Oligoprogression in Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Sites of OPD
3. OPD in NSCLC with Driver Mutations
4. OPD in NSCLC without Driver Mutations
5. OPD in NSCLC Patients Treated with Immune Checkpoint Inhibitor
6. Limitations
7. Summary and Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; Desouza, N.M.; Dingemans, A.-M.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.E.; et al. Characterisation and classification of oligometastatic disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef] [Green Version]
- Campo, M.; Al-Halabi, H.; Khandekar, M.; Shaw, A.T.; Sequist, L.V.; Willers, H. Integration of Stereotactic Body Radiation Therapy With Tyrosine Kinase Inhibitors in Stage IV Oncogene-Driven Lung Cancer. Oncologist 2016, 21, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Basler, L.; Kroeze, S.G.C.; Guckenberger, M. SBRT for oligoprogressive oncogene addicted NSCLC. Lung Cancer 2017, 106, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Tumati, V.; Iyengar, P. The current state of oligometastatic and oligoprogressive non-small cell lung cancer. J. Thorac. Dis. 2018, 10, S2537–S2544. [Google Scholar] [CrossRef]
- Yu, H.A.; Sima, C.S.; Huang, J.; Solomon, S.B.; Rimner, A.; Paik, P.; Pietanza, M.C.; Azzoli, C.G.; Rizvi, N.A.; Krug, L.M.; et al. Local Therapy with Continued EGFR Tyrosine Kinase Inhibitor Therapy as a Treatment Strategy in EGFR-Mutant Advanced Lung Cancers That Have Developed Acquired Resistance to EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2013, 8, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A.; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; et al. Local Ablative Therapy of Oligoprogressive Disease Prolongs Disease Control by Tyrosine Kinase Inhibitors in Oncogene-Addicted Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2012, 7, 1807–1814. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Liang, Y.; Li, Q.; Liu, G.; Wang, F.; Chen, Z.; Liu, M.; Zhao, M.; Liu, H. Local Therapy for Oligoprogressive Disease in Patients With Advanced Stage Non–small-cell Lung Cancer Harboring Epidermal Growth Factor Receptor Mutation. Clin. Lung Cancer 2017, 18, e369–e373. [Google Scholar] [CrossRef] [PubMed]
- Chan, O.; Lee, V.; Mok, T.; Mo, F.; Chang, A.; Yeung, R. The Role of Radiotherapy in Epidermal Growth Factor Receptor Mutation-positive Patients with Oligoprogression: A Matched-cohort Analysis. Clin. Oncol. 2017, 29, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Finocchiaro, G.; Di Noia, V.; Bonomi, M.; Cerchiaro, E.; De Rose, F.; Franceschini, D.; Navarria, P.; Ceresoli, G.L.; Beretta, G.D.; et al. Survival outcome of tyrosine kinase inhibitors beyond progression in association to radiotherapy in oligoprogressive EGFR-mutant non-small-cell lung cancer. Futur. Oncol. 2019, 15, 3775–3782. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, M.; Altavilla, G.; Borsellino, N.; Girlando, A.; Mancuso, G.; Pergolizzi, S.; Piazza, D.; Pontoriero, A.; Valerio, M.R.; Gebbia, V. High-dose Radiotherapy for Oligo-progressive NSCLC Receiving EGFR Tyrosine Kinase Inhibitors: Real World Data. In Vivo 2020, 34, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Kavanagh, B.; Deal, A.; Villaruz, L.; Stevenson, J.; Camidge, R.; Borghaei, H.; West, J.; Kirpalani, P.; Morris, D.; et al. Phase II study of stereotactic radiosurgery for the treatment of patients with oligoprogression on erlotinib. Cancer Treat. Res. Commun. 2019, 19, 100126. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, H.; Meng, S.; Jiang, T.; Li, X.; Liang, S.; Ren, S.; Zhou, C. First-line continual EGFR-TKI plus local ablative therapy demonstrated survival benefit in EGFR-mutant NSCLC patients with oligoprogressive disease. J. Cancer 2019, 10, 522–529. [Google Scholar] [CrossRef]
- Kagawa, Y.; Furuta, H.; Uemura, T.; Watanabe, N.; Shimizu, J.; Horio, Y.; Kuroda, H.; Inaba, Y.; Kodaira, T.; Masago, K.; et al. Efficacy of local therapy for oligoprogressive disease after programmed cell death 1 blockade in advanced non-small cell lung cancer. Cancer Sci. 2020, 111, 4442–4452. [Google Scholar] [CrossRef]
- Al-Halabi, H.; Sayegh, K.; Digamurthy, S.R.; Niemierko, A.; Piotrowska, Z.; Willers, H.; Sequist, L.V. Pattern of Failure Analysis in Metastatic EGFR-Mutant Lung Cancer Treated with Tyrosine Kinase Inhibitors to Identify Candidates for Consolidation Stereotactic Body Radiation Therapy. J. Thorac. Oncol. 2015, 10, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, A.B.; Senan, S.; Palma, D.A.; Riquet, M.; Ahn, Y.C.; Ricardi, U.; Congedo, M.T.; Gomez, D.R.; Wright, G.; Melloni, G.M.; et al. An Individual Patient Data Metaanalysis of Outcomes and Prognostic Factors After Treatment of Oligometastatic Non–Small-Cell Lung Cancer. Clin. Lung Cancer 2014, 15, 346–355. [Google Scholar] [CrossRef]
- Niu, L.; Chen, J.; Yao, F.; Zhou, L.; Zhang, C.; Wen, W.; Bi, X.; Hu, Y.; Piao, X.; Jiang, F.; et al. Percutaneous cryoablation for stage IV lung cancer: A retrospective analysis. Cryobiology 2013, 67, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, T.; Tajiri, N.; Mimura, H.; Yasui, K.; Gobara, H.; Mukai, T.; Hase, S.; Fujiwara, H.; Iguchi, T.; Sano, Y.; et al. Pneumothorax, Pleural Effusion, and Chest Tube Placement after Radiofrequency Ablation of Lung Tumors: Incidence and Risk Factors. Radiolog 2006, 241, 275–283. [Google Scholar] [CrossRef]
- McDevitt, J.L.; Mouli, S.K.; Nemcek, A.A.; Lewandowski, R.J.; Salem, R.; Sato, K.T. Percutaneous Cryoablation for the Treatment of Primary and Metastatic Lung Tumors: Identification of Risk Factors for Recurrence and Major Complications. J. Vasc. Int. Radiol. 2016, 27, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.; Yoshida, E.J.; Bui, K.; Katrivesis, J.; Fernando, D.; Nelson, K.; Abi-Jaoudeh, N. Demographic and facility volume related outcomes in radiofrequency ablation for early-stage hepatocellular carcinoma. HPB 2019, 21, 849–856. [Google Scholar] [CrossRef]
- Gan, G.N.; Weickhardt, A.J.; Scheier, B.; Doebele, R.C.; Gaspar, L.E.; Kavanagh, B.D.; Camidge, D.R. Stereotactic Radiation Therapy can Safely and Durably Control Sites of Extra-Central Nervous System Oligoprogressive Disease in Anaplastic Lymphoma Kinase-Positive Lung Cancer Patients Receiving Crizotinib. Int. J. Radiat. Oncol. 2014, 88, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Friedes, C.; Mai, N.; Fu, W.; Hu, C.; Hazell, S.Z.; Han, P.; McNutt, T.R.; Forde, P.M.; Redmond, K.J.; Voong, K.R.; et al. Isolated progression of metastatic lung cancer: Clinical outcomes associated with definitive radiotherapy. Cancer 2020, 126, 4572–4583. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Klingbiel, D.; Aeppli, S.; Britschgi, C.; Gautschi, O.; Pless, M.; Rothschild, S.; Wannesson, L.; Janthur, W.; Foerbs, D.; et al. Patterns of progression on osimertinib in EGFR T790M positive NSCLC: A Swiss cohort study. Lung Cancer 2019, 130, 149–155. [Google Scholar] [CrossRef]
- Laurie, S.A.; Banerji, S.; Blais, N.; Brule, S.; Cheema, P.K.; Cheung, P.; Daaboul, N.; Hao, D.; Hirsh, V.; Juergens, R.; et al. Canadian Consensus: Oligoprogressive, Pseudoprogressive, and Oligometastatic Non-Small-Cell Lung Cancer. Curr. Oncol. 2019, 26, 81–93. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines). Non-Small Cell Lung Cancer, Version 3.2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 7 April 2020).
- Stereotactic Body Radiotherapy for the Treatment of OPD (HALT). Available online: https://clinicaltrials.gov/ct2/show/NCT03256981?term=HALT&draw=2&rank=7 (accessed on 18 September 2021).
- Rheinheimer, S.; Heussel, C.-P.; Mayer, P.; Gaissmaier, L.; Bozorgmehr, F.; Winter, H.; Herth, F.J.; Muley, T.; Liersch, S.; Bischoff, H.; et al. Oligoprogressive Non-Small-Cell Lung Cancer under Treatment with PD-(L)1 Inhibitors. Cancers 2020, 12, 1046. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.Y.; Yoo, S.H.; Suh, K.J.; Kim, S.H.; Kim, Y.J.; Ock, C.-Y.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.-W.; et al. Clinical pattern of failure after a durable response to immune checkpoint inhibitors in non-small cell lung cancer patients. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.; Fujimoto, D.; Morimoto, T.; Kumagai, T.; Tamiya, A.; Taniguchi, Y.; Yokoyama, T.; Ishida, T.; Matsumoto, H.; Hirano, K.; et al. Clinical factors associated with shorter durable response, and patterns of acquired resistance to first-line pembrolizumab monotherapy in PD-L1-positive non-small-cell lung cancer patients: A retrospective multicenter study. BMC Cancer 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Yamaguchi, O.; Kaira, K.; Hashimoto, K.; Mouri, A.; Miura, Y.; Shiono, A.; Nishihara, F.; Murayama, Y.; Noda, S.; Kato, S.; et al. Radiotherapy is an independent prognostic marker of favorable prognosis in non-small cell lung cancer patients after treatment with the immune checkpoint inhibitor, nivolumab. Thorac. Cancer 2019, 10, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Theelen, W.S.M.E.; Peulen, H.M.U.; Lalezari, F.; Van Der Noort, V.; De Vries, J.F.; Aerts, J.G.J.V.; Dumoulin, D.W.; Bahce, I.; Niemeijer, A.-L.N.; De Langen, A.J.; et al. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs. Pembrolizumab Alone on Tumor Response in Patients With Advanced Non–Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1276–1282. [Google Scholar] [CrossRef]
- Lin, A.J.; Roach, M.; Bradley, J.; Robinson, C. Combining stereotactic body radiation therapy with immunotherapy: Current data and future directions. Transl. Lung Cancer Res. 2018, 8, 107–115. [Google Scholar] [CrossRef]
- Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.; Wenz, B.; et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017, 545, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Sharabi, A.B.; Lim, M.; DeWeese, T.L.; Drake, C.G. Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015, 16, e498–e509. [Google Scholar] [CrossRef]
- Vellayappan, B.; Tan, C.L.; Yong, C.; Khor, L.K.; Koh, W.Y.; Yeo, T.T.; Detsky, J.; Lo, S.; Sahgal, A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front. Oncol. 2018, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Clarke, E.; Lanzetta, G.; Osti, M.F.; Trasimeni, G.; Bozzao, A.; Romano, A.; Enrici, R.M. Stereotactic radiosurgery for brain metastases: Analysis of outcome and risk of brain radionecrosis. Radiat. Oncol. 2011, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, J.L.L.; Gomez, D.; Zhuang, Y.; Hong, D.S.; Heymach, J.V.; Swisher, S.G.; Lin, S.H.; Komaki, R.; Cox, J.D.; Liao, Z. Prognostic Impact of Radiation Therapy to the Primary Tumor in Patients With Non-small Cell Lung Cancer and Oligometastasis at Diagnosis. Int. J. Radiat. Oncol. 2012, 84, e61–e67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, A.F.; Yu, A.F.; Iocolano, M.; Leeman, J.E.; Wild, A.T.; Imber, B.S.; Chaft, J.E.; Offin, M.; Huang, J.; Isbell, J.M.; et al. Increasing Heart Dose Reduces Overall Survival in Patients Undergoing Postoperative Radiation Therapy for NSCLC. JTO Clin. Res. Rep. 2021, 2, 100209. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Cousin, F.; Desir, C.; Ben Mustapha, S.; Mievis, C.; Coucke, P.; Hustinx, R. Incidence, risk factors, and CT characteristics of radiation recall pneumonitis induced by immune checkpoint inhibitor in lung cancer. Radiother. Oncol. 2021, 157, 47–55. [Google Scholar] [CrossRef]
Authors | Driver Mutation | Design | n | CNS | (%) | Lung | (%) | Lymph Node | (%) | Bone | (%) | Adrenal Gland | (%) | Liver | (%) | Other | (%) | Ref | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yu et al. | EGFR m+ | retro | 18 | 3 | (17) | 14 | (78) | 8 | (44) | 4 | (22) | 1 | (6) | 1 | spleen | (6) | [6] | ||
Weickhardt et al. | ALK rearrange. EGFR m+ | retro | 25 | 13 | (52) | 7 | (28) | 2 | (8) | 7 | (28) | 2 | (8) | 1 | (4) | [7] | |||
Qiu et al. | EGFR m+ | retro | 46 | 24 | (52) | 16 | (35) | 6 | (13) | [8] | |||||||||
Chan et al. | EGFR m+ | retro | 46 | 5 | (11) | 18 | (39) | 2 | (4) | 3 | (7) | 1 | (2) | 1 | pancreas | (2) | [9] | ||
Rossi et al. | EGFR m+ | retro | 30 | 8 | (27) | 9 | (30) | 8 | (27) | 11 | (36) | 1 | (3) | [10] | |||||
Santarpia et al. | EGFR m+ | retro | 36 | 9 | (25) | 11 | (31) | 9 | (25) | 5 | (14) | 2 | (6) | [11] | |||||
Weiss et al. | EGFR m+ at least 6 months without PD | P2 | 25 | 2 | (8) | 15 | (60) | 7 | (28) | 4 | (16) | [12] | |||||||
Xu et al. | EGFR m+ | retro | 206 | 124 | (60) | 40 | (19) | 9 | (4) | 86 | (42) | 35 | (17) | 18 | (9) | 11 | chest wall, intestine | (5) | [13] |
Kagawa et al. | NSCLC m+ or WT | retro | 10 | 1 | (10) | 6 | (60) | 1 | (10) | 1 | (10) | 1 | gall bladder | (10) | [14] |
Authors | Driver Mutation | Design | n | Induction Tx | Intervention | Mainte. Tx | mPFS1 (m) | TTP from Intervention (m) | Duration of Treatment (m) | MST (m) | MST from Intervention (m) | Comment | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gan et al. | ALK fusion+ | retro | 14 | crizo | local ablative Tx (RT or OP) | crizotinib | 14 | 5.5 | 28 | NA | NA | [21] | |
13 | not eligible for LAT | 7.2 | NA | NA | |||||||||
Yu et al. | EGFR m+ | retro | 18 | gef or erlo | local ablative Tx (RT or OP) | gefitinib or erlotinib | 19 | 10.0 | NA | NA | 41.0 | TTF from intervention: 22 m | [6] |
Weickhardt et al. | ALK fusion+ (n = 38) EGFR m+ (n = 27) | retro | ALK rearrange (n = 15) EGFR m+ (n = 10) | crizo erlo | local Tx (RT or OP) | crizotinib erlotinib | 9.0 12.0 | 6.2 | NA | NA | NA | [7] | |
26 | crizo or erlo | Pts without LAT | 12.8 | NA | |||||||||
Qiu et al. | EGFR m+ | retro | 46 | EGFR-TKI | local ablative Tx (RT or RFA) | EGFR-TKI | NA | 7.0 | NA | 35.0 | 13.0 | [8] | |
Chan et al. | EGFR m+ | retro | 25 | EGFR-TKI | local ablative Tx (RT) | same TKI | NA | 7 *1 | NA | NA | 28.2 *2 | *1: p = 0.0017. *2: HR:0.4 4[95%CI:0.21–0.92], p = 0.030 | [9] |
25 (matched cohort) | chemotherapy | 4.1 | 14.7 | ||||||||||
Rossi et al. | EGFR m+ | retro | 30 | EGFR-TKI | local ablative Tx (RT) | same TKI | 13.8 | 6.7 *3 | NA | 37.3 *4 | NA | *3: HR: 0.54 [95%CI:0.24–1.18], p = 0.06. *4: p < 0.0001. *5: p = 0.0015 | [10] |
13 | same TKI | 12.3 | 3.1 | 20.1 | |||||||||
88 | 2nd line treatment or BSC | 8.9 | NA | 15.1 | |||||||||
EGFR m+ without intrinsic resistance to EGFR-TKI | retro | 29 | EGFR-TKI | local ablative Tx (RT) | same TKI | NA | 37.3 *5 | NA | |||||
12 | same TKI | NA | NA | 20.1 | |||||||||
64 | 2nd line treatment or BSC | 21.9 | |||||||||||
Santarpia et al. | EGFR m+ | retro | 36 | EGFR-TKI | high-dose radiation therapy | EGFR-TKI | 12.5 | 6.3 | 38.7 | [11] | |||
Schmid et al. | EGFR T790M+ | retro | 13 | osim | local ablative Tx (RT or OP) | osimertinib | NA | 6.7 | 19.6 | 28.0 | NR *6 | *6: p = 0.2 | [23] |
13 | osimertinib | 20.2 | |||||||||||
Weiss et al. | EGFR m+ at least 6 m without PD | P2 | 25 | erlo | SRT | erlotinib | NA | 6.0 | NA | NA | 29.0 | [12] | |
Xu et al. | EGFR m+ | retro | 206 | EGFR-TKI | local ablative Tx (RT or OP) | EGFR-TKI | 10.7 | 18.3 | 37.4 | [13] | |||
Friedes et al. | NSCLC | retro | 253 | chemo or TKI | definitive RT | same systemic Tx | NA | 7.9 | NA | NA | NA | TTF from intervention was 8.8 months. | [22] |
Kagawa et al. | NSCLC | retro | 10 | ICI | local ablative Tx (RT or OP) | ICI beyond PD (n = 6) | 10.4 | NA | NA | NA | NR *7 | *7: p = 0.456 | [14] |
28 | no local therapy | NA | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harada, D.; Takigawa, N. Oligoprogression in Non-Small Cell Lung Cancer. Cancers 2021, 13, 5823. https://doi.org/10.3390/cancers13225823
Harada D, Takigawa N. Oligoprogression in Non-Small Cell Lung Cancer. Cancers. 2021; 13(22):5823. https://doi.org/10.3390/cancers13225823
Chicago/Turabian StyleHarada, Daijiro, and Nagio Takigawa. 2021. "Oligoprogression in Non-Small Cell Lung Cancer" Cancers 13, no. 22: 5823. https://doi.org/10.3390/cancers13225823
APA StyleHarada, D., & Takigawa, N. (2021). Oligoprogression in Non-Small Cell Lung Cancer. Cancers, 13(22), 5823. https://doi.org/10.3390/cancers13225823