.; Ioakimidis, L.; Soumerai, J.D.; Patterson, C.J.; Turnbull, B.; Wasi, P.; Emmanouilides, C.; Frankel, S.R.; Lister, A.; et al. Long-term outcomes to fludarabine and rituximab inWaldenströmmacroglobulinemia. Blood 2009, 113, 3673–3678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeykoon, J.P.; Paludo, J.; King, R.L.; Ansell, S.M.; Gertz, M.A.; LaPlant, B.R.; Halvorson, A.E.; Gonsalves, W.I.; Dingli, D.; Fang, H.; et al. MYD88 mutation status does not impact overall survival inWaldenströmmacroglobulinemia. Am. J. Hematol. 2018, 93, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalink, M.; Berentsen, S.; Castillo, J.J.; Treon, S.P.; Cruijsen, M.; Fattizzo, B.; Cassin, R.; Fotiou, D.; Kastritis, E.; De Haas, M.; et al. Effect of ibrutinib treatment on hemolytic anemia and acrocyanosis in cold agglutinin disease/cold agglutinin syndrome. Blood 2021. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yang, G.; Hunter, Z.R.; Liu, X.; Xu, L.; Chen, J.; Tsakmaklis, N.; Hatjiharissi, E.; Kanan, S.; Davids, M.S.; et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4Wild-type and CXCR4WHIM mutated Waldenström macroglobulinaemia cells. Br. J. Haematol. 2015, 170, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Paulus, A.; Akhtar, S.; Manna, Y.A.; Paulus, S.M.; Bashir, Y.; Caulfield, T.R.; Kuranz-Blake, M.; Chitta, K.; Wang, X.; Asmann, Y.; et al. Waldenström macroglobulinemia cells devoid of BTKC481S orCXCR4WHIM-like mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 2017, 7, e565. [Google Scholar] [CrossRef] [PubMed]
- Wouters, D. C1-esterase inhibitor concentrate rescues erythrocytes from complement-mediated destruction in autoimmune hemolytic anemia. Blood 2013, 121, 1242–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wouters, D.; Zeerleder, S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematological 2015, 100, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Tesfayea, A.; Broomea, C. A Novel Approach for Treatment of Cold Agglutinin Syndrome-Related Severe Hemolysis. J. Haematol. 2016, 5, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Gertz, M.A.; Qiu, H.; Kendall, L.; Saltarelli, M.; Yednock, T.; Sankaranarayanan, S. An Inhibitory Antibody against C1q, Blocks Complement Activation Triggered By Cold Agglutinins in Human Disease. Blood 2016, 128, 1265. [Google Scholar] [CrossRef]
- Barcellini, W.; Fattizzo, B.; Zaninoni, A.; Radice, T.; Nichele, I.; Di Bona, E.; Lunghi, M.; Tassinari, C.; Alfinito, F.; Ferrari, A.; et al. Clinical heterogeneity and predictors of outcome in primaryautoimmune hemolytic anemia: A GIMEMA study of 308 patients. Blood 2014, 124, 2930–2936. [Google Scholar] [CrossRef] [PubMed]
- Bylsma, L.C.; GulbechOrding, A.; Rosenthal, A.; Öztürk, B.; Fryzek, J.P.; Morales Arias, J.; Röth, A.; Berentsen, S. Occurrence, thromboembolic risk, and mortality in Danish patients with cold agglutinin disease. Blood Adv. 2019, 3, 2980–2985. [Google Scholar] [CrossRef] [PubMed]
- Ungprasert, P.; Tanratana, P.; Srivali, N. Autoimmune hemolytic anemia and venous thromboembolism: A systematic review and meta-analysis. Thromb. Res. 2015, 136, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Audia, S.; Bach, B.; Samson, M.; Lakomy, D.; Bour, J.B.; Burlet, B.; Guy, J.; Duvillard, L.; Branger, M.; Leguy-Seguin, V.; et al. Venous thromboembolic events during warm autoimmune hemolytic anemia. PLoS ONE 2018, 13, e0207218. [Google Scholar] [CrossRef] [Green Version]
- Buckley, L.; Guyatt, G.; Fink, H.A.; Cannon, M.; Grossman, J.; Hansen, K.E.; Humphrey, M.B.; Lane, N.E.; Magrey, M.; Miller, M.; et al. 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Rheumatol. 2017, 69, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Overman, R.A.; Gourlay, M.L.; Deal, C.L.; Farley, J.F.; Brookhart, M.A.; Layton, J.B. Fracture rate associated with quality metric-basedanti-osteoporosis treatment in glucocorticoid-inducedosteoporosis. Osteoporos. Int. 2015, 26, 1515–1524. [Google Scholar] [CrossRef]
- Lekamwasam, S.; Adachi, J.D.; Agnusdei, D.; Bilezikian, J.; Boonen, S.; Borgström, F.; Cooper, C.; Diez Perez, A.; Eastell, R.; Hofbauer, L.C.; et al. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 2012, 23, 2257–2276. [Google Scholar] [CrossRef]
- Amiche, M.A.; Levesque, L.E.; Gomes, T.; Adachi, J.D.; Cadarette, S.M. Effectiveness of Oral Bisphosphonates in Reducing Fracture Risk Among Oral Glucocorticoid Users: Three Matched Cohort Analyses. J. Bone Miner. Res. 2018, 33, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Horlait, S.; Ringe, J.D.; Abelson, A.; Gold, D.T.; Atlan, P.; Lange, J.L. Oral bisphosphonates reduce the risk of clinical fracturesin glucocorticoid-induced osteoporosis in clinical practice. Osteoporos. Int. 2013, 24, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Koffas, A.; Dolman, G.E.; Kennedy, P.T. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: A practical guide for clinicians. Clin. Med. 2018, 18, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.M.; Lewis, M.P.; Wimperis, J.; Rafi, I.; Ladhani, S.; Bolton-Maggs, P.H. Review of guidelines for the prevention and treatment of infection in patients withan absent or dysfunctional spleen: Prepared on behalf of the British Committee forStandards in Haematology by a working party of the Haemato-Oncology taskforce. Br. J. Haematol. 2011, 155, 308–317. [Google Scholar] [CrossRef]
- Thomas, C.F.; Limper, A.H. Pneumocystis Pneumonia. N. Engl. J. Med. 2004, 350, 2487–2498. [Google Scholar] [CrossRef] [PubMed]
- Suryaprasad, A.; Stone, J.H. When Is It Safe to Stop Pneumocystis jiroveciPneumonia Prophylaxis? Insights from Three Cases Complicating Autoimmune Diseases. Arthr. Rheum. 2008, 59, 1034–1039. [Google Scholar] [CrossRef]
Study Type | N of CLL Patients | No. of AIHA | AIHA Type (Cold vs. Warm) | Main Findings | References |
---|---|---|---|---|---|
Single center, retrospective | 1203 | 52 | Warm 87% Cold 13% | Lymphocyte count more than 60 × 109/L, age > 65 years, and male gender are associated to increased rate of AIHA at CLL diagnosis IgG AIHA and concomitant diagnosis of AIHA and CLL are associated to better survival | Mauro, FR et al. 2000 [31] |
Multicentric, prospective + retrospective | 3150 | 129 | Warm 89% Cold 11% | Age > 69 years, stage C, and R/R CLL are associated to AIC: | Barcellini, W. et al. 2006 [32] |
Single center, retrospective | 964 | 55 | nk | Activated lymphocyte morphology, high levels of IgG and beta-2-microglobulin, and increased expression of CD38 and/or FMC7 are related with autoimmune complications | Duek, A. et al. 2006 [33] |
Single center, retrospective | 1737 | 41 | nk | 55% Treatment naïve CLL develop autoimmune diseases | Zent, C.S. et al. 2009 [34] |
Single center, retrospective | 960 | 49 | nk | High lymphocyte count, short LDT, high serum B2M level, high ZAP-70 and CD38 expression are associated with AIC | Moreno et al. 2010 [35] |
Multicentric, retrospective | 1477 | 80 | nk | Concomitant diagnosis of AIHA andCLL diagnosis is associated with shorter survival. The presence of positive antiglobulin test even without hemolysis was associated with worse outcome. Laboratory or clinical evidence of AIHA had a significant negative impact on the survival of patients with CLL. | Shvidel, L, et al. 2013 [36] |
Single-centre prospective study | 192 | 8 (4.2%) | nk | Older age and advanced stage of CLL are associated with AICs are. | Demir C. et al 2017 [37] |
Multicentric, retrospective study | 235 | 6 (2.6%) | Neg: n = 2 Warm: n = 2 Coombs positive, not known type = 2 | Aggressive disease, poor prognostic features,, previous autoimmune phenomena or fludarabine front-line therapy are related with AIHA. BR is safe in previous AIHA orpositive DAT CLL patients. | Laurenti L. et al 2015 [25] |
Single-centre retrospective study | 795 | 27 (3.4%) | nk | Female gender, advanced stage disease, previous treatment, 11q deletion by FISH, CD38 positive and CAD are associated with autoimmune disease | Visentin A. et al 2017 [8] |
Observational retrospective study | 101 | 7 (6.9%) | nk | Patients with autoimmune cytopenia have less CLL BM infiltration and lesser response to treatment | Atef B. et al 2019 [38] |
Critical review | The commonest AIC correlating with advanced disease and high biologic risk (del 11q, del17p, unmutated IGHV) | Visco C. et al. 2014 [39] |
Warm Autoimmune Hemolytic Anemia Waiha | References |
---|---|
First line | |
Steroids (prednisone 1 mg/kg/day for 3–4 weeks; alternative dexamethasone 40 mg/day for 4 days, 2–6 cycles every 2–4 weeks) | [40,46,47,48] |
Second line | |
Rituximab 375 mg/m2 weekly × 4 weeks | [49,50] |
New targeted drugs | |
BTK inhibitors: ibrutinib and acalabrutinib | [51,52,53,54,55] |
PI3K inhibitors: idelalisib | [56] |
anti BCL2: venetoclax | [57,58] |
Chemoimmunotherapic regimens: | |
rituximab, cyclophosphamide and dexamethasone (RCD), | [59,60] |
rituximab, cyclophosphamide, vincristine and prednisolone (R-CVP) | [61] |
bendamustine and rituximab (BR) | [28] |
Third or following line | |
Alemtuzumab 30 mg × 3/week × 4–12 weeks | [51,62] |
Cytotoxic immunesuppressors, such as cyclophosphamide, azathioprine, cyclosporine and mycophenolate | [63] |
New-generation monoclonal antibodies: ofatumumab and obinutuzumab | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Autore, F.; Pasquale, R.; Innocenti, I.; Fresa, A.; Sora’, F.; Laurenti, L. Autoimmune Hemolytic Anemia in Chronic Lymphocytic Leukemia: A Comprehensive Review. Cancers 2021, 13, 5804. https://doi.org/10.3390/cancers13225804
Autore F, Pasquale R, Innocenti I, Fresa A, Sora’ F, Laurenti L. Autoimmune Hemolytic Anemia in Chronic Lymphocytic Leukemia: A Comprehensive Review. Cancers. 2021; 13(22):5804. https://doi.org/10.3390/cancers13225804
Chicago/Turabian StyleAutore, Francesco, Raffaella Pasquale, Idanna Innocenti, Alberto Fresa, Federica Sora’, and Luca Laurenti. 2021. "Autoimmune Hemolytic Anemia in Chronic Lymphocytic Leukemia: A Comprehensive Review" Cancers 13, no. 22: 5804. https://doi.org/10.3390/cancers13225804
APA StyleAutore, F., Pasquale, R., Innocenti, I., Fresa, A., Sora’, F., & Laurenti, L. (2021). Autoimmune Hemolytic Anemia in Chronic Lymphocytic Leukemia: A Comprehensive Review. Cancers, 13(22), 5804. https://doi.org/10.3390/cancers13225804