Intra- and Interobserver Variability of Shear Wave Elastography in Rectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.1.1. Group 1—Real-Time Interobserver Agreement between Two Experienced Operators
2.1.2. Group 2—Offline Intra- and Interobserver Agreement between Experienced and Inexperienced Observers
2.2. Study Protocol
2.2.1. Group 1—Real-Time Interobserver Agreement between Two Experienced Operators
2.2.2. Group 2—Offline Intra- and Interobserver Agreement between Experienced and Inexperienced Observers
2.3. Statistics
3. Results
3.1. Group 1—Real-Time Interobserver Agreement between Two Experienced Operators
3.2. Group 2—Offline Intra- and Interobserver Agreement between Experienced and Inexperienced Observers
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rö Del, C.; Cervantes, A.; Arnold, D. Rectal Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. ESMO Updat. Clin. Pract. Guidel. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef] [PubMed]
- Loft, M.K.; Pedersen, M.R.V.; Rahr, H.B.; Rafaelsen, S.R. Can Ultrasound Elastography Discriminate between Rectal Adenoma and Cancer? A Systematic Review. Cancers 2021, 13, 4158. [Google Scholar] [CrossRef] [PubMed]
- Morris, O.J.; Draganic, B.; Smith, S. Does a Learning Curve Exist in Endorectal Two-Dimensional Ultrasound Accuracy? Tech. Coloproctol. 2011, 15, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Nuernberg, D.; Saftoiu, A.; Barreiros, A.P.; Burmester, E.; Ivan, E.T.; Clevert, D.A.; Dietrich, C.F.; Gilja, O.H.; Lorentzen, T.; Maconi, G.; et al. EFSUMB Recommendations for Gastrointestinal Ultrasound Part 3: Endorectal, Endoanal and Perineal Ultrasound. Ultrasound Int. Open 2019, 5, E34–E51. [Google Scholar] [CrossRef] [Green Version]
- Rafaelsen, S.R.; Sørensen, T.; Jakobsen, A.; Bisgaard, C.; Lindebjerg, J. Transrectal Ultrasonography and Magnetic Resonance Imaging in the Staging of Rectal Cancer. Effect of Experience. Scand. J. Gastroenterol. 2008, 43, 440–446. [Google Scholar] [CrossRef]
- Waage, J.E.R.; Rafaelsen, S.R.; Borley, N.R.; Havre, R.F.; Gubberud, E.T.; Leh, S.; Kolbro, T.; Hagen, K.K.; Eide, G.E.; Pfeffer, F. Strain Elastography Evaluation of Rectal Tumors: Inter- and Intraobserver Reproducibility. Ultraschall Med. 2015, 36, 611–617. [Google Scholar] [CrossRef]
- Li, T.; Lu, M.; Li, Y.; Li, J.; Hu, Z.; Li, X.; Cheng, X.; Jiang, J.; Tan, B. Quantitative Elastography of Rectal Lesions: The Value OfShear Wave Elastography in Identifying Benign and Malignant Rectal Lesions. Ultrasound Med. Biol. 2019, 45, 85–92. [Google Scholar] [CrossRef]
- Chen, L.-D.; Wang, W.; Xu, J.-B.; Chen, J.-H.; Zhang, X.-H.; Wu, H.; Ye, J.-N.; Liu, J.-Y.; Nie, Z.-Q.; Lu, M.-D.; et al. Assessment of Rectal Tumors with Shear-Wave Elastography before Surgery: Comparison with Endorectal US. Radiology 2017, 285, 279–292. [Google Scholar] [CrossRef]
- Oien, K.; Mjørud Forsmo, H.; Rösler, C.; Nylund, K.; Waage, J.E.; Pfeffer, F. Endorectal Ultrasound and Magnetic Resonance Imaging for Staging of Early Rectal Cancers: How Well Does It Work in Practice? Acta Oncol. (Madr.) 2019, 58, S49–S54. [Google Scholar] [CrossRef] [Green Version]
- Waage, J.E.R.; Bach, S.P.; Pfeffer, F.; Leh, S.; Havre, R.F.; Ødegaard, S.; Baatrup, G. Combined Endorectal Ultrasonography and Strain Elastography for the Staging of Early Rectal Cancer. Color. Dis. 2015, 17, 50–56. [Google Scholar] [CrossRef]
- Waage, J.E.R.; Havre, R.F.; Ødegaard, S.; Leh, S.; Eide, G.E.; Baatrup, G. Endorectal Elastography in the Evaluation of Rectal Tumours. Color. Dis. 2011, 13, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Waage, J.E.R.; Leh, S.; Røsler, C.; Pfeffer, F.; Bach, S.P.; Havre, R.F.; Haldorsen, I.S.; Ødegaard, S.; Baatrup, G. Endorectal Ultrasonography, Strain Elastography and MRI Differentiation of Rectal Adenomas and Adenocarcinomas. Color. Dis. 2015, 17, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Cong, Y.; Zhang, Z.; Li, R.; Wang, S.; Yan, K. Shear Wave Elastography in Rectal Cancer Staging, Compared with Endorectal Ultrasonography and Magnetic Resonance Imaging. Ultrasound Med. Biol. 2019, 45, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.O.; Berg, W.A.; Doré, C.J.; Skyba, D.M.; Henry, J.P.; Gay, J.; Cohen-Bacrie, C. Shear Wave Elastography for Breast Masses Is Highly Reproducible. Eur. Radiol. 2012, 22, 1023. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Kim, S.Y.; Lee, M.S.; Cho, J.Y.; Kim, S.H. Shear Wave Elastography Assessment in the Prostate: An Intraobserver Reproducibility Study. Clin. Imaging 2015, 39, 484–487. [Google Scholar] [CrossRef]
- Mancini, M.; Salomone Megna, A.; Ragucci, M.; De Luca, M.; Marino Marsilia, G.; Nardone, G.; Coccoli, P.; Prinster, A.; Mannelli, L.; Vergara, E.; et al. Reproducibility of Shear Wave Elastography (SWE) in Patients with Chronic Liver Disease. PLoS ONE 2017, 12, e0185391. [Google Scholar] [CrossRef] [Green Version]
- Chami, L.; Giron, A.; Ezziane, M.; Leblond, V.E.; Charlotte, F.; Pellot-Barakat, C.; Lucidarme, O. Original Contribution quantitative and qualitative approach for shear wave elastography in superficial lymph nodes. Ultrasound Med. Biol. 2021, 47, 2117–2127. [Google Scholar] [CrossRef]
- Aslan, H.; Pourbagher, A.; Ozen, M. The Role of Shear-Wave Elastography in the Differentiation of Benign and Malign Non-Mass Lesions of the Breast. Ann. Ital. Chir. 2018, 89, 385–391. [Google Scholar]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population-Based to a More “Personalized” Approach to Cancer Staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
Group 1 | |
---|---|
Kappa (95% CI) (Agreement) | |
T stage * | 0.86 (0.71–1.00) (84%) |
N stage | 0.73 (0.35–1.11) (89%) |
ICC (95% CI) | |
Emean | 0.94 (0.86–0.98) |
Emax | 0.85 (0.66–0.94) |
ICC (95% CI) Region of Interest | ||||
---|---|---|---|---|
Interobserver | Round ROI (1 cm) | Emean (0.3 cm) | Emax (0.3 cm) | |
First Read | 0.93 (0.89–0.96) | 0.92 (0.88–0.96) | 0.94 (0.90–0.96) | |
Second Read | 0.95 (0.92–0.97) | 0.94 (0.88–0.97) | 0.94 (0.90–0.96) | |
Intraobserver | Experience | |||
Observer 1 | None | 0.98 (0.93–0.99) | 0.97 (0.94–0.99) | 0.97 (0.94–0.98) |
Observer 2 | None | 0.92 (0.86–0.96) | 0.96 (0.92–0.98) | 0.97 (0.95–0.99) |
Observer 3 | >10 years | 0.92 (0.85–0.96) | 0.95 (0.89–0.98) | 0.98 (0.95–0.99) |
Observer 4 | >10 years | 0.91 (0.82–0.95) | 0.94 (0.88–0-97) | 0.94 (0.89–0.97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loft, M.K.; Pedersen, M.R.V.; Grimm, P.; Lauritzen, A.H.; Dam, C.; Rafaelsen, S.R. Intra- and Interobserver Variability of Shear Wave Elastography in Rectal Cancer. Cancers 2022, 14, 2633. https://doi.org/10.3390/cancers14112633
Loft MK, Pedersen MRV, Grimm P, Lauritzen AH, Dam C, Rafaelsen SR. Intra- and Interobserver Variability of Shear Wave Elastography in Rectal Cancer. Cancers. 2022; 14(11):2633. https://doi.org/10.3390/cancers14112633
Chicago/Turabian StyleLoft, Martina Kastrup, Malene Roland Vils Pedersen, Peter Grimm, Andreas Hoffmann Lauritzen, Claus Dam, and Søren Rafael Rafaelsen. 2022. "Intra- and Interobserver Variability of Shear Wave Elastography in Rectal Cancer" Cancers 14, no. 11: 2633. https://doi.org/10.3390/cancers14112633
APA StyleLoft, M. K., Pedersen, M. R. V., Grimm, P., Lauritzen, A. H., Dam, C., & Rafaelsen, S. R. (2022). Intra- and Interobserver Variability of Shear Wave Elastography in Rectal Cancer. Cancers, 14(11), 2633. https://doi.org/10.3390/cancers14112633