The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Quantitative Molecular Analysis
2.2. Association Analysis among Bacteria Abundance, Lifestyle Data and Oral Health Status
2.3. Association Analysis between Bacteria Abundance and Staging
3. Discussion
4. Material and Methods
4.1. Study Cohort
4.2. Analysis of Oral Bacterial Strains and Growth Conditions
4.3. DNA Extraction
4.4. Bacterial DNA Quantification by qPCR Analysis
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Colorectal cancer | CRC |
Colon Cancer | CC |
Adenocarcinoma | ADK |
Fusobacterium nucleatum | Fn |
Porphyromonas gingivalis | Pg |
adjacent non-neoplastic mucosa | adj t |
vascular endothelial cadherin | VE-cadherin |
mucosa-associated lymphoid tissue | MALT |
T-lymphocyte-infiltrating tumor | TIL |
reactive oxygen species | ROS |
Plaque index | PII |
Gingival index | GI |
Body mass index | BMI |
Root mean square error | RMSE |
Colony-Forming Unit | CFU |
ultra-processed foods | UPFs |
quantitative real-time PCR | qPCR |
polymicrobial synergy and dysbiosis | PSD |
References
- Zhou, X.; Liu, X.; Li, J.; Aprecio, R.M.; Zhang, W.; Li, Y. Real-Time PCR Quantification of Six Periodontal Pathogens in Saliva Samples from Healthy Young Adults. Clin. Oral Investig. 2015, 19, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signat, B.; Roques, C.; Poulet, P.; Duffaut, D. Fusobacterium Nucleatum in Periodontal Health and Disease. Curr. Issues Mol. Biol 2011, 13, 25–36. [Google Scholar]
- Kolenbrander, P.E. Oral Microbial Communities: Biofilms, Interactions, and Genetic Systems. Annu. Rev. Microbiol. 2000, 54, 413–437. [Google Scholar] [CrossRef]
- Fardini, Y.; Wang, X.; Témoin, S.; Nithianantham, S.; Lee, D.; Shoham, M.; Han, Y.W. Fusobacterium Nucleatum Adhesin FadA Binds Vascular Endothelial Cadherin and Alters Endothelial Integrity. Mol. Microbiol. 2011, 82, 1468–1480. [Google Scholar] [CrossRef] [Green Version]
- Nosho, K.; Sukawa, Y.; Adachi, Y.; Ito, M.; Mitsuhashi, K.; Kurihara, H.; Kanno, S.; Yamamoto, I.; Ishigami, K.; Igarashi, H.; et al. Association of Fusobacterium Nucleatum with Immunity and Molecular Alterations in Colorectal Cancer. World J. Gastroenterol. 2016, 22, 557–566. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L. Microbial Complexes in Subgingival Plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- How, K.Y.; Song, K.P.; Chan, K.G. Porphyromonas Gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front. Microbiol. 2016, 7, 53. [Google Scholar] [CrossRef]
- Yao, L.; Jermanus, C.; Barbetta, B.; Choi, C.; Verbeke, P.; Ojcius, D.M.; Yilmaz, O. Porphyromonas Gingivalis Infection Sequesters Pro-Apoptotic Bad through Akt in Primary Gingival Epithelial Cells. Mol. Oral Microbiol. 2010, 25, 89–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.H.; Spooner, R.; DeGuzman, J.; Koutouzis, T.; Ojcius, D.M.; Yilmaz, Ö. Porphyromonas Gingivalis-Nucleoside-Diphosphate-Kinase Inhibits ATP-Induced Reactive-Oxygen-Species via P2X7 Receptor/NADPH-Oxidase Signalling and Contributes to Persistence. Cell Microbiol. 2013, 15, 961–976. [Google Scholar] [CrossRef] [Green Version]
- Mager, D.L. Bacteria and Cancer: Cause, Coincidence or Cure? A Review. J. Transl. Med. 2006, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; et al. Fusobacterium Nucleatum Infection Is Prevalent in Human Colorectal Carcinoma. Genome Res. 2012, 22, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Res. 2012, 22, 292–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamura, K.; Baba, Y.; Nakagawa, S.; Mima, K.; Miyake, K.; Nakamura, K.; Sawayama, H.; Kinoshita, K.; Ishimoto, T.; Iwatsuki, M.; et al. Human Microbiome Fusobacterium Nucleatum in Esophageal Cancer Tissue Is Associated with Prognosis. Clin. Cancer Res. 2016, 22, 5574–5581. [Google Scholar] [CrossRef] [Green Version]
- Mitsuhashi, K.; Nosho, K.; Sukawa, Y.; Matsunaga, Y.; Ito, M.; Kurihara, H.; Kanno, S.; Igarashi, H.; Naito, T.; Adachi, Y.; et al. Association of Fusobacterium Species in Pancreatic Cancer Tissues with Molecular Features and Prognosis. Oncotarget 2015, 6, 7209–7220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, H.; Sugita, H.; Kuboniwa, M.; Iwai, S.; Hamada, M.; Noda, T.; Morisaki, I.; Lamont, R.J.; Amano, A. Porphyromonas Gingivalis Promotes Invasion of Oral Squamous Cell Carcinoma through Induction of ProMMP9 and Its Activation. Cell Microbiol. 2014, 16, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Mu, W.; Lu, H.; Wang, X.; Fang, J.; Jia, Y.; Li, Q.; Wang, D.; Wen, S.; Guo, J.; et al. Porphyromonas Gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. J. Dent. Res. 2020, 99, 666–675. [Google Scholar] [CrossRef]
- Gao, S.; Li, S.; Ma, Z.; Liang, S.; Shan, T.; Zhang, M.; Zhu, X.; Zhang, P.; Liu, G.; Zhou, F.; et al. Presence of Porphyromonas Gingivalis in Esophagus and Its Association with the Clinicopathological Characteristics and Survival in Patients with Esophageal Cancer. Infect. Agent Cancer 2016, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhou, M.; Salazar, C.R.; Hays, R.; Bedi, S.; Chen, Y.; Li, Y. Chronic Periodontal Disease, Periodontal Pathogen Colonization, and Increased Risk of Precancerous Gastric Lesions. J. Periodontol. 2017, 88, 1124–1134. [Google Scholar] [CrossRef]
- Ahn, J.S.; Okal, R.; Vos, J.A.; Smolkin, M.; Kanate, A.S.; Rosado, F.G. Plasmablastic Lymphoma versus Plasmablastic Myeloma: An Ongoing Diagnostic Dilemma. J. Clin. Pathol. 2017, 70, 775–780. [Google Scholar] [CrossRef]
- Rivas, M.A.; Carnevale, R.P.; Proietti, C.J.; Rosemblit, C.; Beguelin, W.; Salatino, M.; Charreau, E.H.; Frahm, I.; Sapia, S.; Brouckaert, P.; et al. TNF Alpha Acting on TNFR1 Promotes Breast Cancer Growth via P42/P44 MAPK, JNK, Akt and NF-Kappa B-Dependent Pathways. Exp. Cell Res. 2008, 314, 509–529. [Google Scholar] [CrossRef] [PubMed]
- Stappenbeck, T.S.; Hooper, L.V.; Gordon, J.I. Developmental Regulation of Intestinal Angiogenesis by Indigenous Microbes via Paneth Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 15451–15455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, A.N.; Araújo-Pérez, F.; Azcárate-Peril, A.; Yeh, J.J.; Sandler, R.S.; Keku, T.O. Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE 2013, 8, e53653. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, Y.; Fu, X.; Zhou, X.; Peng, Y.; Shi, L.; Chen, T.; Wu, Y. Invasive Fusobacterium Nucleatum May Play a Role in the Carcinogenesis of Proximal Colon Cancer through the Serrated Neoplasia Pathway. Int. J. Cancer 2016, 139, 1318–1326. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, M.R.; Baik, J.E.; Lagana, S.M.; Han, R.P.; Raab, W.J.; Sahoo, D.; Dalerba, P.; Wang, T.C.; Han, Y.W. Fusobacterium Nucleatum Promotes Colorectal Cancer by Inducing Wnt/β-Catenin Modulator Annexin A1. EMBO Rep. 2019, 20. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, Y.; Yu, J.; Chen, T.; Wu, Y.; Shi, L.; Li, Q.; Wu, J.; Fu, X. Invasive Fusobacterium Nucleatum Activates Beta-Catenin Signaling in Colorectal Cancer via a TLR4/P-PAK1 Cascade. Oncotarget 2017, 8, 31802–31814. [Google Scholar] [CrossRef]
- Flynn, K.J.; Baxter, N.T.; Schloss, P.D. Metabolic and Community Synergy of Oral Bacteria in Colorectal Cancer. mSphere 2016, 1, e00102-16. [Google Scholar] [CrossRef] [Green Version]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Ballini, A.; Dipalma, G.; Isacco, C.G.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Nguyễn, K.C.D.; Scacco, S.; Calvani, M.; Boddi, A.; et al. Oral Microbiota and Immune System Crosstalk: A Translational Research. Biology 2020, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Pischon, T.; Nöthlings, U.; Boeing, H. Obesity and Cancer. Proc. Nutr. Soc. 2008, 67, 128–145. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez-Mena, J.M.; Walter, V.; Schöttker, B.; Jenab, M.; O’Doherty, M.G.; Kee, F.; Bueno-de-Mesquita, B.; Peeters, P.H.M.; Stricker, B.H.; Ruiter, R.; et al. Impact of Prediagnostic Smoking and Smoking Cessation on Colorectal Cancer Prognosis: A Meta-Analysis of Individual Patient Data from Cohorts within the CHANCES Consortium. Ann. Oncol. 2018, 29, 472–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inchingolo, F.; Dipalma, G.; Cirulli, N.; Cantore, S.; Saini, R.S.; Altini, V.; Santacroce, L.; Ballini, A.; Saini, R. Microbiological Results of Improvement in Periodontal Condition by Administration of Oral Probiotics. J. Biol. Regul. Homeost. Agents 2018, 32, 1323–1328. [Google Scholar]
- Haffajee, A.D.; Socransky, S.S. Relationship of Cigarette Smoking to the Subgingival Microbiota. J. Clin. Periodontol. 2001, 28, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-H.; Lee, J.-H.; Lee, J.-Y. Subgingival Microbiome in Smokers and Non-Smokers in Korean Chronic Periodontitis Patients. Mol. Oral Microbiol. 2015, 30, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-B.; Han, K.; Park, Y.-G.; Ko, Y. Association between Alcohol Consumption and Periodontal Disease: The 2008 to 2010 Korea National Health and Nutrition Examination Survey. J. Periodontol. 2014, 85, 1521–1528. [Google Scholar] [CrossRef]
- Lages, E.J.P.; Costa, F.O.; Cortelli, S.C.; Cortelli, J.R.; Cota, L.O.M.; Cyrino, R.M.; Lages, E.M.B.; Nobre-Franco, G.C.; Brito, J.A.R.; Gomez, R.S. Alcohol Consumption and Periodontitis: Quantification of Periodontal Pathogens and Cytokines. J. Periodontol. 2015, 86, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tabung, F.K.; Zhang, X.; Nowak, J.A.; Qian, Z.R.; Hamada, T.; Nevo, D.; Bullman, S.; Mima, K.; Kosumi, K.; et al. Diets That Promote Colon Inflammation Associate with Risk of Colorectal Carcinomas That Contain Fusobacterium Nucleatum. Clin. Gastroenterol. Hepatol. 2018, 16, 1622–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.S.; Nishihara, R.; Cao, Y.; Song, M.; Mima, K.; Qian, Z.R.; Nowak, J.A.; Kosumi, K.; Hamada, T.; Masugi, Y.; et al. Association of Dietary Patterns with Risk of Colorectal Cancer Subtypes Classified by Fusobacterium Nucleatum in Tumor Tissue. JAMA Oncol. 2017, 3, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect Size Estimates: Current Use, Calculations, and Interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Dablander, F.; Hinne, M. Node Centrality Measures Are a Poor Substitute for Causal Inference. Sci. Rep. 2019, 9, 6846. [Google Scholar] [CrossRef] [Green Version]
- Hevey, D. Network Analysis: A Brief Overview and Tutorial. Health Psychol. Behav. Med. 2018, 6, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Barajas-Martínez, A.; Easton, J.F.; Rivera, A.L.; Martínez-Tapia, R.; de la Cruz, L.; Robles-Cabrera, A.; Stephens, C.R. Metabolic Physiological Networks: The Impact of Age. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, R.P.; Liu, K.K.L.; Bashan, A.; Ivanov, P.C. Network Physiology: How Organ Systems Dynamically Interact. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Mima, K.; Nishihara, R.; Qian, Z.R.; Cao, Y.; Sukawa, Y.; Nowak, J.A.; Yang, J.; Dou, R.; Masugi, Y.; Song, M.; et al. Fusobacterium Nucleatum in Colorectal Carcinoma Tissue and Patient Prognosis. Gut 2016, 65, 1973–1980. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, L.; Schmid, J.; Ebert, M.; Soucek, P.; Kunicka, T.; Liska, V.; Bruha, J.; Neary, P.; Dezeeuw, N.; Tommasino, M.; et al. Fusobacterium Nucleatum Associates with Stages of Colorectal Neoplasia Development, Colorectal Cancer and Disease Outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1381–1390. [Google Scholar] [CrossRef]
- Ferroni, P.; Palmirotta, R.; Spila, A.; Martini, F.; Formica, V.; Portarena, I.; Del Monte, G.; Buonomo, O.; Roselli, M.; Guadagni, F. Prognostic Value of Carcinoembryonic Antigen and Vascular Endothelial Growth Factor Tumor Tissue Content in Colorectal Cancer. Oncology 2006, 71, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, P.; Roselli, M.; Spila, A.; D’Alessandro, R.; Portarena, I.; Mariotti, S.; Palmirotta, R.; Buonomo, O.; Petrella, G.; Guadagni, F. Serum SE-Selectin Levels and Carcinoembryonic Antigen MRNA-Expressing Cells in Peripheral Blood as Prognostic Factors in Colorectal Cancer Patients. Cancer 2010, 116, 2913–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, X.-Y.; Peng, T.; Kong, F.-G.; Huang, J.-G.; Han, S.; Shang, Y.-S.; Liu, H. Alcohol Consumption Promotes Colorectal Cancer by Altering Intestinal Permeability. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9370–9377. [Google Scholar] [CrossRef]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.-W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. International Agency for Research on Cancer Monograph Working Group Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of Ultra-Processed Foods and Health Outcomes: A Systematic Review of Epidemiological Studies. Nutr. J. 2020, 19, 86. [Google Scholar] [CrossRef]
- Jeyakumar, A.; Dissabandara, L.; Gopalan, V. A Critical Overview on the Biological and Molecular Features of Red and Processed Meat in Colorectal Carcinogenesis. J. Gastroenterol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- O’Keefe, S.J.D. Diet, Microorganisms and Their Metabolites, and Colon Cancer. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 691–706. [Google Scholar] [CrossRef] [PubMed]
- de la Chapelle, A. Genetic Predisposition to Colorectal Cancer. Nat. Rev. Cancer 2004, 4, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, P.; Eslami, H.; Kafil, H.S. Carcinogenesis Mechanisms of Fusobacterium Nucleatum. Biomed. Pharmacother 2017, 89, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Shimomura, Y.; Higurashi, T.; Sugi, Y.; Arimoto, J.; Umezawa, S.; Uchiyama, S.; Matsumoto, M.; Nakajima, A. Patients with Colorectal Cancer Have Identical Strains of Fusobacterium Nucleatum in Their Colorectal Cancer and Oral Cavity. Gut 2019, 68, 1335–1337. [Google Scholar] [CrossRef] [Green Version]
- Abed, J.; Emgård, J.E.M.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; et al. Fap2 Mediates Fusobacterium Nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 2016, 20, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Abed, J.; Maalouf, N.; Manson, A.L.; Earl, A.M.; Parhi, L.; Emgård, J.E.M.; Klutstein, M.; Tayeb, S.; Almogy, G.; Atlan, K.A.; et al. Colon Cancer-Associated Fusobacterium Nucleatum May Originate from the Oral Cavity and Reach Colon Tumors via the Circulatory System. Front. Cell Infect. Microbiol. 2020, 10, 400. [Google Scholar] [CrossRef]
- Aceto, G.M.; Fantini, F.; De Iure, S.; Di Nicola, M.; Palka, G.; Valanzano, R.; Di Gregorio, P.; Stigliano, V.; Genuardi, M.; Battista, P.; et al. Correlation between Mutations and MRNA Expression of APC and MUTYH Genes: New Insight into Hereditary Colorectal Polyposis Predisposition. J. Exp. Clin. Cancer Res. 2015, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomkovich, S.; Yang, Y.; Winglee, K.; Gauthier, J.; Mühlbauer, M.; Sun, X.; Mohamadzadeh, M.; Liu, X.; Martin, P.; Wang, G.P.; et al. Locoregional Effects of Microbiota in a Preclinical Model of Colon Carcinogenesis. Cancer Res. 2017, 77, 2620–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uraz, A.; Karaduman, B.; Isler, S.Ç.; Gönen, S.; Çetiner, D. Ozone Application as Adjunctive Therapy in Chronic Periodontitis: Clinical, Microbiological and Biochemical Aspects. J. Dent. Sci. 2019, 14, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, Online, 8–11 June 2019. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS: And Sex and Drugs and Rock “n” Roll, 3rd ed.; Sage: London, UK, 2009. [Google Scholar]
Case | Age at Diagnosis | Sex | Site of Tumor | T | N | M | Grading | Staging | Comorbidity |
---|---|---|---|---|---|---|---|---|---|
1C | 73 | F | R | 3 | 0 | X | 3 | 2 | - |
2C | 67 | M | L | 3 | 0 | X | 2 | 2 | DM |
3C | 67 | F | L | 2 | 0 | X | 2 | 2 | - |
4C | 55 | F | R | 3 | 1b | X | 2 | 3 | MS |
5C | 84 | M | R | 3 | 0 | X | 2 | 2 | AH |
6C | 30 | F | SIG | 2 | 2 | X | 2 | 3b | - |
7C | 82 | M | R | 3 | 2b | X | 2 | 3c | AH |
8C | 47 | M | R | 3 | 1 | X | 3 | 3 | - |
9C | 73 | F | R | 2 | 0 | X | INDIFF | 2 | AH, IE, PMK, DM |
10C | 71 | - | SIG | 3 | 0 | X | - | 2 | - |
11C | 79 | M | R | 1 | 0 | X | 3 | 1 | - |
12C | 71 | F | SIG | 1 | 0 | X | 2 | 1 | - |
13C | 61 | F | L | 3 | 1b | X | 2 | 3 | DM, asthma |
14C | 52 | M | SIG | 4 | 1b | X | 2 | 3b | - |
15C | 68 | M | R | 2 | 0 | X | 3 | 1 | - |
16C | 64 | M | SIG | 4b | 1b | X | MUC | 3b | AH |
17C | 77 | F | SIG | 2 | 0 | X | 2 | 1 | - |
18C | 71 | M | R, L | 4b | 2a | 1 | 2 | 4a | - |
19C | 87 | F | R | 2 | 0 | X | 2 | 1 | - |
20C | 64 | M | R | 3 | 0 | X | 3 | 2a | - |
21C | 66 | M | SIG | 2 | 0 | X | 2 | 1 | - |
22C | 81 | F | R | 2 | 0 | X | 3 | 1 | SLC |
23C | 65 | F | SIG | 2 | 0 | X | 1 | 1 | - |
24C | 66 | F | SIG | 3 | 1c (td) | X | 2 | 3b | OCA L |
25C | 75 | F | R | 3 | 1 | X | 2 | 3b | - |
26C | 74 | M | TR | 3 | 0 | X | 2 | 2a | - |
27C | 60 | F | TR | 3 | N1c | 1 | 2 | 4a | LM |
28C | 67 | F | R | T4bv | 2b | X | 2 | 3c | - |
29C | 46 | M | SIG | IN SITU | 0 | X | 1 | 0 | - |
30C | 75 | F | SIG | 3v1 | N1c | X | 2 | 3b | - |
31C | 73 | M | R | 3 | 0 | X | 3 | 2a | - |
32C | 40 | F | TR | 3v1 | 0 | 1 | 3 | 4a | SLM |
33C | 76 | F | R | 2 | 0 | X | 2 | 1 | - |
34C | 80 | M | L | 2v1 | 0 | X | 2 | 1 | - |
35C | 61 | M | R | 3 | 0 | X | MUC | 2a | S |
36C | 70 | M | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | - |
Characteristics | Categories | Disease History Colon Cancer N | % | Mean ± SD |
---|---|---|---|---|
Smoking | ≤10 cigs/day | 3 | 9.4 | 14.38 ± 4.17 |
>10 cigs/day | 5 | 15.6 | ||
former and not | 24 | 75 | ||
Alcohol | ≤15 g/day F ≤30 g/day M | 28 | 87.5 | 12.69 ± 11.43 |
>15 g/day F >30 g/day M | 4 | 12.5 | ||
Body mass index (kg/m2) | <25 | 18 | 60 | 25.05 ± 4.21 |
25–29.9 | 9 | 30 | ||
≥30 | 3 | 10 | ||
GI | - | 20 | - | 0.66 ± 0.67 |
PII | - | 20 | - | 1.4 ± 0.73 |
N. teeth | - | 20 | - | 21.05 ± 9.10 |
Variable | BMI | PlI | GI | Fn Oral | Fn T | Fn Adj T | Pg Oral | Age |
---|---|---|---|---|---|---|---|---|
PlI | −0.22 | - | - | - | - | - | - | - |
GI | 0.05 | 0.52 * | - | - | - | - | - | - |
Fn oral | 0.29 | −0.14 | 0.15 | - | - | - | - | - |
Fn T | −0.12 | −0.23 | 0.12 | 0.26 | - | - | - | - |
Fn adj t | 0.10 | −0.22 | 0.12 | 0.38 * | 0.80 *** | - | - | - |
Pg oral | −0.09 | 0.23 | 0.38 | −0.01 | 0.09 | 0.24 | - | - |
Age | 0.35 | −0.05 | −0.16 | −0.21 | −0.23 | −0.15 | −0.23 | - |
N. teeth | 0.05 | 0.14 | −0.33 | −0.15 | −0.20 | 0.05 | 0.36 | 0.11 |
Fn Location | Variable | p-Value | McFR2 | NR2 | Odds Ratio | AIC | BIC |
---|---|---|---|---|---|---|---|
Fn oral | Staging | 0.507 | 0.006 | 0.008 | 1.205 | 86.17 | 91.77 |
Grading | 0.225 | 0.028 | 0.034 | 1.539 | 59.93 | 65.40 | |
Fn T | Staging | 0.016 | 0.077 | 0.102 | 1.771 | 78.50 | 83.97 |
Grading | 0.296 | 0.020 | 0.025 | 1.294 | 61.14 | 66.47 | |
Fn adj t | Staging | 0.088 | 0.045 | 0.061 | 1.914 | 69.45 | 74.34 |
Grading | 0.199 | 0.034 | 0.043 | 1.592 | 54.99 | 56.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignatelli, P.; Iezzi, L.; Pennese, M.; Raimondi, P.; Cichella, A.; Bondi, D.; Grande, R.; Cotellese, R.; Di Bartolomeo, N.; Innocenti, P.; et al. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers 2021, 13, 1032. https://doi.org/10.3390/cancers13051032
Pignatelli P, Iezzi L, Pennese M, Raimondi P, Cichella A, Bondi D, Grande R, Cotellese R, Di Bartolomeo N, Innocenti P, et al. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers. 2021; 13(5):1032. https://doi.org/10.3390/cancers13051032
Chicago/Turabian StylePignatelli, Pamela, Lorena Iezzi, Martina Pennese, Paolo Raimondi, Anna Cichella, Danilo Bondi, Rossella Grande, Roberto Cotellese, Nicola Di Bartolomeo, Paolo Innocenti, and et al. 2021. "The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients" Cancers 13, no. 5: 1032. https://doi.org/10.3390/cancers13051032
APA StylePignatelli, P., Iezzi, L., Pennese, M., Raimondi, P., Cichella, A., Bondi, D., Grande, R., Cotellese, R., Di Bartolomeo, N., Innocenti, P., Piattelli, A., & Curia, M. C. (2021). The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers, 13(5), 1032. https://doi.org/10.3390/cancers13051032