Beyond Immunotherapy: Seizing the Momentum of Oncolytic Viruses in the Ideal Platform of Skin Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Evolution of OVs: From the Preclinical Background of HSV Selection to the Current Clinical Status of Tested OVs
2.1. T-VEC (OncoVEXGM-CSF)
2.2. HF-10
2.3. RP-1
3. Other Investigational OVs (Adenoviruses, Rhinoviruses, Coxsackieviruses, etc.)
4. Reasons of Failure, Limitations, and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasakovski, D.; Skrygan, M.; Gambichler, T.; Susok, L. Advances in Targeting Cutaneous Melanoma. Cancers 2021, 13, 2090. [Google Scholar] [CrossRef] [PubMed]
- Paulson, K.G.; Gupta, D.; Kim, T.S.; Veatch, J.R.; Byrd, D.R.; Bhatia, S.; Wojcik, K.; Chapuis, A.G.; Thompson, J.A.; Madeleine, M.M.; et al. Age-Specific Incidence of Melanoma in the United States. JAMA Dermatol. 2020, 156, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsague, X. Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches. Dermatol. Ther. 2017, 7, 5–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascierto, P.A.; Garbe, C. Updates and new perspectives in nonmelanoma skin cancer therapy: Highlights from ‘Immunotherapy Bridge’. Immunotherapy 2020, 12, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Keilholz, U.; Ascierto, P.A.; Dummer, R.; Robert, C.; Lorigan, P.; van Akkooi, A.; Arance, A.; Blank, C.U.; Chiarion Sileni, V.; Donia, M.; et al. ESMO consensus conference recommendations on the management of metastatic melanoma: Under the auspices of the ESMO Guidelines Committee. Ann. Oncol. 2020, 31, 1435–1448. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Cives, M.; Mannavola, F.; Lospalluti, L.; Sergi, M.C.; Cazzato, G.; Filoni, E.; Cavallo, F.; Giudice, G.; Stucci, L.S.; Porta, C.; et al. Non-Melanoma Skin Cancers: Biological and Clinical Features. Int. J. Mol. Sci. 2020, 21, 5394. [Google Scholar] [CrossRef]
- Stonesifer, C.J.; Djavid, A.R.; Grimes, J.M.; Khaleel, A.E.; Soliman, Y.S.; Maisel-Campbell, A.; Garcia-Saleem, T.J.; Geskin, L.J.; Carvajal, R.D. Immune Checkpoint Inhibition in Non-Melanoma Skin Cancer: A Review of Current Evidence. Front. Oncol. 2021, 11, 734354. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. CheckMate 067: 6.5-Year outcomes in patients (pts) with advanced melanoma. J. Clin. Oncol. 2021, 39, 9506. [Google Scholar] [CrossRef]
- Hughes, B.G.M.; Munoz-Couselo, E.; Mortier, L.; Bratland, A.; Gutzmer, R.; Roshdy, O.; Gonzalez Mendoza, R.; Schachter, J.; Arance, A.; Grange, F.; et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): An open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. 2021, 32, 1276–1285. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 2007, 15, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R. Mesenchymal stem cells and oncolytic viruses: Joining forces against cancer. J. Immunother. Cancer 2021, 9, e001684. [Google Scholar] [CrossRef]
- Watanabe, D.; Goshima, F. Oncolytic Virotherapy by HSV. Adv. Exp. Med. Biol. 2018, 1045, 63–84. [Google Scholar] [CrossRef]
- Liu, B.L.; Robinson, M.; Han, Z.Q.; Branston, R.H.; English, C.; Reay, P.; McGrath, Y.; Thomas, S.K.; Thornton, M.; Bullock, P.; et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003, 10, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Ding, G.; Wang, L. The efficacy and safety of oncolytic viruses in the treatment of intermediate to advanced solid tumors: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 4290–4302. [Google Scholar] [CrossRef]
- Rahman, M.M.; McFadden, G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers 2021, 13, 5452. [Google Scholar] [CrossRef]
- Hamid, O.; Ismail, R.; Puzanov, I. Intratumoral Immunotherapy-Update 2019. Oncologist 2020, 25, e423–e438. [Google Scholar] [CrossRef]
- Marabelle, A.; Tselikas, L.; de Baere, T.; Houot, R. Intratumoral immunotherapy: Using the tumor as the remedy. Ann. Oncol. 2017, 28, xii33–xii43. [Google Scholar] [CrossRef]
- Lawler, S.E.; Speranza, M.C.; Cho, C.F.; Chiocca, E.A. Oncolytic Viruses in Cancer Treatment: A Review. JAMA Oncol. 2017, 3, 841–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, A.; Chesney, J.; Long, G.V.; Kirkwood, J.M.; Dummer, R.; Puzanov, I.; Hoeller, C.; Gajewski, T.F.; Gutzmer, R.; Rutkowski, P.; et al. 1037O MASTERKEY-265: A phase III, randomized, placebo (Pbo)-controlled study of talimogene laherparepvec (T) plus pembrolizumab (P) for unresectable stage IIIB–IVM1c melanoma (MEL). Ann. Oncol. 2021, 32, S868–S869. [Google Scholar] [CrossRef]
- Havunen, R.; Kalliokoski, R.; Siurala, M.; Sorsa, S.; Santos, J.M.; Cervera-Carrascon, V.; Anttila, M.; Hemminki, A. Cytokine-Coding Oncolytic Adenovirus TILT-123 Is Safe, Selective, and Effective as a Single Agent and in Combination with Immune Checkpoint Inhibitor Anti-PD-1. Cells 2021, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Moreno, R.; Gil-Martin, M.; Cascallo, M.; de Olza, M.O.; Cuadra, C.; Piulats, J.M.; Navarro, V.; Domenech, M.; Alemany, R.; et al. A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. Hum. Gene Ther. 2019, 30, 352–364. [Google Scholar] [CrossRef]
- Kuryk, L.; Moller, A.W.; Jaderberg, M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. Oncoimmunology 2019, 8, e1532763. [Google Scholar] [CrossRef]
- Beasley, G.M.; Nair, S.K.; Farrow, N.E.; Landa, K.; Selim, M.A.; Wiggs, C.A.; Jung, S.H.; Bigner, D.D.; True Kelly, A.; Gromeier, M.; et al. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J Immunother. Cancer 2021, 9, e002203. [Google Scholar] [CrossRef]
- Curti, B.D.; Richards, J.M.; Hallmeyer, S.; Faries, M.B.; Andtbacka, R.H.I.; Daniels, G.A.; Grose, M.; Shafren, D. Activity of a novel immunotherapy combination of intralesional Coxsackievirus A21 and systemic ipilimumab in advanced melanoma patients previously treated with anti-PD1 blockade therapy. J. Clin. Oncol. 2017, 35, 3014. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Curti, B.D.; Kaufman, H.; Daniels, G.A.; Nemunaitis, J.J.; Spitler, L.E.; Hallmeyer, S.; Lutzky, J.; Schultz, S.M.; Whitman, E.D.; et al. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J. Clin. Oncol. 2015, 33, 9030. [Google Scholar] [CrossRef]
- Donina, S.; Strele, I.; Proboka, G.; Auzins, J.; Alberts, P.; Jonsson, B.; Venskus, D.; Muceniece, A. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015, 25, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Alberts, P.; Tilgase, A.; Rasa, A.; Bandere, K.; Venskus, D. The advent of oncolytic virotherapy in oncology: The Rigvir(R) story. Eur. J. Pharmacol. 2018, 837, 117–126. [Google Scholar] [CrossRef]
- McGeoch, D.J.; Dalrymple, M.A.; Davison, A.J.; Dolan, A.; Frame, M.C.; McNab, D.; Perry, L.J.; Scott, J.E.; Taylor, P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 1988, 69 (Pt 7), 1531–1574. [Google Scholar] [CrossRef]
- Marconi, P.; Argnani, R.; Berto, E.; Epstein, A.L.; Manservigi, R. HSV as a vector in vaccine development and gene therapy. Hum. Vaccin. 2008, 4, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Todo, T. Oncolytic virus therapy using genetically engineered herpes simplex viruses. Front. Biosci. 2008, 13, 2060–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Zhang, X. Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res. 2002, 62, 2306–2312. [Google Scholar] [PubMed]
- Wang, P.Y.; Swain, H.M.; Kunkler, A.L.; Chen, C.Y.; Hutzen, B.J.; Arnold, M.A.; Streby, K.A.; Collins, M.H.; Dipasquale, B.; Stanek, J.R.; et al. Neuroblastomas vary widely in their sensitivities to herpes simplex virotherapy unrelated to virus receptors and susceptibility. Gene Ther. 2016, 23, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Toda, M.; Martuza, R.L.; Rabkin, S.D. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol. Ther. 2000, 2, 324–329. [Google Scholar] [CrossRef]
- Kohlhapp, F.J.; Kaufman, H.L. Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy. Clin. Cancer Res. 2016, 22, 1048–1054. [Google Scholar] [CrossRef] [Green Version]
- Cooke, K.; Estrada, J.; Zhan, J.; Mitchell, P.; Bulliard, Y.; Beltran, P.J. Abstract 2351: Development of a B16F10 cell line expressing mNectin1 to study the activity of OncoVEXmGM-CSF in murine syngeneic melanoma models. Cancer Res. 2016, 76, 2351. [Google Scholar] [CrossRef]
- Cooke, K.; Rottman, J.; Zhan, J.; Mitchell, P.; Ikotun, O.; Yerby, B.; Chong, A.; Glaus, C.; Moesta, A.K.; Pedro, B. Oncovex MGM-CSF –mediated regression of contralateral (non-injected) tumors in the A20 murine lymphoma model does not involve direct viral oncolysis. J. Immunother. Cancer 2015, 3, P336. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, J.; Tiep, L.; Zhou, J.; Beers, C. Talilmogene Iaherparepvec generates systemic T-cell-mediated anti-tumor immunity. J. Immunother. Cancer 2013, 1, P198. [Google Scholar] [CrossRef] [Green Version]
- Moesta, A.K.; Cooke, K.; Piasecki, J.; Mitchell, P.; Rottman, J.B.; Fitzgerald, K.; Zhan, J.; Yang, B.; Le, T.; Belmontes, B.; et al. Local Delivery of OncoVEXmGM-CSF Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte–Associated Protein Blockade. Clin. Cancer Res. 2017, 23, 6190–6202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.C.; Coffin, R.S.; Davis, C.J.; Graham, N.J.; Groves, N.; Guest, P.J.; Harrington, K.J.; James, N.D.; Love, C.A.; McNeish, I.; et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 2006, 12, 6737–6747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, N.; Koga, H.; Kojima, T.; Tsutsumida, A.; Namikawa, K.; Yi, M.; Mera, K.; Pickett-Gies, C. Early safety from a phase I, multicenter, open-label, dose de-escalation study of talimogene laherparepvec (T-VEC) in Japanese patients (pts) with unresectable stage IIIB-IV melanoma (MEL). Ann. Oncol. 2018, 29, ix107. [Google Scholar] [CrossRef]
- Senzer, N.N.; Kaufman, H.L.; Amatruda, T.; Nemunaitis, M.; Reid, T.; Daniels, G.; Gonzalez, R.; Glaspy, J.; Whitman, E.; Harrington, K.; et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 2009, 27, 5763–5771. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Kim, D.W.; DeRaffele, G.; Mitcham, J.; Coffin, R.S.; Kim-Schulze, S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 2010, 17, 718–730. [Google Scholar] [CrossRef]
- Malvehy, J.; Samoylenko, I.; Schadendorf, D.; Gutzmer, R.; Grob, J.J.; Sacco, J.J.; Gorski, K.S.; Anderson, A.; Pickett, C.A.; Liu, K.; et al. Talimogene laherparepvec upregulates immune-cell populations in non-injected lesions: Findings from a phase II, multicenter, open-label study in patients with stage IIIB-IVM1c melanoma. J. Immunother. Cancer 2021, 9, e001621. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Amatruda, T.; Nemunaitis, J.; Zager, J.S.; Walker, J.; Chesney, J.A.; Liu, K.; Hsu, C.P.; Pickett, C.A.; Mehnert, J.M. Biodistribution, shedding, and transmissibility of the oncolytic virus talimogene laherparepvec in patients with melanoma. EBioMedicine 2019, 47, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Andtbacka, R.H.I.; Collichio, F.; Harrington, K.J.; Middleton, M.R.; Downey, G.; hrling, K.; Kaufman, H.L. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J. Immunother. Cancer 2019, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Gogas, H.; Samoylenko, I.; Schadendorf, D.; Gutzmer, R.; Grob, J.J.; Sacco, J.J.; Gorski, K.; Anderson, A.; Liu, C.; Malvehy, J. Talimogene laherparepvec (T-VEC) treatment increases intratumoral effector T-cell and natural killer (NK) cell density in noninjected tumors in patients (pts) with stage IIIB–IVM1c melanoma: Evidence for systemic effects in a phase II, single-arm study. Ann. Oncol. 2018, 29, viii443. [Google Scholar] [CrossRef]
- Chesney, J.A.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.; Glaspy, J.; Hamid, O.; Ross, M.I.; Friedlander, P.; Garbe, C.; et al. Talimogene laherparepvec (T-VEC) in combination (combo) with ipilimumab (ipi) versus ipi alone for advanced melanoma: 3-year landmark analysis of a randomized, open-label, phase II trial. Ann. Oncol. 2019, 30, v906–v907. [Google Scholar] [CrossRef]
- Hu-Lieskovan, S.; Moon, J.; Campos, D.; Grossmann, K.F.; Sosman, J.A.; Ryan, C.W.; Wu, M.; Ribas, A. Reversing resistance to PD-1 blockade by combination of talimogene laherparepvec (T-VEC) with pembrolizumab (pembro) in advanced melanoma patients following progression on a prior PD-1 inhibitor: SWOG S1607 (NCT#02965716). J. Clin. Oncol. 2018, 36, TPS9603. [Google Scholar] [CrossRef]
- Long, G.; Dummer, R.; Johnson, D.; Michielin, O.; Martin-Algarra, S.; Treichel, S.; Chan, E.; Diede, S.; Ribas, A. 429|Long-term analysis of MASTERKEY-265 phase 1b trial of talimogene laherparepvec (T-VEC) plus pembrolizumab in patients with unresectable stage IIIB-IVM1c melanoma. J. Immunother. Cancer 2020, 8, A261. [Google Scholar] [CrossRef]
- Dummer, R.; Gyorki, D.; Hyngstrom, J.; Berger, A.; Conry, R.; Demidov, L.; Chan, E.; Radcliffe, H.-S.; Faries, M.; Ross, M. 432|3-year results of the phase 2 randomized trial for talimogene laherparepvec (T-VEC) neoadjuvant treatment plus surgery vs surgery in patients with resectable stage IIIB-IVM1a melanoma. J. Immunother. Cancer 2020, 8, A263. [Google Scholar] [CrossRef]
- Dummer, R.; Gyorki, D.E.; Hyngstrom, J.; Berger, A.C.; Conry, R.; Demidov, L.; Sharma, A.; Treichel, S.A.; Radcliffe, H.; Gorski, K.S.; et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: A randomized, open-label, phase 2 trial. Nat. Med. 2021, 27, 1789–1796. [Google Scholar] [CrossRef]
- Tulokas, S.K.A.; Kohtamaki, L.M.; Makela, S.P.; Juteau, S.; Alback, A.; Vikatmaa, P.J.; Mattila, K.E.; Skytta, T.K.; Koivunen, J.P.; Tyynela-Korhonen, K.; et al. Isolated limb perfusion with melphalan as treatment for regionally advanced melanoma of the limbs: Results of 60 patients treated in Finland during 2007–2018. Melanoma Res. 2021, 31, 456–463. [Google Scholar] [CrossRef]
- Cui, C.; Wang, X.; Lian, B.; Ji, Q.; Zhou, L.; Chi, Z.; Si, L.; Sheng, X.; Kong, Y.; Yu, J.; et al. OrienX010, an oncolytic virus, in patients with unresectable stage IIIC-IV melanoma: A phase Ib study. J. Immunother. Cancer 2022, 10, e004307. [Google Scholar] [CrossRef]
- Wang, X.; Cui, C.; Si, L.; Li, C.; Dai, J.; Mao, L.; Bai, X.; Chi, Z.; Sheng, X.; Kong, Y.; et al. A phase Ib clinical trial of neoadjuvant OrienX010, an oncolytic virus, in combination with toripalimab in patients with resectable stage IIIb to stage IVM1a acral melanoma. J. Clin. Oncol. 2021, 39, 9570. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, B.; Geng, Z.; Geng, Q. Toripalimab: The First Domestic Anti-Tumor PD-1 Antibody in China. Front. Immunol. 2021, 12, 730666. [Google Scholar] [CrossRef]
- Guo, J.; Cui, C.; Wang, X.; Lian, B.; Yin, S.; Cong, Y.; Chi, Z.; Si, L.; Sheng, X.; Tang, B.; et al. A phase 1b clinical trial of anti-PD-1 ab (Toripalimab) plus intralesional injection of OrienX010 in stage melanoma with liver metastases. J. Clin. Oncol. 2021, 39, 9559. [Google Scholar] [CrossRef]
- Kelly, C.M.; Antonescu, C.R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; Movva, S.; Dholakia, R.; et al. Objective Response Rate Among Patients with Locally Advanced or Metastatic Sarcoma Treated With Talimogene Laherparepvec in Combination With Pembrolizumab: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 402–408. [Google Scholar] [CrossRef]
- Harrington, K.J.; Kong, A.; Mach, N.; Chesney, J.A.; Fernandez, B.C.; Rischin, D.; Cohen, E.E.W.; Radcliffe, H.S.; Gumuscu, B.; Cheng, J.; et al. Talimogene Laherparepvec and Pembrolizumab in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (MASTERKEY-232): A Multicenter, Phase 1b Study. Clin. Cancer Res. 2020, 26, 5153–5161. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.R.; Naoe, Y.; Bustos-Villalobos, I.; Ichinose, T.; Tanaka, M.; Zhiwen, W.; Mukoyama, N.; Morimoto, T.; Miyajima, N.; Hitoki, H.; et al. Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Front. Oncol. 2017, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Ushijima, Y.; Luo, C.; Goshima, F.; Yamauchi, Y.; Kimura, H.; Nishiyama, Y. Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect. 2007, 9, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Koshizuka, T.; Kawaguchi, Y.; Nishiyama, Y. Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. J. Gen. Virol. 2005, 86, 527–533. [Google Scholar] [CrossRef]
- Jones, C.; Inman, M.; Peng, W.; Henderson, G.; Doster, A.; Perng, G.C.; Angeletti, A.K. The herpes simplex virus type 1 locus that encodes the latency-associated transcript enhances the frequency of encephalitis in male BALB/c mice. J. Virol. 2005, 79, 14465–14469. [Google Scholar] [CrossRef] [Green Version]
- Nawa, A.; Luo, C.; Zhang, L.; Ushjima, Y.; Ishida, D.; Kamakura, M.; Fujimoto, Y.; Goshima, F.; Kikkawa, F.; Nishiyama, Y. Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF-10: Applications for cancer gene therapy. Curr. Gene Ther. 2008, 8, 208–221. [Google Scholar] [CrossRef]
- Takakuwa, H.; Goshima, F.; Nozawa, N.; Yoshikawa, T.; Kimata, H.; Nakao, A.; Nawa, A.; Kurata, T.; Sata, T.; Nishiyama, Y. Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. Arch. Virol. 2003, 148, 813–825. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Ross, M.I.; Agarwala, S.S.; Taylor, M.H.; Vetto, J.T.; Neves, R.I.; Daud, A.; Khong, H.T.; Ungerleider, R.S.; Tanaka, M.; et al. Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB-IV unresectable or metastatic melanoma. J. Clin. Oncol. 2017, 35, 9510. [Google Scholar] [CrossRef]
- Thomas, S.; Kuncheria, L.; Roulstone, V.; Kyula, J.N.; Mansfield, D.; Bommareddy, P.K.; Smith, H.; Kaufman, H.L.; Harrington, K.J.; Coffin, R.S. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J. Immunother. Cancer 2019, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Svane, I.M.; Santos, J.M.; Cervera-Carrascon, V.; Havunen, R.; Sorsa, S.; Ellebæk, E.; Monberg, T.; Donia, M.; Khammari, A.; Dréno, B.; et al. 1032TiP A phase I, first-in-human, study of TILT-123, a tumor-selective oncolytic adenovirus encoding TNFa and IL-2, in participants with advanced melanoma receiving adoptive T-cell therapy with tumor-infiltrating lymphocytes. Ann. Oncol. 2021, 32, S864. [Google Scholar] [CrossRef]
- Xiao, C.; Bator-Kelly, C.M.; Rieder, E.; Chipman, P.R.; Craig, A.; Kuhn, R.J.; Wimmer, E.; Rossmann, M.G. The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 2005, 13, 1019–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafren, D.R.; Au, G.G.; Nguyen, T.; Newcombe, N.G.; Haley, E.S.; Beagley, L.; Johansson, E.S.; Hersey, P.; Barry, R.D. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin. Cancer Res. 2004, 10, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au, G.G.; Lindberg, A.M.; Barry, R.D.; Shafren, D.R. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int. J. Oncol. 2005, 26, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Silk, A.W.; O’Day, S.J.; Kaufman, H.L.; Bryan, J.; Norrell, J.T.; Imbergamo, C.; Portal, D.; Zambrano-Acosta, E.; Palmeri, M.; Fein, S.; et al. Abstract CT139: Intratumoral oncolytic virus V937 in combination with pembrolizumab (pembro) in patients (pts) with advanced melanoma: Updated results from the phase 1b CAPRA study. Cancer Res. 2021, 81, CT139. [Google Scholar] [CrossRef]
- Chahlavi, A.; Rabkin, S.; Todo, T.; Sundaresan, P.; Martuza, R. Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Ther. 1999, 6, 1751–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, E.; Markovic, S.N.; Suman, V.J.; Nuovo, G.J.; Vile, R.G.; Kottke, T.J.; Nevala, W.K.; Thompson, M.A.; Lewis, J.E.; Rumilla, K.M.; et al. Phase II trial of intravenous administration of Reolysin((R)) (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol. Ther. 2012, 20, 1998–2003. [Google Scholar] [CrossRef] [Green Version]
- Alberts, P.; Olmane, E.; Brokane, L.; Krastina, Z.; Romanovska, M.; Kupcs, K.; Isajevs, S.; Proboka, G.; Erdmanis, R.; Nazarovs, J.; et al. Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. APMIS 2016, 124, 896–904. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Galle, P.R.; Chao, Y.; Brown, K.T.; Heo, J.; Borad, M.J.; Luca, A.; Pelusio, A.; Agathon, D.; Lusky, M.; et al. PHOCUS: A phase 3 randomized, open-label study comparing the oncolytic immunotherapy Pexa-Vec followed by sorafenib (SOR) vs SOR in patients with advanced hepatocellular carcinoma (HCC) without prior systemic therapy. J. Clin. Oncol. 2016, 34, TPS4146. [Google Scholar] [CrossRef]
- Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.J.; Kim, T.M.; et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019, 20, 1083–1097. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Uche, I.K.; Fowlkes, N.; Vu, L.; Watanabe, T.; Carossino, M.; Nabi, R.; Del Piero, F.; Rudd, J.S.; Kousoulas, K.G.; Rider, P.J.F. Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model. J. Virol. 2021, 95. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.; MacGregor, J.; Markus, S.; Ha, S.; Mohr, I. Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc. Natl. Acad. Sci. USA 2001, 98, 8804–8808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
T-VEC | RP1 | HF-10 |
---|---|---|
Selection of HSV-1 JS1 strain enhances selective targeting of tumor cells | Selection of HSV-1 RH018 strain offers increased cytotoxicity against tumor cells | Deletion in the Bam HI-B fragment |
ICP34.5 gene deletion permits viral replication in tumor cells by attenuating the natural neurovirulence of the virus | ICP34.5 gene deletion permits viral replication in tumor cells by attenuating the natural neurovirulence of the virus | Non-expression of UL56 reduces neurovirulence of HSV without affecting viral replication in vitro |
ICP47 gene deletion inhibits suppression of antigen presentation and upregulates HSV1 US11 gene | ICP47 gene deletion inhibits suppression of antigen presentation and upregulates HSV US11 gene | Reduced expression of UL43, UL49.5, UL55, and LAT reduces neurovirulence and enhances cell killing |
HSV-1 US11 gene augments viral replication in tumor cells without impairing tumor selectivity | HSV US11 gene augments viral replication in tumor cells without impairing tumor selectivity | Increased expression of UL53 and UL54 |
Expression of GALV-GP-R− * enhances systemic killing of tumor cells | ||
GM-CSF cassette initiates systemic immune response against tumor | GM-CSF cassette initiates systemic immune response against tumor | |
Expression of anti-CTLA-4 or immune co-stimulatory pathway activating ligands * further enhances systemic immune response |
Author, Year Study Name (NCT#) | Phase (Status) | Therapy (Combination) | N | Stage of Melanoma Disease | ORR (%) | Main Outcomes (DoR, PFS, etc. in Months) | TRAE (Most Common Grade 3–4) |
---|---|---|---|---|---|---|---|
Hu JC et al., 2006 | I (Completed) | T-VEC | 30 | Different metastatic tumors, including melanoma | N/A | N/A | Pyrexia, local inflammation, site erythema |
Andtbacka RH et al., 2019 OPTiM (NCT00769704, EudraCT 2008-006140-20) | III (Completed) | T-VEC vs. GM-CSF | 437 | IIIB-IV | 31.5 vs. 6.4 | mDoR = not reached vs. 2.8 months | Cellulitis, tumor pain, vomiting, fatigue |
(NCT01368276) | III (Completed) | T-VEC vs. GM-CSF | 31 | IIIB-IV | 57.1 vs. 100 | Extended safety study for eligible patients of NCT00769704 | Cardiac disorders, vascular disorders, respiratory disorders, renal failure |
Senzer et al., 2009 (NCT00289016) | II (Completed) | T-VEC | 50 | ΙΙΙC-IV | 26 | mDoR = 7.4 months (223 days) | Pain, fatigue, dyspnea |
(NCT02574260) | II (Completed) | T-VEC | 3 | IIIB-IV | N/A | Participants who had received the maximum 24 treatments under NCT00289016 and met the inclusion and exclusion criteria were eligible to enroll | No grade 3–4 TRAEs |
Andtbacka RH et al., 2019 (NCT02014441) | II (Completed) | T-VEC | 61 | IIIB-IVM1c | 35 | mDoR = not reached | Pyrexia, delirium |
Puzanov I et al., 2016 (NCT01740297) | Ib (Completed) | T-VEC + Ipilimumab | 19 | IIIC-IV | 50 | mDoR = not reached mPFS = not reached 18 month-PFS% = 50% | Nausea, lipase and amylase increase (IPI-related) |
Chesney J et al., 2019 (NCT01740297) | II (Completed) | T-VEC + Ipilimumab vs. Ipilimumab | 198 | IIIC-IV | 36.7 vs. 16 | mDoR = not reached mPFS = 13.5 vs. 4.5 months | Colitis, diarrhea, influenza-like symptoms, lymphopenia |
Malvehy J et al., 2021 (TVEC-325) (NCT02366195) | II (Completed) | T-VEC | 112 | IIIB-IVM1c | 32 | mDoR = not reached mTTF = 8.1 months | Metastatic melanoma, metastases to central nervous system, general physical deterioration, pyrexia, back pain |
Tulokas SKA et al., 2021 (NCT03555032 NCT02094391 NCT03685890 NCT03555032) | I/II (Completed) | Ipilimumab vs. Nivolumab vs. T-VEC | 60 | IIIB-IV | 77 | mPFS = 6.1 | Cellulitis, gastrointestinal disorders, pyrexia/influenza, pain/post-operative wound infection |
(NCT03003676) | I (Completed) | ONCOS-102 + cyclophosphamide + pembrolizumab | 21 | Relapsed melanoma after prior PD-1 blockade | 37.5 for part 1, 33.3 for part 2 | N/A | Enterocolitis, pyrexia, syncope, cough, dyspnea |
Robert L Ferris et al., 2015 (NCT01017185) | I (Completed) | HF10 + Ipilimumab | 28 | Various skin cancers, including melanoma | N/A | N/A | N/A |
Andtbacka R.H.I et al., 2017 (NCT02272855) | II (Completed) | HF10 + Ipilimumab | 46 | IIIB-IV | 41 | mPFS = 19 months | Embolism, lymphedema, diarrhea, hypoglycemia, and groin pain |
Yokota K et al., 2019 (NCT03153085) | II (Completed) | HF10 + Ipilimumab | 28 | IIIB-IV | BORR = 11.1% | DCR = 55.6% | Grade 3 TRAEs = 35.7% |
Dummer R et al., 2021 (NCT02211131) | II (Active) | Neoadjuvant T-VEC + surgical resection vs. immediate surgical resection | 150 | IIIB-IVM1a | Lesion ORR = 26.3 vs 3.9 (T-VEC arm only, injected vs. uninjected lesions | 2-year RFS% = 29.5% vs. 16.5% | Cellulitis, pyrexia, cholecystitis |
Yamazaki N et al., 2018 (NCT03064763) | I (Active, not recruiting) | T-VEC | 18 | IIIB-IV | N/A | N/A | Infectious enteritis, worsening of benign prostatic hyperplasia, epiglottitis, pneumonia |
Long G et al., 2019 (NCT02263508) | Ib (Completed) | T-VEC + pembrolizumab | 21 | IIIB-IVM1c | 62 | mDoR = not reached mPFS = not Reached 4-year PFS% = 55.9% | Fatigue, pyrexia, chills |
Ribas A et al., 2021 MASTERKEY-265/KEYNOTE-034 (NCT02263508) | III (Completed) | T-VEC + pembrolizumab vs. Placebo + pembrolizumab | 692 | IIIB-IVM1c | 48.6 vs. 41.3 | mDoR = 43.7 vs. not reached mPFS = 14.3 vs. 8.5 months | Fatigue, pyrexia, chills |
NIVEC (NCT04330430) | II (Recruiting) | Neoadjuvant T-VEC+nivolumab for 8 weeks | 24 | IIIB-IVM1a | N/A | N/A | N/A |
Beasley GM et al., 2021 (NCT03712358) | I (Active, not recruiting) | PVSRIPO | 18 | IIIB-IV | 33 | 18-month PFS% = 50% | No grade 3–4 TRAEs |
Wang X et al., 2021 (NCT04197882) | Ib (Active, not recruiting) | OrienX010 + toripalimab | 33 | IIIB-IVM1a | N/A | N/A | Alanine aminotransferase increase, wound infections |
Guo J et al., 2021 (NCT04206358) | Ib (Recruiting) | OrienX010 + JS001 | 30 | IV (M1c) | 13.3 | mPFS = not reached | No grade 3–4 TRAEs |
(NCT04125719) | I (Withdrawn and planned to be resubmitted) | PVSRIPO + nivolumab | 0 | IIIB-IV | N/A | N/A | N/A |
(NCT04577807) | II (Recruiting) | PVSRIPO vs. PVSRIPO + anti-PD-1 ICI | 56 | Advanced melanoma refractory to PD-1 blockade | N/A | N/A | N/A |
(NCT03259425) | II (Terminated, DSMC recommendation) | HF10 + nivolumab | 7 | IIIB-IVM1a | N/A | N/A | Anemia, skin and subcutaneous tissue disorders |
(NCT04427306) | II (Recruiting) | T-VEC | 62 | High-risk, resectable melanoma | N/A | N/A | N/A |
(NCT03842943) | II (Recruiting) | T-VEC + pembrolizumab | 28 | III | N/A | N/A | N/A |
(NCT02965716) | II (Active) | T-VEC + pembrolizumab | 47 | IIIA-IV | N/A | N/A | N/A |
(NCT04068181) | II (Active) | T-VEC + pembrolizumab | 72 | IIIB-IVM1d | N/A | N/A | N/A |
(NCT02297529) | IIIB (Recruiting) | T-VEC | - | IIIB-IVM1c | N/A | N/A | N/A |
(NCT03747744) | I (Active) | CD1c (BDCA-1) + myDC + T-VEC | 18 | Advanced/metastatic melanoma | N/A | N/A | N/A |
Thomas S et al., 2019 (NCT03767348) | II (Recruiting) | RP1 vs. RP1 + nivolumab | 300 | Various solid tumors, including melanoma | N/A | N/A | N/A |
(NCT04123470) | I/II (Recruiting) | delolimogene mupadenorepvec + atezolizumab | 35 | Metastatic melanoma | N/A | N/A | N/A |
Havunen R et al., 2021 (NCT04217473) | I (Recruiting) | TNFalpha + TILT-123 | 15 | Refractory/recurrent stage III-IV melanoma | N/A | N/A | N/A |
(NCT02819843) | II (Active) | T-VEC + Hypofractionated Radiotherapy vs. T-VEC | 19 | Various solid tumors, including melanoma | N/A | N/A | N/A |
Garcia et al., 2019 (NCT01864759) | I (Completed) | ICOVIR-5 | 14 | Uveal or cutaneous metastatic melanoma | N/A | N/A | Transaminase increase, asthenia, edema |
Curti BD et al., 2017 (NCT02307149) | I (Completed) | CAVATAK + ipilimumab | 18 | IIIB-IV | BORR = 38% | DCR = 88% | Fatigue (IPI-related) |
Andtbacka RH et al., 2015 (NCT01227551) | II (Completed) | CAVATAK | 57 | IIIC–IVM1c | 28.1 | 6-month PFS% = 38.6% | No grade 3/4 TRAEs |
Silk et al., 2021 (NCT02565992) | I (Completed) | CAVATAK + pembrolizumab | 36 | IIIB-IV | 47 | mDoR = not reached mPFS = 11.9 | Autoimmune encephalitis, septic shock, keratoacanthoma, autoimmune hepatitis |
Author, Study Name (NCT#) | Phase (Status) | Therapy (Combination) | N | Study Population | ORR (%) | Main Outcomes (DoR, PFS, etc. in Months | TRAE (Most Common Grade 3–4) |
---|---|---|---|---|---|---|---|
(NCT03458117) | I (Recruiting) | T-VEC | 20 | SCC | N/A | N/A | N/A |
(NCT04163952) | I (Recruiting) | T-VEC + Panitumumab | 30 | SCC | N/A | N/A | N/A |
(NCT04050436) | II (Recruiting) | RP1 + Cemiplimab vs. Cemiplimab | 180 | SCC | N/A | N/A | N/A |
(NCT03714828) | II (Recruiting) | T-VEC | 28 | SCC | N/A | N/A | N/A |
(NCT01161498) | III (Terminated) | T-VEC + Radiation + Cisplatin vs. Radiation + Cisplatin | 5 | HNSCC | N/A | N/A | Lung infection, urinary tract infection, hyperglycemia, malignant neoplasm progression, acute renal failure, pleural effusion |
(NCT04349436) | Ιb (recruiting) | RP1 | 30 | SCC | N/A | N/A | N/A |
Harrington et al., 2021 (NCT02626000) | Ιb (Completed) | T-VEC + pembrolizumab | 36 | Recurrent or metastatic HNSCC | 16.7 | mDoR = 45.9 months mPFS = 3 months | Pyrexia, arterial hemorrhage, chills, mucosal hemorrhage |
(NCT03458117) | I (Recruiting) | T-VEC | 20 | BCC | N/A | N/A | N/A |
(NCT03458117) | I (Recruiting) | T-VEC | 20 | MCC | N/A | N/A | N/A |
(NCT02819843) | II (Active, not recruiting) | T-VEC | 19 | MCC | N/A | N/A | N/A |
(NCT03921073) | II (Active, not recruiting) | T-VEC | 5 | Angiosarcoma of the skin | N/A | N/A | N/A |
Kelly CM et al., 2020 (NCT03069378) | II (Recruiting) | T-VEC + pembrolizumab | 20 | Locally advanced/ metastatic sarcoma | 35 | mDoR = 14 months (56.1 weeks) mPFS = 4.3 months (17.1 weeks) | Pneumonitis, anemia, fever, hypophosphatemia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziogas, D.C.; Martinos, A.; Petsiou, D.-P.; Anastasopoulou, A.; Gogas, H. Beyond Immunotherapy: Seizing the Momentum of Oncolytic Viruses in the Ideal Platform of Skin Cancers. Cancers 2022, 14, 2873. https://doi.org/10.3390/cancers14122873
Ziogas DC, Martinos A, Petsiou D-P, Anastasopoulou A, Gogas H. Beyond Immunotherapy: Seizing the Momentum of Oncolytic Viruses in the Ideal Platform of Skin Cancers. Cancers. 2022; 14(12):2873. https://doi.org/10.3390/cancers14122873
Chicago/Turabian StyleZiogas, Dimitrios C., Anastasios Martinos, Dioni-Pinelopi Petsiou, Amalia Anastasopoulou, and Helen Gogas. 2022. "Beyond Immunotherapy: Seizing the Momentum of Oncolytic Viruses in the Ideal Platform of Skin Cancers" Cancers 14, no. 12: 2873. https://doi.org/10.3390/cancers14122873
APA StyleZiogas, D. C., Martinos, A., Petsiou, D. -P., Anastasopoulou, A., & Gogas, H. (2022). Beyond Immunotherapy: Seizing the Momentum of Oncolytic Viruses in the Ideal Platform of Skin Cancers. Cancers, 14(12), 2873. https://doi.org/10.3390/cancers14122873