Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Aberrant Down-Regulation of TGFβR3 Expression in HCC Patients
2.2. Down-Regulation of TGFβR3 Correlated with Poor Prognosis in HCC Patients
2.3. Soluble TGFβR3 (sTGFβR3) Exhibited Diagnostic and Prognostic Potentials in HCC
2.4. TGFβR3 Treatment Suppressed HCC Tumor Growth In Vivo
2.5. Loss of TGFβR3 Induced the up-Regulation of C5a which Associated with Poor Prognosis in HCC
2.6. Complement C5a Activated the Th-17 Responses in Tumor Promoting Macrophages
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Orthotopic Nude Mice Liver Tumor Model with sTGFβR3 Treatment
4.3. RT2 Profiler PCR Array
4.4. In Vitro Over-Expression and Knockout of TGFβR3
4.5. In Vivo Study of Tumorigenicity of TGFβR3 Over-Expressed Cells
4.6. Quantitative Real Time RT-PCR
4.7. Immunostaining and Flow Cytometry
4.8. ELISA
4.9. Cell Culture and Stimulation
4.10. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giannelli, G.; Villa, E.; Lahn, M. Transforming Growth Factor-β as a Therapeutic Target in Hepatocellular Carcinoma. Cancer Res. 2014, 74, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Bilandzic, M.; Stenvers, K.L. Betaglycan: A multifunctional accessory. Mol. Cell. Endocrinol. 2011, 339, 180–189. [Google Scholar] [CrossRef]
- Gatza, C.E.; Oh, S.Y.; Blobe, G.C. Roles for the type III TGF-β receptor in human cancer. Cell. Signal. 2010, 22, 1163–1174. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; López-Casillas, F.; Malik, S.N.; Montiel, J.L.; Mendoza, V.; Yang, J.; Sun, L.-Z. Antitumor Activity of a Recombinant Soluble Betaglycan in Human Breast Cancer Xenograft. Cancer Res. 2002, 62, 4690–4695. [Google Scholar] [PubMed]
- Jovanović, B.; Pickup, M.W.; Chytil, A.; Gorska, A.E.; Johnson, K.N.; Moses, H.L.; Owens, P.H. TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts. Cancers 2016, 8, 100. [Google Scholar] [CrossRef]
- Hanks, B.A.; Holtzhausen, A.; Evans, K.S.; Jamieson, R.; Gimpel, P.; Campbell, O.M.; Hector-Greene, M.; Sun, L.; Tewari, A.; George, A.; et al. Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment. J. Clin. Investig. 2013, 123, 3925–3940. [Google Scholar] [CrossRef]
- European Association For The Study Of The Liver. EASL–EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012, 56, 908–943. [Google Scholar] [CrossRef]
- Yeung, O.W.; Lo, C.M.; Ling, C.-C.; Qi, X.; Geng, W.; Li, C.-X.; Chang-Chun, L.; Forbes, S.J.; Guan, X.Y.; Poon, R.T.; et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J. Hepatol. 2015, 62, 607–616. [Google Scholar] [CrossRef]
- Chen, J.; Gingold, J.A.; Su, X. Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. Trends Mol. Med. 2019, 25, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Wang, L.; López-Casillas, F.; Mendoza, V.; Yeh, I.-T.; Sun, L.-Z. Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 2004, 63, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Elderbroom, J.L.; Huang, J.J.; Gatza, C.E.; Chen, J.; How, T.; Starr, M.; Nixon, A.B.; Blobe, G.C. Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion. Mol. Biol. Cell 2014, 25, 2320–2332. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Li, X.; Li, C.; Wan, L.; Shi, H.; Song, X.; Liu, X.; Chen, X.; Zhang, C.; Shan, H.; et al. TGFBR3, a potential negative regulator of TGF-β signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. J. Cell. Physiol. 2011, 226, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Ma, T.; Huang, B.; Lin, L.; Zhou, Y.; Yan, J.; Zou, Y.; Chen, S. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 1–20. [Google Scholar] [CrossRef]
- Dong, M.; How, T.; Kirkbride, K.C.; Gordon, K.J.; Lee, J.D.; Hempel, N.; Kelly, P.; Moeller, B.J.; Marks, J.R.; Blobe, G.C. The type III TGF-β receptor suppresses breast cancer progression. J. Clin. Investig. 2007, 117, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, N.; Hurt, E.M.; Kawasaki, B.T.; Farrar, W.L. TGFBR3 loss and consequences in prostate cancer. Prostate 2007, 67, 301–311. [Google Scholar] [CrossRef]
- Ajona, D.; Ortiz-Espinosa, S.; Pio, R. Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Semin. Cell Dev. Biol. 2019, 85, 153–163. [Google Scholar] [CrossRef]
- Roumenina, L.T.; Daugan, M.V.; Petitprez, F.; Sautès-Fridman, C.; Fridman, W.H. Context-dependent roles of complement in cancer. Nat. Rev. Cancer 2019, 19, 698–715. [Google Scholar] [CrossRef] [PubMed]
- Corrales, L.; Ajona, D.; Rafail, S.; Lasarte, J.J.; Riezu-Boj, J.I.; Lambris, J.D.; Rouzaut, A.; Pajares, M.J.; Montuenga, L.M.; Pio, R. Anaphylatoxin C5a Creates a Favorable Microenvironment for Lung Cancer Progression. J. Immunol. 2012, 189, 4674–4683. [Google Scholar] [CrossRef]
- Markiewski, M.M.; DeAngelis, R.A.; Benencia, F.; Ricklin-Lichtsteiner, S.K.; Koutoulaki, A.; Gerard, C.; Coukos, G.; Lambris, J.D. Modulation of the antitumor immune response by complement. Nat. Immunol. 2008, 9, 1225–1235. [Google Scholar] [CrossRef]
- Nitta, H.; Murakami, Y.; Wada, Y.; Eto, M.; Baba, H.; Imamura, T. Cancer cells release anaphylatoxin C5a from C5 by serine protease to enhance invasiveness. Oncol. Rep. 2014, 32, 1715–1719. [Google Scholar] [CrossRef]
- Piao, C.; Cai, L.; Qiu, S.; Jia, L.; Song, W.; Du, J. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration. J. Biol. Chem. 2015, 290, 10667–10676. [Google Scholar] [CrossRef] [PubMed]
- Afshar-Kharghan, V. The role of the complement system in cancer. J. Clin. Investig. 2017, 127, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Gunn, L.; Ding, C.; Liu, M.; Ma, Y.; Qi, C.; Cai, Y.; Hu, X.; Aggarwal, D.; Zhang, H.-G.; Yan, J. Opposing roles for complement component C5a in tumor progression and the tumor microenvironment. J. Immunol. 2012, 189, 2985–2994. [Google Scholar] [CrossRef] [PubMed]
- Bjørge, L.; Hakulinen, J.; Vintermyr, O.K.; Jarva, H.; Jensen, T.S.; Iversen, O.E.; Meri, S. Ascitic complement system in ovarian cancer. Br. J. Cancer 2005, 92, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Grailer, J.J.; Bosmann, M.; Ward, P.A. Regulatory effects of C5a on IL-17A, IL-17F, and IL-23. Front. Immunol. 2013, 3, 387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Yan, J.; Xu, J.; Pang, X.-H.; Chen, M.-S.; Li, L.; Wu, C.-Y.; Li, S.; Zheng, L. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J. Hepatol. 2009, 50, 980–989. [Google Scholar] [CrossRef]
- Radaeva, S.; Sun, R.; Pan, H.-N.; Hong, F.; Gao, B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004, 39, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- Langowski, J.L.; Kastelein, R.A.; Oft, M. Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol. 2007, 28, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Langowski, J.L.; Zhang, X.; Wu, L.; Mattson, J.D.; Chen, T.; Smith, K.; Basham, B.; McClanahan, T.; Kastelein, R.A.; Oft, M. IL-23 promotes tumour incidence and growth. Nature 2006, 442, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Numasaki, M.; Fukushi, J.-I.; Ono, M.; Narula, S.K.; Zavodny, P.J.; Kudo, T.; Robbins, P.D.; Tahara, H.; Lotze, M.T. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2002, 101, 2620–2627. [Google Scholar] [CrossRef]
- Hammerich, L.; Heymann, F.; Tacke, F. Role of IL-17 and Th17 Cells in Liver Diseases. Clin. Dev. Immunol. 2010, 2011, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.T.-P.; Man, K.; Sun, C.K.; Lee, T.K.W.; Poon, R.T.; Lo, C.-M.; Fan, S.-T. Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma. Br. J. Cancer 2006, 95, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Tjiu, J.-W.; Chen, J.-S.; Shun, C.-T.; Lin, S.-J.; Liao, Y.-H.; Chu, C.-Y.; Tsai, T.-F.; Chiu, H.-C.; Dai, Y.-S.; Inoue, H.; et al. Tumor-Associated Macrophage-Induced Invasion and Angiogenesis of Human Basal Cell Carcinoma Cells by Cyclooxygenase-2 Induction. J. Investig. Dermatol. 2009, 129, 1016–1025. [Google Scholar] [CrossRef]
TGFβR3 Expression in Tumor with Respect to Adjacent Non-Tumor Tissue (n = 100) | |||
---|---|---|---|
Clinical Parameter | Fold Change ≤ 2 | Fold Change > 2 | p Value |
Gender (n) | 0.794 | ||
Male | 50 | 29 | |
Female | 14 | 7 | |
Age (years) # | 0.1 | ||
≤60 | 35 | 16 | |
>60 | 25 | 24 | |
Hepatitis B carrier | 1.0 | ||
Positive | 43 | 25 | |
Negative | 20 | 12 | |
AFP(ng/mL) | 0.014 *^ | ||
Abnormal (>20) | 45 | 17 | |
Normal (<20) | 17 | 21 | |
Aspartate transaminase (U/L) | 0.33 | ||
Abnormal (>40) | 41 | 21 | |
Normal (≤40) | 21 | 17 | |
Venous infiltration | 0.086 | ||
Present | 40 | 16 | |
Absent | 24 | 20 | |
Size of tumor (cm) | 0.239 | ||
Large (>5) | 38 | 18 | |
Small (≤5) | 24 | 20 | |
No. of nodules (n) | 0.806 | ||
Multiple (>1) | 22 | 15 | |
Single (1) | 40 | 23 | |
UICC grade | 0.010 **^ | ||
Early stage (1,2) | 19 | 16 | |
Late stage (3,4) | 19 | 46 | |
Edmonson grade (differentiated) | 0.003 **^ | ||
Well | 9 | 6 | |
Moderately | 32 | 25 | |
Poorly | 23 | 5 | |
AJCC grade (stage) | 0.048 *^ | ||
I | 15 | 19 | |
II | 23 | 12 | |
IIIA | 20 | 11 | |
Ex- and intra hepatic recurrence | 0.48 | ||
Present | 37 | 19 | |
Absent | 25 | 19 |
Plasma sTGFβR3 in HCC Patients (n = 100) | |||
---|---|---|---|
Clinical Parameter | ≤9.4 ng/ml | >9.4 ng/ml | p Value |
Gender (n) | 0.554 | ||
Male | 61 | 20 | |
Female | 15 | 3 | |
Age (years) | 0.631 | ||
≤60 | 44 | 15 | |
>60 | 32 | 8 | |
Hepatitis B carrier | 0.447 | ||
Positive | 66 | 21 | |
Negative | 10 | 1 | |
AFP (ng/mL) | 0.141 | ||
Abnormal (>20) | 46 | 9 | |
Normal (<20) | 29 | 13 | |
Bilirubin level (μmol/l) | <0.001 ** | ||
Abnormal (>20) | 11 | 14 | |
Normal (≤20) | 65 | 9 | |
Aspartate transaminase (U/L) | 0.11 | ||
Abnormal (>40) | 52 | 20 | |
Normal (≤40) | 24 | 3 | |
Alanine transaminase (U/L) | 0.81 | ||
Abnormal (>45) | 46 | 13 | |
Normal (≤45) | 30 | 10 | |
Size of tumor (cm) | 0.012 *^ | ||
Large (>5) | 55 | 10 | |
Small (≤5) | 20 | 13 | |
No of nodules (n) | 0.335 | ||
Multiple (>1) | 32 | 7 | |
Single (1) | 42 | 16 | |
UICC grade | 0.004 **^ | ||
Early stage (1,2) | 12 | 11 | |
Late stage (3,4) | 63 | 12 | |
AJCC grade (stage) | 0.017 *^ | ||
I | 11 | 8 | |
II | 32 | 6 | |
IIIA | 24 | 3 | |
Ex- and in-tra hepatic recurrence | 0.481 | ||
Present | 46 | 12 | |
Absent | 30 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeung, O.W.H.; Qi, X.; Pang, L.; Liu, H.; Ng, K.T.P.; Liu, J.; Lo, C.M.; Man, K. Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma. Cancers 2021, 13, 1503. https://doi.org/10.3390/cancers13071503
Yeung OWH, Qi X, Pang L, Liu H, Ng KTP, Liu J, Lo CM, Man K. Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma. Cancers. 2021; 13(7):1503. https://doi.org/10.3390/cancers13071503
Chicago/Turabian StyleYeung, Oscar Wai Ho, Xiang Qi, Li Pang, Hui Liu, Kevin Tak Pan Ng, Jiang Liu, Chung Mau Lo, and Kwan Man. 2021. "Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma" Cancers 13, no. 7: 1503. https://doi.org/10.3390/cancers13071503
APA StyleYeung, O. W. H., Qi, X., Pang, L., Liu, H., Ng, K. T. P., Liu, J., Lo, C. M., & Man, K. (2021). Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma. Cancers, 13(7), 1503. https://doi.org/10.3390/cancers13071503