Clinical Utility of Next-Generation Sequencing-Based Panel Testing under the Universal Health-Care System in Japan: A Retrospective Analysis at a Single University Hospital
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Feasibility of Next-Generation Sequencing (NGS) Assay and Patient Characteristics
2.2. Matched Treatment According to Actionable Mutation
2.3. Presumed Germline Findings
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. The Flow of NGS Assay under National Health Insurance Coverage in Japan
4.3. Identification and Classification of Genes with Treatment Recommendation
4.4. Presumed Germline Findings
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radovich, M.; Kiel, P.J.; Nance, S.M.; Niland, E.E.; Parsley, M.E.; Ferguson, M.E.; Jiang, G.; Ammakkanavar, N.R.; Einhorn, L.H.; Cheng, L.; et al. Clinical benefit of a precision medicine based approach for guiding treatment of refractory cancers. Oncotarget 2016, 7, 56491. [Google Scholar] [CrossRef] [Green Version]
- Hainsworth, J.D.; Meric-Bernstam, F.; Swanton, C.; Hurwitz, H.; Spigel, D.R.; Sweeney, C.; Burris, H.A.; Bose, R.; Yoo, B.; Stein, A.; et al. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study. J. Clin. Oncol. 2018, 36, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Mangat, P.K.; Halabi, S.; Bruinooge, S.S.; Garrett-Mayer, E.; Alva, A.; Janeway, K.A.; Stella, P.J.; Voest, E.; Yost, K.J.; Perlmutter, J.; et al. Rationale and Design of the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. JCO Precis. Oncol. 2018, 2018. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.-C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017, 7, 586. [Google Scholar] [CrossRef] [Green Version]
- Sicklick, J.K.; Kato, S.; Okamura, R.; Schwaederle, M.; Hahn, M.E.; Williams, C.B.; De, P.; Krie, A.; Piccioni, D.E.; Miller, V.A.; et al. Molecular profiling of cancer patients enables personalized combination therapy: The I-PREDICT study. Nat. Med. 2019, 25, 744. [Google Scholar] [CrossRef]
- Gupta, R.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; D’Andre, S.D.; Meiri, E.; Shrestha, S.; Warren, S.L.; Ranasinghe, S.; Schilsky, R.L. Pertuzumab plus trastuzumab (P+T) in patients (Pts) with colorectal cancer (CRC) with ERBB2 amplification or overexpression: Results from the TAPUR Study. J. Clin. Oncol. 2020, 38 (Suppl. 4), 132. [Google Scholar] [CrossRef]
- Klute, K.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; Nazemzadeh, R.; Yost, K.J.; Butler, N.L.; Perla, V.; Schilsky, R.L. Cobimetinib plus vemurafenib (C+V) in patients (Pts) with colorectal cancer (CRC) with BRAF V600E mutations: Results from the TAPUR Study. J. Clin. Oncol. 2020, 38 (Suppl. 4), 122. [Google Scholar] [CrossRef]
- Alva, A.S.; Mangat, P.K.; Garrett-Mayer, E.; Halabi, S.; Alvarez, R.H.; Calfa, C.J.; Khalil, M.F.; Ahn, E.R.; Cannon, T.L.; Crilley, P.A.; et al. Pembrolizumab (P) in patients (pts) with metastatic breast cancer (MBC) with high tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J. Clin. Oncol. 2019, 37 (Suppl. 15), 1014. [Google Scholar] [CrossRef]
- Meiri, E.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; Shrestha, S.; Ahn, E.R.; Osayameh, O.; Perla, V.; Schilsky, R.L. Pembrolizumab (P) in patients (Pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J. Clin. Oncol. 2020, 38 (Suppl. 4), 133. [Google Scholar] [CrossRef]
- Ahn, E.R.; Mangat, P.K.; Garrett-Mayer, E.; Halabi, S.; Dib, E.G.; Haggstrom, D.E.; Alguire, K.B.; Alvarez, R.H.; Calfa, C.J.; Cannon, T.L.; et al. Palbociclib (P) in patients (pts) with non-small cell lung cancer (NSCLC) with CDKN2A alterations: Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J. Clin. Oncol. 2019, 37 (Suppl. 15), 9041. [Google Scholar] [CrossRef]
- Tan, D.S.; Tan, D.S.; Tan, I.B.H.; Yan, B.; Choo, S.P.; Chng, W.J.; Hwang, W.Y.K. Recommendations to improve the clinical adoption of NGS-based cancer diagnostics in Singapore. Asia Pac. J. Clin. Oncol. 2020, 16, 222. [Google Scholar] [CrossRef] [Green Version]
- Ebi, H.; Bando, H. Precision Oncology and the Universal Health Coverage System in Japan. JCO Precis. Oncol. 2019, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Aburatani, H.; Amano, T.; Baba, E.; Furukawa, T.; Hayashida, T.; Hiyama, E.; Ikeda, S.; Kanai, M.; Kato, M.; et al. Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (edition 2.1). Int. J. Clin. Oncol. 2021, 26, 233. [Google Scholar] [CrossRef]
- Takeda, M.; Sakai, K.; Takahama, T.; Fukuoka, K.; Nakagawa, K.; Nishio, K. New Era for Next-Generation Sequencing in Japan. Cancers 2019, 11, 742. [Google Scholar] [CrossRef] [Green Version]
- De Falco, V.; Poliero, L.; Vitello, P.P.; Ciardiello, D.; Vitale, P.; Zanaletti, N.; Giunta, E.F.; Terminiello, M.; Caputo, V.; Carlino, F.; et al. Feasibility of next-generation sequencing in clinical practice: Results of a pilot study in the Department of Precision Medicine at the University of Campania ‘Luigi Vanvitelli’. ESMO Open 2020, 5, e000675. [Google Scholar] [CrossRef] [Green Version]
- Sunami, K.; Ichikawa, H.; Kubo, T.; Kato, M.; Fujiwara, Y.; Shimomura, A.; Koyama, T.; Kakishima, H.; Kitami, M.; Matsushita, H.; et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: A hospital-based study. Cancer Sci. 2019, 110, 1480. [Google Scholar] [CrossRef] [Green Version]
- Dalton, W.B.; Forde, P.M.; Kang, H.; Connolly, R.M.; Stearns, V.; Gocke, C.D.; Eshleman, J.R.; Axilbund, J.; Petry, D.; Geoghegan, C.; et al. Personalized Medicine in the Oncology Clinic: Implementation and Outcomes of the Johns Hopkins Molecular Tumor Board. JCO Precis. Oncol. 2017, 1, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hoefflin, R.; Geißler, A.-L.; Fritsch, R.; Claus, R.; Wehrle, J.; Metzger, P.; Reiser, M.; Mehmed, L.; Fauth, L.; Heiland, D.H.; et al. Personalized Clinical Decision Making Through Implementation of a Molecular Tumor Board: A German Single-Center Experience. JCO Precis. Oncol. 2018, 2, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sadaps, M.; Funchain, P.; Mahdi, H.; Grivas, P.; Pritchard, A.; Klek, S.; Estfan, B.; Abraham, J.; Budd, G.T.; Stevenson, J.P.; et al. Precision Oncology in Solid Tumors: A Longitudinal Tertiary Care Center Experience. JCO Precis. Oncol. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Prospective Study for Evaluating Feasibly and Utility of Comprehensive Genomic Profiling Test before Initial Systemic Treatment in Advanced Malignant Solid Tumor Patients. Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046492 (accessed on 24 January 2021).
- Kurnit, K.C.; Dumbrava, E.E.I.; Litzenburger, B.; Khotskaya, Y.B.; Johnson, A.M.; Yap, T.A.; Rodon, J.; Zeng, J.; Shufean, M.A.; Bailey, A.M.; et al. Precision Oncology Decision Support: Current Approaches and Strategies for the Future. Clin. Cancer Res. 2018, 24, 2719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizugaki, H.; Yamamoto, N.; Fujiwara, Y.; Nokihara, H.; Yamada, Y.; Tamura, T. Current Status of Single-Agent Phase I Trials in Japan: Toward Globalization. Int. J. Clin. Oncol. 2015, 33, 2051–2061. [Google Scholar] [CrossRef]
- Loong, H.H.; Tan, D.S.W.; Shimizu, T. Challenges and insights of early phase oncology drug development in the Asia-Pacific region. Chin. Clin. Oncol. 2019, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, S.; Shimoi, T.; Sunami, K.; Shibata, T.; Okamura, N.; Mori, M.; Kawabata, S.; Okita, N.; Nakamura, K.; Yamamoto, N. A novel approach for improving drug access using patient-proposed healthcare service. ABSTRACTS Pediatr. Blood Cancer 2019, 66, e28049. [Google Scholar] [CrossRef]
- Broom, A.; Kenny, K.; Page, A.; Cort, N.; Lipp, E.S.; Tan, A.C.; Ashley, D.M.; Walsh, K.M.; Khasraw, M. The Paradoxical Effects of COVID-19 on Cancer Care: Current Context and Potential Lasting Impacts. Clin. Cancer Res. 2020, 26, 5809–5813. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Lydon, C.A.; Li, T.; Dai, J.; Standring, A.; Legor, K.A.; Caparrotta, C.M.; Schenker, M.P.; Glazer, D.I.; Tayob, N.; et al. The Impact of COVID-19 on Clinical Trial Execution at the Dana-Farber Cancer Institute. JNCI J. Natl. Cancer Inst. 2020, djaa144. [Google Scholar] [CrossRef]
- Bun, S.; Yonemori, K.; Sunadoi, H.; Nishigaki, R.; Noguchi, E.; Okusaka, T.; Nishida, T.; Fujiwara, Y. Safety and Evidence of Off-Label Use of Approved Drugs at the National Cancer Center Hospital in Japan. JCO Oncol. Pract. 2020, OP2000131. [Google Scholar] [CrossRef] [PubMed]
- Saiyed, M.M.; Ong, P.S.; Chew, L. Off-label drug use in oncology: A systematic review of literature. J. Clin. Pharm. Ther. 2017, 42, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Eguale, T.; Buckeridge, D.L.; Verma, A.; Winslade, N.E.; Benedetti, A.; Hanley, J.A.; Tamblyn, R. Association of Off-label Drug Use and Adverse Drug Events in an Adult Population. JAMA Intern. Med. 2016, 176, 55. [Google Scholar] [CrossRef] [Green Version]
- Wynn, J.; Martinez, J.; Duong, J.; Chiuzan, C.; Phelan, J.C.; Fyer, A.; Klitzman, R.L.; Appelbaum, P.S.; Chung, W.K. Research Participants’ Preferences for Hypothetical Secondary Results from Genomic Research. J. Genet. Couns. 2017, 26, 841. [Google Scholar] [CrossRef] [Green Version]
- Murphy Bollinger, J.; Bridges, J.F.P.; Mohamed, A.; Kaufman, D. Public preferences for the return of research results in genetic research: A conjoint analysis. Genet. Med. 2014, 16, 932. [Google Scholar] [CrossRef] [Green Version]
- Sapp, J.C.; Johnston, J.J.; Driscoll, K.; Heidlebaugh, A.R.; Miren Sagardia, A.; Dogbe, D.N.; Umstead, K.L.; Turbitt, E.; Alevizos, I.; Baron, J.; et al. Evaluation of Recipients of Positive and Negative Secondary Findings Evaluations in a Hybrid CLIA-Research Sequencing Pilot. Am. J. Hum. Genet. 2018, 103, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FoundationOne® CDx Full Specification Information. Available online: https://www.acessdata.fda.gov/cdrh_docs/pdf17/P170019C.pdf (accessed on 19 February 2021).
- FoundationOne® CDx: Summary of Safety and Effectiveness Data (SSED). 2020. Available online: https://www.acessdata.fda.gov/cdrh_docs/pdf17/P170019S016B.pdf (accessed on 19 February 2021).
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picard. A Set of Command Line Tools (in Java) for Manipulating High-Throughput Sequencing (HTS) Data and Formats Such as SAM/BAM/CRAM and VCF. Available online: http://broadinstitute.github.io/picard/ (accessed on 19 February 2021).
- Li, H.; Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Proposal Concerning the Information Transmission Process in Genomic Medicine. Available online: https://www.amed.go.jp/en/news/seika/20200706.html (accessed on 19 February 2021).
Total | 168 | |
---|---|---|
Sex | Male (n, %) | 87 (51.8) |
Female (n, %) | 81 (48.2) | |
Age | Median (min/max) | 62 (3/92) |
ECOG PS | 0 (n, %) | 131 (78.0) |
1 (n, %) | 32 (19.0) | |
2 (n, %) | 5 (3.0) | |
No. of previous chemotherapy lines | Median (min/max) | 3 (1/11) |
Referral to our hospital for NGS assay | Yes, n (%) | 75(44.6) |
No, n (%) | 93(55.4) | |
Tissue of Origin | Primary site (n, %) | 111 (66.0) |
Metastatic site (n, %) | 57 (34.0) | |
Turnaround Time | Average (min/max) | 43 (35/51) |
Cancer Type | Colorectal | 45 (26.8) |
Sarcoma | 22 (13.0) | |
Pancreatic | 18 (10.7) | |
Gastric | 13 (7.7) | |
Ovarian | 11 (6.5) | |
Bile duct | 9 (5.4) | |
Esophageal | 8 (4.8) | |
Breast | 7 (4.2) | |
Cervical | 6 (3.6) | |
Small Intestinal | 5 (3.0) | |
Hepatocellular | 3 (1.8) | |
Unknown Primary | 3 (1.8) | |
Endometrial | 3 (1.8) | |
Non-Small Cell Lung | 3 (1.8) | |
Brain | 3 (1.8) | |
Neuroblastoma | 3 (1.8) | |
Melanoma | 3 (1.8) | |
Kidney | 1 (0.6) | |
Prostate | 1 (0.6) | |
Urinary tract | 1 (0.6) |
Gene | Cancer Type | SNV Function | SNV Nucleotide Change | SNV Amino Acid Change | RefSNP Number | CNA Number of Exons | CNA Position |
---|---|---|---|---|---|---|---|
ATM | Small intestinal | frameshift | c.6710dup | p.E2238fs*11 | - | - | - |
BRCA1 | Ovarian | nonsense | c.2800C > T | p.Q934 * | rs80357223 | - | - |
Small intestinal | missense | c.236T > G | p.F79C | - | - | - | |
Ovarian | missense | c.5557T > A | p.Y1853N | - | - | - | |
BRCA2 | Ovarian | nonsense | c.6952C > T | p.R2318* | rs80358920 | - | - |
HCC | frameshift | c.5110_5113delAGAA | p.R1704fs*1 | - | - | - | |
Small intestinal | missense | c.8524C > T | p.R2842C | rs80359104 | - | - | |
Pancreatic | nonsense | c.7969A > T | p.K2657 * | - | - | - | |
BRIP1 | Ovarian | nonsense | c.1741C > T | p.R581 * | rs780020495 | - | - |
MSH6 | Esophageal | missense | c.1082G > A | p.R361H | rs63750440 | - | - |
PTEN | Uterine | nonsense | c.733C > T | p.Q245 * | rs786202918 | - | - |
Ovarian | missense | c.376G > A | p.A126T | rs1554898129 | - | - | |
Breast | nonsense | c.295G > T | p.E99 * | - | - | - | |
RAD51 | Gastric | frameshift | c.1dup | p.M1fs | rs55714242 | - | - |
RB1 | Sarcoma | frameshift | c.869delA | p.N290fs*11 | rs1131690901 | - | - |
Colorectal (CNA_loss) | - | - | - | - | 16 of 27 | chr13:48881414-49010994 | |
SMAD4 | Colorectal | missense | c.1487G > A | p.R496H | rs876660045 | - | - |
Colorectal | missense | c.1081C > T | p.R361C | rs80338963 | - | - | |
Colorectal | missense | c.290G > A | p.R97H | rs1555685159 | - | - | |
Colorectal | frameshift | c.282delC | p.Y95fs*15 | - | - | - | |
Pancreatic | nonsense | c.346C > T | p.Q116 * | - | - | - | |
Bile duct | missense | c.1058A > G | p.Y353C | rs377767346 | - | - | |
STK11 | Gastric (CNA_loss) | - | - | - | - | 8 of 9 | chr19:1152647-1223171 |
NSCLC | missense | c.580G > A | p.D194N | rs121913315 | - | - | |
TP53 | Ovarian | splice | c.672 + 1G > A | - | rs863224499 | - | - |
TSC2 | Colorectal | nonsense | c.3412C > T | p.R1138 * | rs45451497 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inagaki, C.; Maeda, D.; Hatake, K.; Sato, Y.; Hashimoto, K.; Sakai, D.; Yachida, S.; Nonomura, N.; Satoh, T. Clinical Utility of Next-Generation Sequencing-Based Panel Testing under the Universal Health-Care System in Japan: A Retrospective Analysis at a Single University Hospital. Cancers 2021, 13, 1121. https://doi.org/10.3390/cancers13051121
Inagaki C, Maeda D, Hatake K, Sato Y, Hashimoto K, Sakai D, Yachida S, Nonomura N, Satoh T. Clinical Utility of Next-Generation Sequencing-Based Panel Testing under the Universal Health-Care System in Japan: A Retrospective Analysis at a Single University Hospital. Cancers. 2021; 13(5):1121. https://doi.org/10.3390/cancers13051121
Chicago/Turabian StyleInagaki, Chiaki, Daichi Maeda, Kazue Hatake, Yuki Sato, Kae Hashimoto, Daisuke Sakai, Shinichi Yachida, Norio Nonomura, and Taroh Satoh. 2021. "Clinical Utility of Next-Generation Sequencing-Based Panel Testing under the Universal Health-Care System in Japan: A Retrospective Analysis at a Single University Hospital" Cancers 13, no. 5: 1121. https://doi.org/10.3390/cancers13051121
APA StyleInagaki, C., Maeda, D., Hatake, K., Sato, Y., Hashimoto, K., Sakai, D., Yachida, S., Nonomura, N., & Satoh, T. (2021). Clinical Utility of Next-Generation Sequencing-Based Panel Testing under the Universal Health-Care System in Japan: A Retrospective Analysis at a Single University Hospital. Cancers, 13(5), 1121. https://doi.org/10.3390/cancers13051121