Prognostic Potential of Tumor-Infiltrating Immune Cells in Resectable Oral Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Immunohistochemical Staining
2.3. Immunohistochemical Evaluation
2.4. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. Assessment of Tumor-Infiltrating Lymphocytes
3.3. ROC Curve Analysis and TILs Threshold Determination
3.4. Survival Analysis
3.5. Univariate and Multivariate Analysis of TILs and Clinicopathological Characteristics in OSCC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&i (accessed on 28 February 2021).
- Jiang, X.; Wu, J.; Wang, J.; Huang, R. Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob. Induc. Dis. 2019. [Google Scholar] [CrossRef]
- Ora Cancer Risk Factors. Available online: https://www.cancer.net/cancer-types/oral-and-oropharyngeal-cancer/risk-factors-and-prevention (accessed on 2 March 2021).
- Grafton-Clarke, C.; Chen, K.W.; Wilcock, J. Diagnosis and referral delays in primary care for oral squamous cell cancer: A systematic review. Br. J. Gen. Pract. 2019, 69, E112–E126. [Google Scholar] [CrossRef] [Green Version]
- Jafari, A.; Najafi, S.; Moradi, F.; Kharazifard, M.; Khami, M. Delay in the diagnosis and treatment of oral cancer. J. Dent. 2013, 14, 146–150. [Google Scholar]
- Dhanuthai, K.; Rojanawatsirivej, S.; Thosaporn, W.; Kintarak, S.; Subarnbhesaj, A.; Darling, M.; Kryshtalskyj, E.; Chiang, C.P.; Shin, H.I.; Choi, S.Y.; et al. Oral cancer: A multicenter study. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e23–e29. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, P.; Smith, W.P. Analysis of Survival Rates Following Primary Surgery of 178 Consecutive Patients with Oral Cancer in a Large District General Hospital. J. Maxillofac. Oral Surg. 2017, 16, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.K.; Schuderer, J.G.; Zeman, F.; Klingelhöffer, C.; Hullmann, M.; Spanier, G.; Reichert, T.E.; Ettl, T. Health-related quality of life: A retrospective study on local vs. microvascular reconstruction in patients with oral cancer. BMC Oral Health 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oral Cancer Standard Therapy. Available online: https://www.cancer.org/cancer/oral-cavity-and-oropharyngeal-cancer/treating/by-stage.html (accessed on 2 March 2021).
- Sim, F.; Leidner, R.; Bell, R.B. Immunotherapy for Head and Neck Cancer. Oral Maxillofac. Surg. Clin. North. Am. 2019. [Google Scholar] [CrossRef]
- Mohan, S.P.; Bhaskaran, M.K.; George, A.L.; Thirutheri, A.; Somasundaran, M.; Pavithran, A. Immunotherapy in Oral Cancer. J. Pharm. Bioallied Sci. 2019, 11, S107–S111. [Google Scholar] [CrossRef]
- Perri, F.; Ionna, F.; Longo, F.; Della Vittoria Scarpati, G.; De Angelis, C.; Ottaiano, A.; Botti, G.; Caponigro, F. Immune Response Against Head and Neck Cancer: Biological Mechanisms and Implication on Therapy. Transl. Oncol. 2020, 13, 262–274. [Google Scholar] [CrossRef]
- Peltanova, B.; Raudenska, M.; Masarik, M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol. Cancer 2019, 18, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Voiculescu, V.; Calenic, B.; Ghita, M.; Lupu, M.; Caruntu, A.; Moraru, L.; Voiculescu, S.; Ion, A.; Greabu, M.; Ishkitiev, N.; et al. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. Dis. Markers 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Tampa, M.; Mitran, M.I.; Mitran, C.I.; Sarbu, M.I.; Matei, C.; Nicolae, I.; Caruntu, A.; Tocut, S.M.; Popa, M.I.; Caruntu, C.; et al. Mediators of inflammation—A potential source of biomarkers in oral squamous cell carcinoma. J. Immunol. Res. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, S.R.; Tampa, M.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Caruntu, A.; Lupu, M.; Matei, C.; Constantin, C.; Neagu, M. Tumor microenvironment in skin carcinogenesis. Adv. Exp. Med. Biol. 2020, 1226, 123–142. [Google Scholar] [CrossRef]
- Troiano, G.; Rubini, C.; Togni, L.; Caponio, V.C.A.; Zhurakivska, K.; Santarelli, A.; Cirillo, N.; Lo Muzio, L.; Mascitti, M. The immune phenotype of tongue squamous cell carcinoma predicts early relapse and poor prognosis. Cancer Med. 2020, 9, 8333–8344. [Google Scholar] [CrossRef]
- Bottomley, M.J.; Thomson, J.; Harwood, C.; Leigh, I. The role of the immune system in cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 2019, 20, 2009. [Google Scholar] [CrossRef] [Green Version]
- Caruntu, A.; Scheau, C.; Tampa, M.; Georgescu, S.R.; Caruntu, C.; Tanase, C. Complex Interaction Among Immune, Inflammatory, and Carcinogenic Mechanisms in the Head and Neck Squamous Cell Carcinoma. Adv. Exp. Med. Biol. Clin. Exp. Biomed. 2021. [Google Scholar] [CrossRef]
- Hadler-Olsen, E.; Wirsing, A.M. Tissue-infiltrating immune cells as prognostic markers in oral squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Cancer 2019. [Google Scholar] [CrossRef] [Green Version]
- Spector, M.E.; Bellile, E.; Amlani, L.; Zarins, K.; Smith, J.; Brenner, J.C.; Rozek, L.; Nguyen, A.; Thomas, D.; McHugh, J.B.; et al. Prognostic Value of Tumor-Infiltrating Lymphocytes in Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngol. Head Neck Surg. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Hiratsuka, H.; Koike, K.; Tsuchihashi, K.; Sonoda, T.; Ogi, K.; Miyakawa, A.; Kobayashi, J.; Kaneko, T.; Igarashi, T.; et al. Tumor-infiltrating CD8+ T-cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med. 2019, 8, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Näsman, A.; Romanitan, M.; Nordfors, C.; Grün, N.; Johansson, H.; Hammarstedt, L.; Marklund, L.; Munck-Wikland, E.; Dalianis, T.; Ramqvist, T. Tumor infiltrating CD8 + and Foxp3 + Lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in Tonsillar cancer. PLoS ONE 2012, 7, e38711. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.J.; Thirdborough, S.M.; Mellows, T.; Riley, C.; Harris, S.; Suchak, K.; Webb, A.; Hampton, C.; Patel, N.N.; Randall, C.J.; et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br. J. Cancer 2014, 110, 489–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, P.; Phillips, M.; Grieu, F.; Morris, M.; Zeps, N.; Joseph, D.; Platell, C.; Iacopetta, B. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, W. Cortes-Penfield, Barbara W. Trautner, R.J. The prognostic landscape of genes and infiltrating immune cells across human cancers. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Mazzaschi, G.; Madeddu, D.; Falco, A.; Bocchialini, G.; Goldoni, M.; Sogni, F.; Armani, G.; Lagrasta, C.A.; Lorusso, B.; Mangiaracina, C.; et al. Low PD-1 expression in cytotoxic CD8 þ tumor-Infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin. Cancer Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Van der Leun, A.M.; Thommen, D.S.; Schumacher, T.N. CD8+ T cell states in human cancer: Insights from single-cell analysis. Nat. Rev. Cancer 2020, 20, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, Z.; Wang, X.; Li, H.; Liu, X.S. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. Elife 2019, 8, 1–20. [Google Scholar] [CrossRef]
- Fancello, L.; Gandini, S.; Pelicci, P.G.; Mazzarella, L. Tumor mutational burden quantification from targeted gene panels: Major advancements and challenges. J. Immunother. Cancer 2019. [Google Scholar] [CrossRef] [Green Version]
- Steele, K.E.; Tan, T.H.; Korn, R.; Dacosta, K.; Brown, C.; Kuziora, M.; Zimmermann, J.; Laffin, B.; Widmaier, M.; Rognoni, L.; et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J. Immunother. Cancer 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Han, A.Y.; Kuan, E.C.; Clair, J.M.S.; Alonso, J.E.; Arshi, A.; St John, M.A. Epidemiology of squamous cell carcinoma of the lip in the United States a population-based cohort analysis. JAMA Otolaryngol. Head Neck Surg. 2016. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest 2017. [Google Scholar] [CrossRef]
- Gong, C.; Anders, R.A.; Zhu, Q.; Taube, J.M.; Green, B.; Cheng, W.; Bartelink, I.H.; Vicini, P.; Wang, B.; Popel, A.S. Quantitative characterization of CD8+ T cell clustering and spatial heterogeneity in solid tumors. Front. Oncol. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.E.W.; Bell, R.B.; Bifulco, C.B.; Burtness, B.; Gillison, M.L.; Harrington, K.J.; Le, Q.T.; Lee, N.Y.; Leidner, R.; Lewis, R.L.; et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J. Immunother. Cancer 2019, 7, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Ostroumov, D.; Fekete-Drimusz, N.; Saborowski, M.; Kühnel, F.; Woller, N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. 2018, 75, 689–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngamphaiboon, N.; Chureemas, T.; Siripoon, T.; Arsa, L.; Trachu, N.; Jiarpinitnun, C.; Pattaranutaporn, P.; Sirachainan, E.; Larbcharoensub, N. Characteristics and impact of programmed death-ligand 1 expression, CD8+ tumor-infiltrating lymphocytes, and p16 status in head and neck squamous cell carcinoma. Med. Oncol. 2019, 36, 21. [Google Scholar] [CrossRef] [PubMed]
- Troiano, G.; Caponio, V.C.A.; Zhurakivska, K.; Arena, C.; Pannone, G.; Mascitti, M.; Santarelli, A.; Lo Muzio, L. High PD-L1 expression in the tumour cells did not correlate with poor prognosis of patients suffering for oral squamous cells carcinoma: A meta-analysis of the literature. Cell Prolif. 2019, 52. [Google Scholar] [CrossRef] [Green Version]
- Mei, Z.; Huang, J.; Qiao, B.; Lam, A.K. yin Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int. J. Oral Sci. 2020, 12. [Google Scholar] [CrossRef]
- O’Higgins, C.; Ward, F.J.; Eid, R.A. Deciphering the role of regulatory CD4 T cells in oral and oropharyngeal cancer: A systematic review. Front. Oncol. 2018, 8. [Google Scholar] [CrossRef]
- De Ruiter, E.J.; Ooft, M.L.; Devriese, L.A.; Willems, S.M. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology 2017, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.S.; Lanier, L.L. Natural Killer Cells in Cancer Immunotherapy. Annu. Rev. Cancer Biol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Bisheshar, S.K.; De Ruiter, E.J.; Devriese, L.A.; Willems, S.M. The prognostic role of NK cells and their ligands in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Grimm, M.; Feyen, O.; Hofmann, H.; Teriete, P.; Biegner, T.; Munz, A.; Reinert, S. Immunophenotyping of patients with oral squamous cell carcinoma in peripheral blood and associated tumor tissue. Tumor Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, A.; Ostwald, J.; Guder, E.; Pau, H.W.; Kramp, B.; Dommerich, S. Distribution of circulating natural killer cells and T lymphocytes in head and neck squamous cell carcinoma. Auris Nasus Larynx 2013. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, K.; Rouce, R.; Liu, E.; Shpall, E. Engineering Natural Killer Cells for Cancer Immunotherapy. Mol. Ther. 2017, 25, 1769–1781. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.S.; Hasegawa, J. Natural killer cell biology: An update and future directions. J. Allergy Clin. Immunol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Caligiuri, M.A. Human natural killer cells. Blood 2008. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Hu, B.; Wang, P.; Lv, X.; Chen, S.; Shao, Z. Prognostic Significance of Tumor-Infiltrating Natural Killer Cells in Solid Tumors: A Systematic Review and Meta-Analysis. Front. Immunol. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Banerjee, A.; Saikia, N.; Phookan, J.; Baruah, M.N.; Baruah, S. Negative regulation of natural killer cell in tumor tissue and peripheral blood of oral squamous cell carcinoma. Cytokine 2015. [Google Scholar] [CrossRef]
- Cohen, R.B.; Lefebvre, G.; Posner, M.R.; Bauman, J.R.; Salas, S.; Even, C.; Saada-Bouzid, E.; Seiwert, T.; Colevas, D.; Calmels, F.; et al. Monalizumab in combination with cetuximab in patients (pts) with recurrent or metastatic (R/M) head and neck cancer (SCCHN) previously treated or not with PD-(L)1 inhibitors (IO): 1-year survival data. Ann. Oncol. 2019, 30, v460. [Google Scholar] [CrossRef]
- Hu, W.; Wang, G.; Huang, D.; Sui, M.; Xu, Y. Cancer immunotherapy based on natural killer cells: Current progress and new opportunities. Front. Immunol. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
Variable | Survivors | Deceased | p-Value | |||||
---|---|---|---|---|---|---|---|---|
No | (%) | No | (%) | No | (%) | |||
90 | 70 | 20 | ||||||
Age, years (Mean ± SD) | 63.34 ± 12.03 | |||||||
Sex | 0.5449 | |||||||
Male | 70 | 77.78 | 53 | 75.71% | 17 | 85% | ||
Female | 20 | 22.22 | 17 | 24.29% | 3 | 15% | ||
T stage | 0.0009 | |||||||
T1 | 18 | 20.00 | 17 | 24.29% | 1 | 5% | ||
T2 | 40 | 44.44 | 34 | 48.57% | 6 | 30% | ||
T3 | 17 | 18.89 | 13 | 18.57% | 4 | 20% | ||
T4 | 15 | 16.67 | 6 | 8.57% | 9 | 45% | ||
Nodal status | 47 | 52.22 | 0.0809 | |||||
pN0 | 21 | 44.68 | 19 | 27.14% | 2 | 10% | ||
pN+ | 26 | 55.32 | 17 | 24.29% | 9 | 45% | ||
TNM stage | <0.0001 | |||||||
I | 16 | 17.78 | 16 | 22.86% | 0 | 0% | ||
II | 28 | 31.11 | 27 | 38.57% | 1 | 5% | ||
III | 18 | 20.00 | 13 | 18.57% | 5 | 25% | ||
IVA | 28 | 31.11 | 14 | 20% | 14 | 70% | ||
Location | 0.0427 | |||||||
Oral | 54 | 60.00 | 38 | 54.29% | 16 | 80% | ||
Lip | 36 | 40.00 | 32 | 45.71% | 4 | 20% | ||
Smoking | 0.0774 | |||||||
Smokers | 58 | 64.44 | 41 | 58.57% | 17 | 85% | ||
Nonsmokers | 26 | 28.89 | 23 | 32.86% | 3 | 15% | ||
Missing | 6 | 6.67 | 6 | 8.57% | 0 | 0% | ||
Alcohol consumption | 0.0895 | |||||||
Drinkers | 45 | 50.00 | 31 | 44.29% | 14 | 70% | ||
Nondrinkers | 39 | 43.33 | 33 | 47.14% | 6 | 30% | ||
Missing | 6 | 6.67 | 6 | 8.57% | 0 | 0% | ||
Histological differentiation | 0.2716 | |||||||
High | 19 | 21.11 | 17 | 24.29% | 2 | 10% | ||
Intermediate | 56 | 62.22 | 43 | 61.43% | 13 | 65% | ||
Low | 15 | 16.67 | 10 | 14.29% | 5 | 25% | ||
Perineural invasion | 0.1534 | |||||||
Confirmed | 13 | 14.44 | 8 | 11.43% | 5 | 25% | ||
Not confirmed | 77 | 85.56 | 62 | 88.57% | 15 | 75% | ||
Vascular invasion | 0.6112 | |||||||
Present | 6 | 6.67 | 4 | 5.71% | 2 | 10% | ||
Absent | 84 | 93.33 | 66 | 94.29% | 18 | 90% | ||
Resection margins | 0.0039 | |||||||
Positive | 12 | 13.33 | 5 | 7.14% | 7 | 35% | ||
Negative | 78 | 86.67 | 65 | 92.86% | 13 | 65% | ||
Locoregional recurrence | <0.0001 | |||||||
Present | 26 | 28.89 | 6 | 8.57% | 20 | 100% | ||
Absent | 64 | 71.11 | 64 | 91.43% | 0 | 0% |
Front of Invasion | Intratumor | p-Value | |
---|---|---|---|
CD4+ lymphocytes | 16.71 | 2.25 | <0.0001 |
CD8+ lymphocytes | 159.4 | 47.11 | <0.0001 |
CD56+ lymphocytes | 8.02 | 9.91 | 0.2717 |
Survivors | Deceased | p-Value | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
CD56+ | |||||
Front of invasion | 8.486 | 4.883 | 6.4 | 4.903 | 0.0622 ^ |
Intratumor | 11.37 | 17.17 | 4.8 | 4.238 | 0.0016 ^ |
CD8+ | |||||
Front of invasion | 176.7 | 97.04 | 98.7 | 66.5 | 0.0011 * |
Intratumor | 52.24 | 38.85 | 29.15 | 30.74 | 0.0086 ^ |
CD4+ | |||||
Front of invasion | 16.55 | 19.27 | 17.3 | 28.21 | 0.4128 ^ |
Intratumor | 2.543 | 4.01 | 1.25 | 1.552 | 0.3093 ^ |
CD56+ Intratumor | CD8+ Front of Invasion | CD8+ Intratumor | ||
---|---|---|---|---|
Area under curve | 0.7279 | 0.7582 | 0.6914 | |
Std. error | 0.06154 | 0.05871 | 0.06952 | |
95% CI | 0.6072 to 0.8485 | 0.6431 to 0.8733 | 0.5552 to 0.8277 | |
p value | 0.002 | 0.0005 | 0.0093 | |
Cut-off | Low | ≤8 | ≤106 | <24 |
High | >8 | >106 | ≥24 | |
Sensitivity% | 85 | 65 | 60 | |
Specificity% | 52.86 | 78.57 | 72.86 |
Survival | Log-Rank Test | p-Value | ||
---|---|---|---|---|
CD56+ intratumoral | 7.912 | 0.0049 | ||
high > 8 | 92.50% | |||
low ≤ 8 | 66.00% | |||
CD8+ front of invasion | 13.67 | 0.0002 | ||
high > 106 | 88.71% | |||
low ≤ 106 | 53.57% | |||
CD8+ intratumoral | 7.378 | 0.0066 | ||
high ≥ 24 | 86.44% | |||
low < 24 | 61.29% |
Variable | CD56+ Intratumor | p-Value | CD8+ Front of Invasion | p-Value | CD8+ Intratumor | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
≤8 | >8 | ≤106 | >106 | <24 | ≥24 | |||||
Sex | 0.7997 | 0.2811 | 0.7912 | |||||||
Male | 38 | 32 | 24 | 46 | 25 | 45 | ||||
Female | 12 | 8 | 4 | 16 | 6 | 14 | ||||
T stage | 0.0541 | 0.0818 | 0.3276 | |||||||
T1 | 8 | 10 | 3 | 15 | 6 | 12 | ||||
T2 | 18 | 22 | 10 | 30 | 11 | 29 | ||||
T3 | 13 | 4 | 7 | 10 | 9 | 8 | ||||
T4 | 11 | 4 | 8 | 7 | 5 | 10 | ||||
Nodal status * | 0.7463 | 0.2316 | 0.2451 | |||||||
pN0 | 16 | 5 | 6 | 15 | 6 | 15 | ||||
pN+ | 18 | 8 | 13 | 13 | 12 | 14 | ||||
TNM stage | 0.0713 | 0.0606 | 0.1363 | |||||||
I | 7 | 9 | 2 | 14 | 4 | 12 | ||||
II | 12 | 16 | 6 | 22 | 6 | 22 | ||||
III | 10 | 8 | 7 | 11 | 9 | 9 | ||||
IVA | 21 | 37 | 13 | 15 | 12 | 16 | ||||
Location | 0.0898 | 0.0001 | 0.0061 | |||||||
Oral | 34 | 20 | 25 | 29 | 25 | 29 | ||||
Lip | 16 | 20 | 3 | 33 | 6 | 30 | ||||
Smoking | 0.0956 | 0.0362 | 0.1684 | |||||||
Smokers | 32 | 19 | 23 | 35 | 24 | 34 | ||||
Non-smokers | 17 | 26 | 3 | 23 | 6 | 20 | ||||
Missing | 1 | 5 | 2 | 4 | 1 | 5 | ||||
Acohol consumption | 0.1388 | 0.1559 | 0.4299 | |||||||
Drinkers | 26 | 19 | 18 | 27 | 18 | 27 | ||||
Non-drinkers | 23 | 16 | 8 | 31 | 12 | 27 | ||||
Missing | 1 | 5 | 2 | 4 | 1 | 5 | ||||
Histological differentiation | 0.6690 | 0.8754 | 0.5732 | |||||||
High | 9 | 10 | 5 | 14 | 8 | 11 | ||||
Intermediate | 33 | 23 | 18 | 38 | 17 | 39 | ||||
Low | 8 | 7 | 5 | 10 | 6 | 9 | ||||
Perineural invasion | 0.7667 | 0.1011 | 0.009 | |||||||
Confirmed | 8 | 3 | 7 | 6 | 9 | 4 | ||||
Not confirmed | 42 | 35 | 21 | 6 | 22 | 55 | ||||
Locoregional recurrence | 0.0024 | 0.0052 | 0.0262 | |||||||
Present | 21 | 5 | 14 | 12 | 14 | 12 | ||||
Absent | 29 | 35 | 14 | 50 | 17 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruntu, A.; Moraru, L.; Lupu, M.; Vasilescu, F.; Dumitrescu, M.; Cioplea, M.; Popp, C.; Dragusin, A.; Caruntu, C.; Zurac, S. Prognostic Potential of Tumor-Infiltrating Immune Cells in Resectable Oral Squamous Cell Carcinoma. Cancers 2021, 13, 2268. https://doi.org/10.3390/cancers13092268
Caruntu A, Moraru L, Lupu M, Vasilescu F, Dumitrescu M, Cioplea M, Popp C, Dragusin A, Caruntu C, Zurac S. Prognostic Potential of Tumor-Infiltrating Immune Cells in Resectable Oral Squamous Cell Carcinoma. Cancers. 2021; 13(9):2268. https://doi.org/10.3390/cancers13092268
Chicago/Turabian StyleCaruntu, Ana, Liliana Moraru, Mihai Lupu, Florina Vasilescu, Marius Dumitrescu, Mirela Cioplea, Cristiana Popp, Alexandra Dragusin, Constantin Caruntu, and Sabina Zurac. 2021. "Prognostic Potential of Tumor-Infiltrating Immune Cells in Resectable Oral Squamous Cell Carcinoma" Cancers 13, no. 9: 2268. https://doi.org/10.3390/cancers13092268
APA StyleCaruntu, A., Moraru, L., Lupu, M., Vasilescu, F., Dumitrescu, M., Cioplea, M., Popp, C., Dragusin, A., Caruntu, C., & Zurac, S. (2021). Prognostic Potential of Tumor-Infiltrating Immune Cells in Resectable Oral Squamous Cell Carcinoma. Cancers, 13(9), 2268. https://doi.org/10.3390/cancers13092268