Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art
Abstract
:Simple Summary
Abstract
1. Introduction
2. Bone Metastasis in Prostate Cancer: The Underlying Molecular Mechanisms
3. Bone Targeting Agents in Metastatic HSPC
4. Bone Targeting Agents in Metastatic CRPC
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schatten, H. Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies. Taurine 6 2018, 1095, 1–14. [Google Scholar] [CrossRef]
- Saxby, H.; Mikropoulos, C.; Boussios, S. An Update on the Prognostic and Predictive Serum Biomarkers in Metastatic Prostate Cancer. Diagnostics 2020, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Dimitroff, C.J.; Descheny, L.; Trujillo, N.; Kim, R.; Nguyen, V.; Huang, W.; Pienta, K.J.; Kutok, J.L.; Rubin, M.A. Identification of Leukocyte E-Selectin Ligands, P-Selectin Glycoprotein Ligand-1 and E-Selectin Ligand-1, on Human Metastatic Prostate Tumor Cells. Cancer Res. 2005, 65, 5750–5760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, H.; Gunter, J.H.; Heathcote, P.; Ho, K.; Stricker, P.; Corcoran, N.M.; Nelson, C.C. Adverse effects of androgen-deprivation therapy in prostate cancer and their management. BJU Int. 2014, 115, 3–13. [Google Scholar] [CrossRef]
- Berruti, A.; Dogliotti, L.; Terrone, C.; Cerutti, S.; Isaia, G.; Tarabuzzi, R.; Reimondo, G.; Mari, M.; Ardissone, P.; De Luca, S.; et al. Changes in bone mineral density, lean body mass and fat content as measured by dual energy x-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J. Urol. 2002, 167, 2361–2367. [Google Scholar] [CrossRef]
- Smith, M.R. Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology 2004, 63, 742–745. [Google Scholar] [CrossRef]
- Wadhwa, V.K.; Weston, R.; Mistry, R.; Parr, N.J. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU Int. 2009, 104, 800–805. [Google Scholar] [CrossRef]
- Hamilton, E.J.; Ghasem-Zadeh, A.; Gianatti, E.; Lim-Joon, D.; Bolton, D.; Zebaze, R.; Seeman, E.; Zajac, J.D.; Grossmann, M. Structural Decay of Bone Microarchitecture in Men with Prostate Cancer Treated with Androgen Deprivation Therapy. J. Clin. Endocrinol. Metab. 2010, 95, E456–E463. [Google Scholar] [CrossRef] [PubMed]
- The Leuprolide Study Group Leuprolide versus Diethylstilbestrol for Metastatic Prostate Cancer. New Engl. J. Med. 1984, 311, 1281–1286. [CrossRef] [PubMed]
- Boivin, G.; Meunier, P.J. Changes in bone remodeling rate influence the degree of mineralization of bone. Connect. Tissue Res. 2002, 43, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Scher, N.; Williams, G.; Sridhara, R.; Li, N.; Chen, G.; Leighton, J.; Booth, B.; Gobburu, J.V.; Rahman, A.; et al. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin. Cancer Res. 2003, 9, 2394–2399. [Google Scholar] [PubMed]
- Boussios, S.; Cooke, D.; Hayward, C.; Kanellos, F.S.; Tsiouris, A.K.; Chatziantoniou, A.A.; Zakynthinakis-Kyriakou, N.; Karathanasi, A. Metastatic Spinal Cord Compression: Unraveling the Diagnostic and Therapeutic Challenges. Anticancer. Res. 2018, 38, 4987–4997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finianos, A.; Aragon-Ching, J.B. Zoledronic acid for the treatment of prostate cancer. Expert Opin. Pharmacother. 2019, 20, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Yasmin-Karim, S.; King, M.R.; Messing, E.M.; Lee, Y.F. E-Selectin Ligand-1 Controls Circulating Prostate Cancer Cell Roll-ing/Adhesion and Metastasis. Available online: https://www.oncotarget.com/article/2503/text/ (accessed on 12 November 2020).
- Barthel, S.R.; Hays, D.L.; Yazawa, E.M.; Opperman, M.; Walley, K.C.; Nimrichter, L.; Burdick, M.M.; Gillard, B.M.; Moser, M.T.; Pantel, K.; et al. Definition of Molecular Determinants of Prostate Cancer Cell Bone Extravasation. Cancer Res. 2013, 73, 942–952. [Google Scholar] [CrossRef] [Green Version]
- Park, K. Targeting prostate cancer cells en route to dissemination. J. Control. Release 2016, 223, 224. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Liu, S.; Parajuli, K.R.; Qu, Y.; Mei, J.; Chen, Z.; Zhang, H.; Khismatullin, D.B.; You, Z. IL-17 and insu-lin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44-VCAM-1 interaction. Prostate 2015, 75, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Sloan, E.K.; Pouliot, N.; Stanley, K.L.; Chia, J.; Moseley, J.M.; Hards, D.K.; Anderson, R.L. Tumor-specific expression of al-phavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res. 2006, 8, R20. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Wang, J.; Schneider, A.; Sun, Y.-X.; Koh-Paige, A.; Osman, N.; McCauley, L.; Taichman, R. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006, 38, 497–508. [Google Scholar] [CrossRef]
- Sun, Y.X.; Fang, M.; Wang, J.; Cooper, C.R.; Pienta, K.J.; Taichman, R.S. Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 2007, 67, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Engl, T.; Relja, B.; Marian, D.; Blumenberg, C.; Muller, I.; Beecken, W.D.; Jones, J.; Ringel, E.M.; Bereiter- Hahn, J.; Jonas, D.; et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 2006, 8, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kapur, N.; Mir, H.; Singh, N.; Lillard, J.W., Jr.; Singh, S. CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget 2016, 7, 7343–7353. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.; Mir, H.; Sonpavde, G.P.; Jain, S.; Bae, S.; Lillard, J.W., Jr.; Singh, S. Prostate cancer cells hyper-activate CXCR6 sig-naling by cleaving CXCL16 to overcome effect of docetaxel. Cancer Lett. 2019, 454, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Conley-LaComb, M.K.; Semaan, L.; Singareddy, R.; Li, Y.; Heath, E.I.; Kim, S.; Cher, M.L.; Chinni, S.R. Pharmacological tar-geting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol. Cancer 2016, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Cojoc, M.; Peitzsch, C.; Trautmann, F.; Polishchuk, L.; Telegeev, G.D.; Dubrovska, A. Emerging targets in cancer manage-ment: Role of the CXCL12/CXCR4 axis. Onco. Targets Ther. 2013, 6, 1347–1361. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Kim, J.K.; Shiozawa, Y.; Wang, J.; Mishra, A.; Joseph, J.; Berry, J.E.; McGee, S.; Lee, E.; Sun, H.; et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat. Commun. 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Taichman, R.S.; Cooper, C.; Keller, E.T.; Pienta, K.J.; Taichman, N.S.; McCauley, L.K. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002, 62, 1832–1837. [Google Scholar]
- Mishra, S.; Tang, Y.; Wang, L.; Degraffenried, L.; Yeh, I.T.; Werner, S.; Troyer, D.; Copland, J.A.; Sun, L.Z. Blockade of trans-forming growth factor-beta (TGFβ) signaling inhibits osteoblastic tumorigenesis by a novel human prostate cancer cell line. Prostate 2011, 71, 1441–1454. [Google Scholar] [CrossRef] [Green Version]
- Shiozawa, Y.; Havens, A.M.; Jung, Y.; Ziegler, A.M.; Pedersen, E.A.; Wang, J.; Wang, J.; Lu, G.; Roodman, G.D.; Loberg, R.D.; et al. Annexin II/Annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J. Cell. Biochem. 2008, 105, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Wang, J.; Song, J.; Shiozawa, Y.; Wang, J.; Havens, A.; Wang, Z.; Sun, Y.X.; Emerson, S.G.; Krebsbach, P.H.; et al. An-nexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 2007, 110, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Ghajar, C.M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer 2015, 15, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ghiso, J.A.; Estrada, Y.; Liu, D.; Ossowski, L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 2003, 63, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.-M.; Vessella, R.L.; Morrissey, C. The role of the microenvironment-dormant prostate disseminated tumor cells in the bone marrow. Drug Discov. Today Technol. 2014, 11, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Body, J.-J.; Casimiro, S.; Costa, L. Targeting bone metastases in prostate cancer: Improving clinical outcome. Nat. Rev. Urol. 2015, 12, 340–356. [Google Scholar] [CrossRef]
- Cook, L.M.; Shay, G.; Aruajo, A.; Lynch, C.C. Integrating new discoveries into the “vicious cycle” paradigm of prostate to bone metastases. Cancer Metastasis Rev. 2014, 33, 511–525. [Google Scholar] [CrossRef] [Green Version]
- Sottnik, J.; Keller, E. Understanding and Targeting Osteoclastic Activity in Prostate Cancer Bone Metastases. Curr. Mol. Med. 2013, 13, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.L.; Daignault, S.D.; Shah, R.B.; Pienta, K.J.; Keller, E.T. Dickkopf-1 expression increases early in prostate cancer devel-opment and decreases during progression from primary tumor to metastasis. Prostate 2008, 68, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.P.; Miller, R.E.; Jones, J.C.; Zhang, J.; Keller, E.T.; Dougall, W.C. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 2007, 68, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.C.; Hikosaka, A.; Acuff, H.B.; Martin, M.D.; Kawai, N.; Singh, R.K.; Vargo-Gogola, T.C.; Begtrup, J.L.; Peterson, T.E.; Fingleton, B.; et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 2005, 7, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dai, J.; Qi, Y.; Lin, D.L.; Smith, P.; Strayhorn, C.; Mizokami, A.; Fu, Z.; Westman, J.; Keller, E.T. Osteoprotegerin in-hibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 2001, 107, 1235–1244. [Google Scholar] [CrossRef]
- Patel, M.S.; Elefteriou, F. The New Field of Neuroskeletal Biology. Calcif. Tissue Int. 2007, 80, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Yu-Lee, L.Y.; Lin, S.H. Osteoblastic Factors in Prostate Cancer Bone Metastasis. Curr. Osteoporos Rep. 2018, 16, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Thudi, N.K.; Martin, C.K.; Murahari, S.; Shu, S.T.; Lanigan, L.G.; Werbeck, J.L.; Keller, E.T.; McCauley, L.K.; Pinzone, J.J.; Rosol, T.J. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate 2010, 71, 615–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, C.J.; Edwards, C.M. The Role of the Microenvironment in Prostate Cancer-Associated Bone Disease. Curr. Osteoporos. Rep. 2016, 14, 170–177. [Google Scholar] [CrossRef]
- Dai, J.; Hall, C.L.; Escara-Wilke, J.; Mizokami, A.; Keller, J.M.; Keller, E.T. Prostate Cancer Induces Bone Metastasis through Wnt-Induced Bone Morphogenetic Protein-Dependent and Independent Mechanisms. Cancer Res. 2008, 68, 5785–5794. [Google Scholar] [CrossRef] [Green Version]
- Saylor, P.J.; Lee, R.J.; Smith, M.R. Emerging Therapies to Prevent Skeletal Morbidity in Men With Prostate Cancer. J. Clin. Oncol. 2011, 29, 3705–3714. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Halabi, S.; Ryan, C.J.; Hussain, A.; Vogelzang, N.; Stadler, W.; Hauke, R.J.; Monk, J.P.; Saylor, P.; Bhoopalam, N.; et al. Randomized Controlled Trial of Early Zoledronic Acid in Men With Castration-Sensitive Prostate Cancer and Bone Metastases: Results of CALGB 90202 (Alliance). J. Clin. Oncol. 2014, 32, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.S.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [Green Version]
- Kamba, T.; ZAPCA Study Group; Kamoto, T.; Maruo, S.; Kikuchi, T.; Shimizu, Y.; Namiki, S.; Fujimoto, K.; Kawanishi, H.; Sato, F.; et al. A phase III multicenter, randomized, controlled study of combined androgen blockade with versus without zoledronic acid in prostate cancer patients with metastatic bone disease: Results of the ZAPCA trial. Int. J. Clin. Oncol. 2016, 22, 166–173. [Google Scholar] [CrossRef]
- Santini, D.; Berruti, A.; Di Maio, M.; Procopio, G.; Bracarda, S.; Ibrahim, T.; Bertoldo, F. Bone health management in the con-tinuum of prostate cancer disease: A review of the evidence with an expert panel opinion. ESMO 2020, 5, e000652. [Google Scholar] [CrossRef] [Green Version]
- Saad, F.; Shore, N.; Van Poppel, H.; Rathkopf, D.E.; Smith, M.R.; De Bono, J.S.; Logothetis, C.J.; De Souza, P.; Fizazi, K.; Mulders, P.F.; et al. Impact of Bone-targeted Therapies in Chemotherapy-naïve Metastatic Castration-resistant Prostate Cancer Patients Treated with Abiraterone Acetate: Post Hoc Analysis of Study COU-AA-302. Eur. Urol. 2015, 68, 570–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, E.J.; Smith, M.R.; Seaman, J.J.; Petrone, S.; Kowalski, M.O. Combined analysis of two multicenter, randomized, pla-cebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J. Clin. Oncol. 2003, 21, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
- Ernst, D.; Tannock, I.F.; Winquist, E.; Venner, P.; Reyno, L.; Moore, M.J.; Chi, K.; Ding, K.; Elliott, C.; Parulekar, W. Randomized, Double-Blind, Controlled Trial of Mitoxantrone/Prednisone and Clodronate Versus Mitoxantrone/Prednisone and Placebo in Patients With Hormone-Refractory Prostate Cancer and Pain. J. Clin. Oncol. 2003, 21, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Gleason, D.M.; Murray, R.; Tchekmedyian, S.; Venner, P.; Lacombe, L.; Chin, J.L.; Vinholes, J.J.; Goas, J.A.; Chen, B. A Randomized, Placebo-Controlled Trial of Zoledronic Acid in Patients With Hormone-Refractory Metastatic Prostate Carcinoma. J. Natl. Cancer Inst. 2002, 94, 1458–1468. [Google Scholar] [CrossRef]
- Fizazi, K.; Carducci, M.; Smith, M.; Damião, R.; Brown, J.; Karsh, L.; Milecki, P.; Shore, N.; Rader, M.; Wang, H.; et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castra-tion-resistant prostate cancer: A randomised, double-blind study. Lancet 2011, 377, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Bhowmik, D.; Kachru, N.; Hernandez, R.K. Longitudinal patterns of bone-targeted agent use among patients with solid tumors and bone metastases in the United States. Support. Care Cancer 2017, 25, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.; Nilsson, D.S.; Heinrich, S.D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. New Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Parker, C.; Saad, F.; Miller, K.; Tombal, B.; Ng, Q.S.; Boegemann, M.; Matveev, V.; Piulats, J.M.; Zucca, L.E.; et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 408–419. [Google Scholar] [CrossRef]
- Tombal, B.F.; Loriot, Y.; Saad, F.; McDermott, R.S.; Elliott, T.; Rodriguez-Vida, A.; Nolè, F.; Fournier, B.; Collette, L.; Gillessen, S. Decreased fracture rate by mandating bone-protecting agents in the EORTC 1333/PEACE III trial comparing enzalu-tamide and Ra223 versus enzalutamide alone: An interim safety analysis. J. Clin. Oncol. 2019, 37, 5007. [Google Scholar] [CrossRef]
- James, N.; Pirrie, S.; Pope, A.; Barton, D.; Andronis, L.; Goranitis, I.; Collins, S.; McLaren, D.; O’Sullivan, J.; Parker, C.; et al. TRAPEZE: A randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer. Heal. Technol. Assess. 2016, 20, 1–288. [Google Scholar] [CrossRef] [Green Version]
- Body, J.J.; von Moos, R.; Rider, A.; Hallworth, P.; Bhowmik, D.; Gatta, F.; Hechmati, G.; Qian, Y. A real-world study assessing the use of bone-targeted agents and their impact on bone metastases in patients with prostate cancer treated in clinical practice in Europe. J. Bone Oncol. 2018, 14, 100212. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E.; Croucher, P.I.; Padhani, A.R.; Clézardin, P.; Chow, E.; Fallon, M.; Guise, T.; Colangeli, S.; Capanna, R.; Costa, L. Bone metastases. Nat. Rev. Dis. Prim. 2020, 6, 1–28. [Google Scholar] [CrossRef]
- Wirth, M.; Tammela, T.; Cicalese, V.; Gomez Veiga, F.; Delaere, K.; Miller, K.; Tubaro, A.; Schulze, M.; Debruyne, F.; Huland, H.; et al. Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: Efficacy and safety results of the Zometa European Study (ZEUS). Eur. Urol. 2015, 67, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Saad, F.; Coleman, R.; Shore, N.; Fizazi, K.; Tombal, B.; Miller, K.; Sieber, P.; Karsh, L.; Damião, R.; et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: Results of a phase 3, randomised, placebo-controlled trial. Lancet 2012, 379, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chen, Q.; Corey, E.; Xie, W.; Fan, J.; Mizokami, A.; Zhang, J. Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin. Exp. Metastasis 2008, 26, 161–169. [Google Scholar] [CrossRef]
Trial | Reference | Population (Number of Patients) | Treatment Arms | Primary End-Points | Secondary End-Points | Results |
---|---|---|---|---|---|---|
CALGB 90202 (Alliance) | Smith et al. [48] | mHSPC (645) | ZA vs. Placebo | Time to First SRE | OS | Time to first SRE: ZA: 31.9 months Placebo: 29.8 months HR 0.97; 95% CI, 0 to 1.17; one-sided stratified log-rank p = 0.39. Adjusted HR 0.88; 95% CI, 0.70 to 1.12; stratified log-rank p = 0.29 |
STAMPEDE | James et al. [49] | mHSPC: 61% M+ 15% n + /x M0 24% N0 M0 6% previously treated with local therapy (2962) | Arm A (ADT alone) vs. ArmB (ADT + ZA) vs. Arm C (Docetaxel + ADT) vs. Arm E (Docetaxel + ADT + ZA) | OS | TTfSRE | SREs reported in: Arm A: 328 pts Arm B: 153 pts HR 0.89, 95% CI 0.73–1.07; p = 0.221 Arm C: 112 pts HR 0.60, 95% CI 0.48–0.74; p = 0.127 × 10−5 Arm E: 108 pts HR 0.55, 95% CI 0.44–0.69; p = 0.277 × 10−7 |
ZAPCA | Kamba et al. [50] | mHSPC (227) | CAB vs. CAB + ZA | TTTF | TTfSRE OS | Median TTTFs: CAB + ZA: 12.4 months CAB: 9.7 months HR 0.75; 95% CI 0.57–1.00; p = 0.051 Median TTfSREs: CAB + ZA: 64.7 months CAB: 45.9 months HR 0.58; 95% CI 0.38–0.88; p = 0.009 OS was similar between the two groups. |
Trial | Reference | Population(Number of Patients) | Treatment Arms | Primary End-Points | Secondary End-Points | Results |
---|---|---|---|---|---|---|
COU-AA-302 (post-hoc) | Saad et al. [52] | mCRPC (no visceral metastases) and chemotherapy naive (1088) | BTAs + AAP vs. BTAs + placebo + prednisone | OS Time to ECOG deterioration Time to opiate use for CRP | - | BTT use showed significantly longer OS (p = 0.012; risk reduction 25%), longer time to deterioration in ECOG PS (p < 0.001, risk reduction 25%), and longer time to opiate use for CRP (p = 0.036, risk reduction 20%) |
Zometa 039 | Saad et al. [55] | mCRPC (643) | ZA Q4 W (4 mg or 8 mg) + ADT vs. Placebo + ADT | SRE–free survival; time to first SRE | - | ZA 4 mg was associated with fewer SRE (44.2% vs. 33.2%; difference = −11.0%, 95% CI −20.3% to −1.8%; p = 0.021) and increased median time to the first SRE (p = 0.011) vs. placebo |
Denosumab 103 | Fizazi et al. [56] | mCRPC Failure of at least one hormonal therapy as evidenced by a rising PSA (1901) | ZA Q4 W 4 mg IV and denosumab sc Q4 W 120 mg placebo vs. Denosumab sc Q4 W 120 mg and ZA 4 mg placebo IV | Time to first on-study SRE (noninferiority) | Time to first on-study SRE (superiority); time to first and subsequent on-study SRE | Median time to first on-study SRE: Denosumab: 20.7 months ZA: 17.1 months HR 0.82, 95% CI 0.71–0.95; p = 0.0002 for noninferiority; p = 0.008 for superiority |
ALSYMPCA | Parker et al. [58] | mCRPC (921) | Radium-223 (6 injections at a dose of 50 kBq/Kg IV Q4 W) vs. Placebo | OS | Time to the first skeletal event | Median OS: Radium-223: 14.9 months Placebo: 11.3 months HR 0.70; 95% CI 0.58 to 0.83; p < 0.001 Median time to first symptomatic skeletal event: Radium-223: 15.6 months Placebo: 9.8 months HR 0.66; 95% CI 0.52 to 0.83; p < 0.001 |
ERA-223 | Smith et al. [59] | mCRPC chemotherapy naive, asymptomatic or paucisymptomatic pts (806) | Radium-223 + AAP vs. Placebo + AAP | Symptomatic SRE-free survival | - | Median symptomatic SRE-free survival: Radium-223 + AAP: 22.3 months Placebo + AAP: 26.0 months HR 1.122; 95% CI 0.917 − 1.374; p = 0.2636 |
ERA-223 (post-hoc) | Smith et al. [59] | - | Radium-223 + AAP vs. Placebo + AAP vs. Radium-223 + AAP + BTAs vs. Placebo + AAP + BTAs | Incidence of pathological fractures | - | Incidence of pathological fractures: with BTAs: 15% in the radium-223 arm and 7% in the placebo arm without BTAs: 37% radium-223 arm and 15% in the placebo arm |
EORTC 1333/PEACE III(safety analysis) | Tombal et al. [60] | mCRPC (146) | Enzalutamide vs. Enzalutamide + Radium-223 vs. Enzalutamide + BTAsvs. Enzalutamide + Radium-223 + BTAs | Fracture rate | - | Cumulative risk of fracture at a 13 months follow-up: without BTAs: 12.4% in enzalutamide arm vs. 37.4% in radium-223 arm with BTAs: 0% in enzalutamide arm vs. 2.2% in enzalutamide + radium-223 arm |
TRAPEZE | James et al. [61] | mCRPC (757) | Docetaxel + prednisolone + ZA vs. Docetaxel + prednisolone + Sr-89 vs. Docetaxel + prednisolone + ZA + Sr-89 | CPFS | SREFI OS | Sr-89 improved CPFS ZA did not improve CPFS but significantly improved SREFI HR 0.76; 95% CI 0.63 to 0.93; p = 0.008) Neither agent affected OS (Sr-89, p = 0.74; ZA, p = 0.91) |
ZEUS (Zometa European Study) | Wirth et al. [64] | M0 prostate cancer At least one of the following: PSA ≥ 20 ng/mL; pN + disease; Gleason score 8–10.(1393) | SOC + ZA 4 mg/5 mL IV every 3 months (for a total of 48 months) vs. SOC only | Proportion of pts who develop BM during the study | Time to first BM OS Time to PSA doubling Safety Bone mineral density Biochemical markers of bone turnover | BIP–BM developed in: 88 of 515 patients (17.1%) in the ZA group 89 of 525 patients (17.0%) in the control group Chi-square test: p = 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollica, V.; Rizzo, A.; Rosellini, M.; Marchetti, A.; Ricci, A.D.; Cimadamore, A.; Scarpelli, M.; Bonucci, C.; Andrini, E.; Errani, C.; et al. Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art. Cancers 2021, 13, 546. https://doi.org/10.3390/cancers13030546
Mollica V, Rizzo A, Rosellini M, Marchetti A, Ricci AD, Cimadamore A, Scarpelli M, Bonucci C, Andrini E, Errani C, et al. Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art. Cancers. 2021; 13(3):546. https://doi.org/10.3390/cancers13030546
Chicago/Turabian StyleMollica, Veronica, Alessandro Rizzo, Matteo Rosellini, Andrea Marchetti, Angela Dalia Ricci, Alessia Cimadamore, Marina Scarpelli, Chiara Bonucci, Elisa Andrini, Costantino Errani, and et al. 2021. "Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art" Cancers 13, no. 3: 546. https://doi.org/10.3390/cancers13030546
APA StyleMollica, V., Rizzo, A., Rosellini, M., Marchetti, A., Ricci, A. D., Cimadamore, A., Scarpelli, M., Bonucci, C., Andrini, E., Errani, C., Santoni, M., Montironi, R., & Massari, F. (2021). Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art. Cancers, 13(3), 546. https://doi.org/10.3390/cancers13030546