Early Development of Ubiquitous Acanthocytosis and Extravascular Hemolysis in Lung Cancer Patients Receiving Alectinib
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward Personalized Treatment Approaches for Non-small-Cell Lung Cancer. Nat. Med. 2021, 27, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.H.; Robinson, A.G.; Temin, S.; Baker, S.; Brahmer, J.R.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al. Therapy for Stage IV Non-Small-Cell Lung Cancer With Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 2021, 39, 1040–1091. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; van Schil, P.E.; Hellmann, M.D.; et al. Metastatic Non-small Cell Lung Cancer: Esmo Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; van Schil, P.E.; Hellmann, M.D.; et al. ESMO Clinical Practice Living Guidelines—Metastatic Non-Small-Cell Lung Cancer. Available online: https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer (accessed on 18 April 2021).
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Gristina, V.; La Mantia, M.; Iacono, F.; Galvano, A.; Russo, A.; Bazan, V. The Emerging Therapeutic Landscape of ALK Inhibitors in Non-Small Cell Lung Cancer. Pharmaceuticals 2020, 13, 474. [Google Scholar] [CrossRef]
- Mok, T.; Camidge, D.R.; Gadgeel, S.M.; Rosell, R.; Dziadziuszko, R.; Kim, D.-W.; Pérol, M.; Ou, S.-H.I.; Ahn, J.S.; Shaw, A.T.; et al. Updated Overall Survival and Final Progression-Free Survival Data for Patients with Treatment-Naive Advanced ALK-Positive Non-Small-Cell Lung Cancer in the ALEX Study. Ann. Oncol. 2020, 31, 1056–1064. [Google Scholar] [CrossRef]
- Ly, A.C.; Olin, J.L.; Smith, M.B. Alectinib for advanced ALK-positive non-small-cell lung cancer. Am. J. Health. Syst. Pharm. 2018, 75, 515–522. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thor. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [Green Version]
- Volckmar, A.-L.; Leichsenring, J.; Kirchner, M.; Christopoulos, P.; Neumann, O.; Budczies, J.; Morais de Oliveira, C.M.; Rempel, E.; Buchhalter, I.; Brandt, R.; et al. Combined Targeted DNA and RNA Sequencing of Advanced NSCLC in Routine Molecular Diagnostics: Analysis of the First 3000 Heidelberg Cases. Int. J. Cancer 2019, 145, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, R.D.; Dass, J.; Maydeo, S.; Arya, V.; Radhakrishnan, N.; Sachdeva, A.; Kotwal, J.; Bhargava, M. Flow Cytometric Osmotic Fragility Test and Eosin-5’-Maleimide Dye-Binding Tests Are Better than Conventional Osmotic Fragility Tests for the Diagnosis of Hereditary Spherocytosis. Int. J. Lab. Hematol. 2018, 40, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Marra, R.; Rosato, B.E.; Iolascon, A.; Andolfo, I. Genetics and Genomics Approaches for Diagnosis and Research into Hereditary Anemias. Front. Physiol. 2020, 11, 613559. [Google Scholar] [CrossRef]
- Ma, X.; Nussbaum, N.C.; Magee, K.; Bourla, A.B.; Tucker, M.; Bellomo, L.; Bennette, C. Comparison of Real-World Response Rate (rwRR) to RECIST-Based Response Rate in Patients with Advanced Non-small Cell Lung Cancer (aNSCLC). Ann. Oncol. 2019, 30, v651. [Google Scholar] [CrossRef]
- Bartlett, C.H.; Mardekian, J.; Cotter, M.; Huang, X.; Zhang, Z.; Parrinello, C.M.; Abernethy, A.P.; Koehler, M. Concordance of Real World Progression Free Survival (PFS) on Endocrine Therapy as First Line Treatment for Metastatic Breast Cancer Using Electronic Health Record with Proper Quality Control versus Conventional PFS from a Phase 3 Trial. Cancer Res. 2018, 78, P3-17-03. [Google Scholar] [CrossRef]
- Spivak, J.L. Cancer-Related Anemia: Its Causes and Characteristics. Semin. Oncol. 1994, 21, 3–8. [Google Scholar]
- Leaf, R.K.; Ferreri, C.; Rangachari, D.; Mier, J.; Witteles, W.; Ansstas, G.; Anagnostou, T.; Zubiri, L.; Piotrowska, Z.; Oo, T.H.; et al. Clinical and Laboratory Features of Autoimmune Hemolytic Anemia Associated with Immune Checkpoint Inhibitors. Am. J. Hematol. 2019, 94, 563–574. [Google Scholar] [CrossRef]
- Therapeutic Goods Administration, Australian Department of Health. AusPAR Alecensa Alectinic hydrochloride Roche Products Pty Limited PM-2015-04677-1-4. Available online: https://www.tga.gov.au/sites/default/files/auspar-alectinib-hydrochloride-171127.pdf (accessed on 19 April 2022).
- Privitera, G.; Meli, G. An Unusual Cause of Anemia in Cirrhosis: Spur Cell Anemia, a Case Report with Review of Literature. Gastroenterol. Hepatol. Bed Bench 2016, 9, 335–339. [Google Scholar]
- Marks, E.I.; Ollila, T.A. Acanthocytosis Causing Chronic Hemolysis in a Patient with Advanced Cirrhosis. Blood 2019, 133, 1518. [Google Scholar] [CrossRef]
- Barcellini, W.; Fattizzo, B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis. Markers 2015, 2015, 635670. [Google Scholar] [CrossRef] [Green Version]
- Dietz, S.; Christopoulos, P.; Yuan, Z.; Angeles, A.K.; Gu, L.; Volckmar, A.-L.; Ogrodnik, S.J.; Janke, F.; Fratte, C.D.; Zemojtel, T.; et al. Longitudinal Therapy Monitoring of ALK-Positive Lung Cancer by Combined Copy Number and Targeted Mutation Profiling of Cell-Free DNA. EBioMedicine 2020, 62, 103103. [Google Scholar] [CrossRef]
- Kuzich, J.A.; Heynemann, S.; Geoghegan, N.; Evelyn, C.; O’Mahoney, S.; Wilson, S.; Campbell, J.; Rogers, K.; Solomon, B.; Westerman, D.; et al. Alectinib Induces Marked Red Cell Spheroacanthocytosis in a Near-Ubiquitous Fashion and Is Associated with Reduced Eosin-5-Maleimide Binding. Pathology 2021, 53, 608–612. [Google Scholar] [CrossRef]
- Gullapalli, V.; Xu, W.; Lewis, C.R.; Anazodo, A.; Gerber, G.K. A Multi-Centre Case Series of Alectinib-Related Erythrocyte Membrane Changes and Associated Haemolysis. J. Hematopathol. 2021, 14, 131–136. [Google Scholar] [CrossRef]
- Christopoulos, P.; Kirchner, M.; Bozorgmehr, F.; Endris, V.; Elsayed, M.; Budczies, J.; Ristau, J.; Penzel, R.; Herth, F.J.; Heussel, C.P.; et al. Identification of a Highly Lethal V3+ TP53+ Subset in ALK+ Lung Adenocarcinoma. Int. J. Cancer 2019, 144, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Christopoulos, P.; Kirchner, M.; Endris, V.; Stenzinger, A.; Thomas, M. EML4-ALK V3, Treatment Resistance, and Survival: Refining the Diagnosis of ALK+ NSCLC. J. Thor. Dis. 2018, 10, S1989–S1991. [Google Scholar] [CrossRef]
- Elsayed, M.; Christopoulos, P. Therapeutic Sequencing in ALK+ NSCLC. Pharmaceuticals 2021, 14, 80. [Google Scholar] [CrossRef]
- Christopoulos, P.; Budczies, J.; Kirchner, M.; Dietz, S.; Sültmann, H.; Thomas, M.; Stenzinger, A. Defining Molecular Risk in ALK+ NSCLC. Oncotarget 2019, 10, 3093–3103. [Google Scholar] [CrossRef] [Green Version]
- Bates, G.C.; Brown, C.H. Incidence of Gallbladder Disease in Chronic Hemolytic Anemia (Spherocytosis). Gastroenterology 1952, 21, 104–109. [Google Scholar] [CrossRef]
- Pirker, R.; Wiesenberger, K.; Pohl, G.; Minar, W. Anemia in Lung Cancer: Clinical Impact and Management. Clin. Lung Cancer 2003, 5, 90–97. [Google Scholar] [CrossRef]
Patient #, Sex | ALK Fusion | TP53 Status | ALK TKI (Line) | Hb (>12–13 g/dL) | LDH (<317 U/L) | Bilirubin (<1 mg/dL) | Haptoglobin (0.3–2.0 g/L) | Reticulocytes (5–15‰) | Blood Smear: A/S/E/D/S/F (%) | RDW (%) (12.9–18.7) | EMA-neg (<20%) | Other Analyses |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1, m | V1 | wt | Crizotinib Alectinib (2) Brigatinib Lorlatinib Lorlatinib | 14.3 12.6 14.9 13.9 13.5 | 270 386 319 296 304 | 0.2 2.1 0.5 0.3 0.4 | - <0.1 2.35 3.24 3.69 | - 83.00 11.00 22.00 14.00 | - 63/10/5/5/0.2/0.5 39/10/0/2/0.2/1 5/1/0/0.5/0/0.5 | 13.2 14.3 14.1 14.6 | - 43 42 27 12 * | DAT NGS HbE trait |
2, m | n/a | n/a | Pre-alectinib Alectinib (1) | 14.6 13.8 | 189 309 | - 1.7 | - <0.1 | - 40.00 | - 42/7/0/0/0,5/1,5 | 13.8 15.9 | - 43 | DAT NGS |
3, m | V1 | p.P85 fs *38 | Pre-alectinib Alectinib (1) | 13.3 11.8 | 227 357 | 0.3 1.9 | - 0.58 | - 57.00 | - 80/1/2/0.1/0/0.8 | 13.3 16.2 | - 46 | DAT, NGS HbE trait |
4, f | V1 | p.S183 * | Pre-alectinib Alectinib (1) | 11.8 11.0 | 185 239 | 0.3 0.8 | 0.58 | 37.00 | - 91/1/5/1/1/0.5 | 13.6 16.5 | 57 | DAT |
5, m | n/a | wt | Pre-alectinib Alectinib (2) | 13.6 12.9 | 290 243 | 0.5 1.1 | 1.74 | 36.00 | - 46/7/0/0.1/0/1.5 | 13.3 16.7 | 42 | |
6, m | V1 | wt | Pre-alectinib Alectinib (1) | 15.4 11.0 | 295 431 | 0.8 | 0.27 | 42.00 | 13.4 19.6 | 50 | ||
7, f | V1 | wt | Pre-alectinib Alectinib (2) | 13.7 12.4 | 201 354 | 0.3 1.1 | 3.0 | 40.00 | - 70/0/15/0.2/0/1 | 12.7 19.2 | 48 | DAT |
8, f | V1 | wt | Pre-alectinib Alectinib (1) | 12.5 10.9 | 190 398 | 0.5 0.9 | 2.86 | 48.00 | - 91/0/5/0.5/0.1/2 | 14.0 20.2 | 10 58 *** | DAT |
9, f | V1 | wt | Pre-alectinib Alectinib (2) | 12.5 10.6 | 173 358 | 1.0 | <0.1 | 48.00 | - 36/2/0/0/0/2.6 | 13.6 16.4 | 39 | |
10, m | V1 | wt | Pre-alectinib Alectinib (1) | 15.2 12.4 | 170 263 | 0.6 1.4 | 0.4 | 34.00 | 12.9 18.5 | 32 | DAT | |
11, f | n/a | n/a | Pre-alectinib Alectinib (1) | 11.1 10.2 | 202 302 | 0.4 0.6 | 2.21 0.98 | 57.00 | 14.6 16.8 | 0 62 **** | ||
12, f | V1 | wt | Pre-alectinib Alectinib (5) | 14.2 12.5 | 245 332 | 0.5 0.6 | 0.89 | 28.00 | - 39/0/9/4/0/0 | 13.2 14.9 | 47 | DAT |
13, m | V1 | wt | Pre-alectinib Alectinib (1) | 15.2 12.5 | 244 278 | 0.8 2.9 | 1.09 | 51.00 | - 100/0/0/0/0/0 | 13.8 17.4 | 48 | DAT |
14, m | n/a | wt | Brigatinib | 15.3 | 266 | 0.5 | 0.78 | 12.00 | 13.6 | 8 | ||
15, m | V2 | p.H193D | Brigatinib | 12.9 | 197 | 0.2 | 1.77 | 15.00 | 13.5 | 0 | ||
16, m | V3 | wt | Lorlatinib | 14.9 | 200 | 0.3 | 2.0 | 20.00 | 14.6 | 5 | ||
17, f | V1 | wt | Crizotinib | 10.2 | 260 | 0.4 | 14.4 | 0 | ||||
18, m | V3 | p.R213Q | Brigatinib Alectinib (2) | 15.0 15.4 | 308 444 | 0.2 0.3 | 3.19 2.77 | 15.00 37.00 | 15.0 15.7 | 17 50 ** | DAT | |
19, m | V1 | p.spl? | Pre-alectinib Alectinib (2) | 14.1 13.9 | 263 232 | 0.5 0.9 | 0.88 0.14 | 22.00 25.00 | 14.1 15.0 | 7 39 ** 54 ** | ||
20, m | V1 | wt | Pre-alectinib Alectinib (0) | 14.4 14.1 | 191 225 | 0.5 0.6 | 1.02 | 19.00 | 13.6 13.9 | 1 40 ** | ||
21, w | V1 | wt | Crizotinib Alectinib (2) | 12.0 10.7 | 248 145 | 0.3 1.2 | 0.1 | 44.00 | 13.3 14.9 | 60 ** | ||
22, m | V2 | Lorlatinib | 12.9 | 209 | 0.3 | 3.08 | 17.00 | 15.3 | 0 | |||
23, f | V2 | wt | Alectinib (3) | 11.0 | 264 | 1.8 | 0.26 | 63.00 | - | 17.3 | 52 | |
24, f | V1 | wt | Alectinib (2) | 9.1 | 197 | 3.4 | 0.8 | 34.00 | 88/6/5/0/0/1 | 21.0 | 57 | DAT |
% (n) of alectinib-treated pts. with abnormalities | 68.4% (13/19) | 42.1% (8/19) | 57.9% (11/19) | 36.8% (7/19) | 100% (19/19) | 100% (11/11) | 15.8% (3/19) | 100% (19/19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunz, J.; Wiedemann, C.; Grosch, H.; Kriegsmann, K.; Gryzik, S.; Felden, J.; Hundemer, M.; Seker-Cin, H.; Stenzinger, M.; Leo, A.; et al. Early Development of Ubiquitous Acanthocytosis and Extravascular Hemolysis in Lung Cancer Patients Receiving Alectinib. Cancers 2022, 14, 2720. https://doi.org/10.3390/cancers14112720
Kunz J, Wiedemann C, Grosch H, Kriegsmann K, Gryzik S, Felden J, Hundemer M, Seker-Cin H, Stenzinger M, Leo A, et al. Early Development of Ubiquitous Acanthocytosis and Extravascular Hemolysis in Lung Cancer Patients Receiving Alectinib. Cancers. 2022; 14(11):2720. https://doi.org/10.3390/cancers14112720
Chicago/Turabian StyleKunz, Julia, Christiane Wiedemann, Heidrun Grosch, Katharina Kriegsmann, Stefanie Gryzik, Julia Felden, Michael Hundemer, Huriye Seker-Cin, Miriam Stenzinger, Albrecht Leo, and et al. 2022. "Early Development of Ubiquitous Acanthocytosis and Extravascular Hemolysis in Lung Cancer Patients Receiving Alectinib" Cancers 14, no. 11: 2720. https://doi.org/10.3390/cancers14112720
APA StyleKunz, J., Wiedemann, C., Grosch, H., Kriegsmann, K., Gryzik, S., Felden, J., Hundemer, M., Seker-Cin, H., Stenzinger, M., Leo, A., Stenzinger, A., Thomas, M., & Christopoulos, P. (2022). Early Development of Ubiquitous Acanthocytosis and Extravascular Hemolysis in Lung Cancer Patients Receiving Alectinib. Cancers, 14(11), 2720. https://doi.org/10.3390/cancers14112720