Management of Extranodal Marginal Zone Lymphoma: Present and Upcoming Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Pathogenesis of EMZL and Its Diagnostic and Therapeutic Implications
1.2. Clinical Presentation
1.3. Diagnosis, Staging and Prognostic Scores
2. Therapy
2.1. General Therapeutic Approaches
2.2. Local Therapy
2.3. Systemic Therapy
2.4. Monotherapy Regimens
2.5. Radioimmunotherapy
2.6. Combination Therapies
3. Specific Algorithms per Affected Site
3.1. Gastric EMZL
3.2. Non-Gastric EMZL
4. Follow-Up and Assessment of Therapeutical Success
5. Novel Agents and Future Perspectives
5.1. Bruton Kinase Inhibitors (BTK)
5.2. Phosphatidylinositol 3-Kinase (PI3K) Inhibitors
5.3. B-Cell Lymphoma-2 (BCL2) Inhibitors
5.4. CAR-T Cell Therapy
5.5. Checkpoint Inhibitors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kost, C.B.; Holden, J.T.; Mann, K.P. Marginal zone B-cell lymphoma: A retrospective immunophenotypic analysis. Cytometry B Clin. Cytom. 2008, 74, 282–286. [Google Scholar] [CrossRef] [PubMed]
- van den Brand, M.; Han, J.; van Krieken, J.M. Recognizing nodal marginal zone lymphoma: Recent advances and pitfalls. A systematic review. Haematologica 2013, 98, 1003–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asatiani, E.; Cohen, P.; Ozdemirli, M.; Kessler, C.M.; Mavromatis, B.; Cheson, B.D. Monoclonal gammopathy in extranodal marginal zone lymphoma (ENMZL) correlates with advanced disease and bone marrow involvement. Am. J. Hematol. 2004, 77, 144–146. [Google Scholar] [CrossRef]
- Cross, M.; Dearden, C. Hairy Cell Leukaemia. Curr. Oncol. Rep. 2020, 22. [Google Scholar] [CrossRef]
- Zucca, E.; Bertoni, F. The spectrum of MALT lymphoma at different sites: Biological and therapeutic relevance. Blood 2016, 127, 2082–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierlamm, J.; Pittaluga, S.; Wlodarska, I.; Stul, M.; Thomas, J.; Boogaerts, M.; Michaux, L.; Driessen, A.; Mecucci, C.; Cassiman, J. Marginal Zone B-Cell Lymphomas of Different Sites Share Similar Cytogenetic and Morphologic Features. Blood 1996, 87, 299–307. [Google Scholar] [CrossRef]
- Olszewski, A.J.; Castillo, J.J. Survival of patients with marginal zone lymphoma. Cancer 2013, 119, 629–638. [Google Scholar] [CrossRef]
- Armitage, J.O. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. Blood 1997, 89, 3909–3918. [Google Scholar] [CrossRef]
- Nakamura, S.; Ponzoni, M. Marginal zone B-cell lymphoma: Lessons from Western and Eastern diagnostic approaches. Pathology 2020, 52, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Zucca, E.; Arcaini, L.; Buske, C.; Johnson, P.W.; Ponzoni, M.; Raderer, M.; Ricardi, U.; Salar, A.; Stamatopoulos, K.; Thieblemont, C.; et al. Marginal zone lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Schans, S.A.M.; van Steenbergen, L.N.; Coebergh, J.W.W.; Janssen-Heijnen, M.L.G.; van Spronsen, D.J. Actual prognosis during follow-up of survivors of B-cell non-Hodgkin lymphoma in the Netherlands. Haematologica 2014, 99, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sant, M.; Minicozzi, P.; Mounier, M.; Anderson, L.A.; Brenner, H.; Holleczek, B.; Marcos-Gragera, R.; Maynadié, M.; Monnereau, A.; Osca-Gelis, G.; et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: Results of EUROCARE-5, a population-based study. Lancet Oncol. 2014, 15, 931–942. [Google Scholar] [CrossRef]
- Alderuccio, J.P.; Zhao, W.; Desai, A.; Gallastegui, N.; Ramdial, J.; Kimble, E.; de la Fuente, M.I.; Rosenblatt, J.D.; Chapman, J.R.; Vega, F.; et al. Risk Factors for Transformation to Higher-Grade Lymphoma and Its Impact on Survival in a Large Cohort of Patients with Marginal Zone Lymphoma From a Single Institution. J. Clin. Oncol. 2018, 36, 3370–3380. [Google Scholar] [CrossRef]
- Cerhan, J.R.; Habermann, T.M. Epidemiology of Marginal Zone Lymphoma. Ann. Lymphoma 2021, 5, 1. [Google Scholar] [CrossRef]
- Khalil, M.O.; Morton, L.M.; Devesa, S.S.; Check, D.P.; Curtis, R.E.; Weisenburger, D.D.; Dores, G.M. Incidence of marginal zone lymphoma in the United States, 2001-2009 with a focus on primary anatomic site. Br. J. Haematol. 2014, 165, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Miguel Juárez-Salcedo, L.; Sokol, L.; Chavez, J.C.; Dalia, S. Primary Gastric Lymphoma, Epidemiology, Clinical Diagnosis, and Treatment. Cancer Control 2018, 25, 1073274818778256. [Google Scholar] [CrossRef]
- Thieblemont, C.; Bastion, Y.; Berger, F.; Rieux, C.; Salles, G.; Dumontet, C.; Felman, P.; Coiffier, B. Mucosa-associated lymphoid tissue gastrointestinal and nongastrointestinal lymphoma behavior: Analysis of 108 patients. J. Clin. Oncol. 2016, 15, 1624–1630. [Google Scholar] [CrossRef]
- Marcelis, L.; Tousseyn, T.; Sagaert, X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr. Top. Microbiol. Immunol. 2019, 421, 77–106. [Google Scholar] [CrossRef]
- Craig, V.J.; Arnold, I.; Gerke, C.; Huynh, M.Q.; Wündisch, T.; Neubauer, A.; Renner, C.; Falkow, S.; Müller, A. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 2010, 115, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Kim, D.H.; Seo, H., II; Gong, E.J.; Bang, C.S. Efficacy of eradication therapy in Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma: A meta-analysis. Helicobacter 2021, 26. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qin, Y.; Zhao, S.; Hu, P.; Zeng, X.; Zhang, X.; Jiang, W.; Liu, S.; Liu, E.; Chai, K.; et al. Treatment outcome for gastric mucosa-associated lymphoid tissue lymphoma with Helicobacter Pylori negative. Ann. Oncol. 2019, 30, ix91. [Google Scholar] [CrossRef]
- O’Rourke, J.L.; Dixon, M.F.; Jack, A.; Enno, A.; Lee, A. Gastric B-cell mucosa-associated lymphoid tissue (MALT) lymphoma in an animal model of “Helicobacter heilmannii” infection. J. Pathol. 2004, 203, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Morgner, A.; Lehn, N.; Andersen, L.P.; Thiede, C.; Bennedsen, M.; Trebesius, K.; Neubauer, B.; Neubauer, A.; Stolte, M.; Bayerdörffer, E. Helicobacter heilmannii-associated primary gastric low-grade MALT lymphoma: Complete remission after curing the infection. Gastroenterology 2000, 118, 821–828. [Google Scholar] [CrossRef]
- Matos, R.; Taillieu, E.; De Bruyckere, S.; De Witte, C.; Rêma, A.; Santos-Sousa, H.; Nogueiro, J.; Reis, C.A.; Carneiro, F.; Haesebrouck, F.; et al. Presence of Helicobacter Species in Gastric Mucosa of Human Patients and Outcome of Helicobacter Eradication Treatment. J. Pers. Med. 2022, 12, 181. [Google Scholar] [CrossRef]
- Yasuda, T.; Lee, H.S.; Nam, S.Y.; Katoh, H.; Ishibashi, Y.; Yamagata Murayama, S.; Matsui, H.; Masuda, H.; Rimbara, E.; Sakurazawa, N.; et al. Non-Helicobacter pylori Helicobacter (NHPH) positive gastric cancer. Sci. Rep. 2022, 12. [Google Scholar] [CrossRef]
- Øverby, A.; Murayama, S.Y.; Michimae, H.; Suzuki, H.; Suzuki, M.; Serizawa, H.; Tamura, R.; Nakamura, S.; Takahashi, S.; Nakamura, M. Prevalence of Gastric Non-Helicobacter pylori-Helicobacters in Japanese Patients with Gastric Disease. Digestion 2017, 95, 61–66. [Google Scholar] [CrossRef]
- Takigawa, H.; Yuge, R.; Masaki, S.; Otani, R.; Kadota, H.; Naito, T.; Hayashi, R.; Urabe, Y.; Oka, S.; Tanaka, S.; et al. Involvement of non-Helicobacter pylori helicobacter infections in Helicobacter pylori-negative gastric MALT lymphoma pathogenesis and efficacy of eradication therapy. Gastric Cancer 2021, 24, 937–945. [Google Scholar] [CrossRef]
- Nakamura, M.; Øverby, A.; Michimae, H.; Matsui, H.; Takahashi, S.; Mabe, K.; Shimoyama, T.; Sasaki, M.; Terao, S.; Kamada, T.; et al. PCR analysis and specific immunohistochemistry revealing a high prevalence of non-Helicobacter pylori Helicobacters in Helicobacter pylori-negative gastric disease patients in Japan: High susceptibility to an Hp eradication regimen. Helicobacter 2020, 25, e12700. [Google Scholar] [CrossRef]
- Lina, T.T.; Alzahrani, S.; House, J.; Yamaoka, Y.; Sharpe, A.H.; Rampy, B.A.; Pinchuk, I.V.; Reyes, V.E. Helicobacter pylori cag Pathogenicity Island’s Role in B7-H1 Induction and Immune Evasion. PLoS ONE 2015, 10, e0121841. [Google Scholar] [CrossRef]
- Lin, W.C.; Tsai, H.F.; Kuo, S.H.; Wu, M.S.; Lin, C.W.; Hsu, P.I.; Cheng, A.L.; Hsu, P.N. Translocation of Helicobacter pylori CagA into Human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res. 2010, 70, 5740–5748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaert, X.; De Wolf-Peeters, C.; Noels, H.; Baens, M. The pathogenesis of MALT lymphomas: Where do we stand? Leukemia 2007, 21, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihrler, S.; Baretton, G.B.; Menauer, F.; Blasenbreu-Vogt, S.; Löhrs, U. Sjögren’s Syndrome and MALT Lymphomas of Salivary Glands: A DNA-Cytometric and Interphase-Cytogenetic Study. Mod. Pathol. 2000, 13, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.; Lipsky, P.E.; Dörner, T. B-cell lymphoproliferation in chronic inflammatory rheumatic diseases. Nat. Clin. Pract. Rheumatol. 2007, 3, 561–569. [Google Scholar] [CrossRef]
- Troch, M.; Woehrer, S.; Streubel, B.; Weissel, M.; Hoffmann, M.; Müllauer, L.; Chott, A.; Raderer, M. Chronic autoimmune thyroiditis (Hashimoto’s thyroiditis) in patients with MALT lymphoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2008, 19, 1336–1339. [Google Scholar] [CrossRef] [PubMed]
- Retamozo, S.; Brito-Zerón, P.; Ramos-Casals, M. Prognostic markers of lymphoma development in primary Sjögren syndrome. Lupus 2019, 28, 923–936. [Google Scholar] [CrossRef]
- Zintzaras, E.; Voulgarelis, M.; Moutsopoulos, H.M. The risk of lymphoma development in autoimmune diseases: A meta-analysis. Arch. Intern. Med. 2005, 165, 2337–2344. [Google Scholar] [CrossRef] [Green Version]
- Abu-Shakra, M.; Gladman, D.D.; Urowitz, M.B. Malignancy in systemic lupus erythematosus. Arthritis Rheum. 1996, 39, 1050–1054. [Google Scholar] [CrossRef]
- Thurner, L.; Hartmann, S.; Neumann, F.; Hoth, M.; Stilgenbauer, S.; Küppers, R.; Preuss, K.-D.; Bewarder, M. Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Front. Oncol. 2020, 10, 604685. [Google Scholar] [CrossRef]
- Ferreri, A.J.M.; Guidoboni, M.; Ponzoni, M.; De Conciliis, C.; Dell’Oro, S.; Fleischhauer, K.; Caggiari, L.; Lettini, A.A.; Dal Cin, E.; Ieri, R.; et al. Evidence for an Association between Chlamydia psittaci and Ocular Adnexal Lymphomas. JNCI J. Natl. Cancer Inst. 2004, 96, 586–594. [Google Scholar] [CrossRef]
- Lecuit, M.; Abachin, E.; Martin, A.; Poyart, C.; Pochart, P.; Suarez, F.; Bengoufa, D.; Feuillard, J.; Lavergne, A.; Gordon, J.I.; et al. Immunoproliferative Small Intestinal Disease Associated with Campylobacter jejuni. N. Engl. J. Med. 2009, 350, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Adam, P.; Czapiewski, P.; Colak, S.; Kosmidis, P.; Tousseyn, T.; Sagaert, X.; Boudova, L.; Okoń, K.; Morresi-Hauf, A.; Agostinelli, C.; et al. Prevalence of Achromobacter xylosoxidans in pulmonary mucosa-associated lymphoid tissue lymphoma in different regions of Europe. Br. J. Haematol. 2014, 164, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Wotherspoon, A. Pathology of extranodal marginal zone lymphoma at different anatomic sites. Ann. Lymphoma 2020, 4, 15. [Google Scholar] [CrossRef]
- Hummel, M.; Oeschger, S.; Barth, T.F.E.; Loddenkemper, C.; Cogliatti, S.B.; Marx, A.; Wacker, H.H.; Feller, A.C.; Bernd, H.W.; Hansmann, M.L.; et al. Wotherspoon criteria combined with B cell clonality analysis by advanced polymerase chain reaction technology discriminates covert gastric marginal zone lymphoma from chronic gastritis. Gut 2006, 55, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Du, M.Q. MALT lymphoma: A paradigm of NF-κB dysregulation. Semin. Cancer Biol. 2016, 39, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaert, X.; Laurent, M.; Baens, M.; Wlodarska, I.; De Wolf-Peeters, C. MALT1 and BCL10 aberrations in MALT lymphomas and their effect on the expression of BCL10 in the tumour cells. Mod. Pathol. 2006, 19, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoni, F.; Zucca, E. Delving deeper into MALT lymphoma biology. J. Clin. Investig. 2006, 116, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Sagaert, X.; De Paepe, P.; Libbrecht, L.; Vanhentenrijk, V.; Verhoef, G.; Thomas, J.; Wlodarska, I.; De Wolf-Peeters, C. Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J. Clin. Oncol. 2006, 24, 2490–2497. [Google Scholar] [CrossRef]
- Liu, H.; Ye, H.; RuskoneFourmestraux, A.; De Jong, D.; Pileri, S.; Thiede, C.; Lavergne, A.; Boot, H.; Caletti, G.; Wündisch, T.; et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002, 122, 1286–1294. [Google Scholar] [CrossRef]
- Conconi, A.; Franceschetti, S.; Aprile von Hohenstaufen, K.; Margiotta-Casaluci, G.; Stathis, A.; Moccia, A.A.; Bertoni, F.; Ramponi, A.; Mazzucchelli, L.; Cavalli, F.; et al. Histologic transformation in marginal zone lymphomas†. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 2329–2335. [Google Scholar] [CrossRef]
- Streubel, B.; Ye, H.; Du, M.Q.; Isaacson, P.G.; Chott, A.; Raderer, M. Translocation t(11;18)(q21;q21) Is Not Predictive of Response to Chemotherapy with 2CdA in Patients with Gastric MALT Lymphoma. Oncology 2004, 66, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Salar, A.; Domingo-Domenech, E.; Panizo, C.; Nicolás, C.; Bargay, J.; Muntañola, A.; Canales, M.; Bello, J.L.; Sancho, J.M.; Tomás, J.F.; et al. Long-term results of a phase 2 study of rituximab and bendamustine for mucosa-associated lymphoid tissue lymphoma. Blood 2017, 130, 1772–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lévy, M.; Copie-Bergman, C.; Gameiro, C.; Chaumette, M.T.; Delfau-Larue, M.H.; Haioun, C.; Charachon, A.; Hemery, F.; Gaulard, P.; Leroy, K.; et al. Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J. Clin. Oncol. 2005, 23, 5061–5066. [Google Scholar] [CrossRef] [PubMed]
- Goatly, A.; Bacon, C.M.; Nakamura, S.; Ye, H.; Kim, I.; Brown, P.J.; Ruskoné-Fourmestraux, A.; Cervera, P.; Streubel, B.; Banham, A.H.; et al. FOXP1 abnormalities in lymphoma: Translocation breakpoint mapping reveals insights into deregulated transcriptional control. Mod. Pathol. 2008, 21, 902–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsonnet, J.; Isaacson, P.G. Bacterial Infection and MALT Lymphoma. N. Engl. J. Med. 2004, 350, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Al-Saleem, T.; Al-Mondhiry, H. Immunoproliferative small intestinal disease (IPSID): A model for mature B-cell neoplasms. Blood 2005, 105, 2274–2280. [Google Scholar] [CrossRef]
- Bayraktar, S.; Bayraktar, U.D.; Stefanovic, A.; Lossos, I.S. Primary Ocular Adnexal MALT Lymphoma: Single institution experience in a large cohort of patients. Br. J. Haematol. 2011, 152, 72. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network. NCC Clinical Practice Guidelines in Oncology—B-Cell Lymphomas. Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 11 February 2022).
- Alunno, A.; Leone, M.C.; Giacomelli, R.; Gerli, R.; Carubbi, F. Lymphoma and lymphomagenesis in primary Sjögren’s syndrome. Front. Med. 2018, 5, 102. [Google Scholar] [CrossRef] [Green Version]
- Roggero, E.; Zucca, E.; Mainetti, C.; Bertoni, F.; Valsangiacomo, C.; Pedrinis, E.; Borisch, B.; Piffaretti, J.C.; Cavalli, F.; Isaacson, P.G. Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin. Hum. Pathol. 2000, 31, 263–268. [Google Scholar] [CrossRef]
- Zucca, E.; Conconi, A.; Pedrinis, E.; Cortelazzo, S.; Motta, T.; Gospodarowicz, M.K.; Patterson, B.J.; Ferreri, A.J.M.; Ponzoni, M.; Devizzi, L.; et al. Nongastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Blood 2003, 101, 2489–2495. [Google Scholar] [CrossRef]
- Aberer, E.; Fingerle, V.; Wutte, N.; Fink-Puches, R.; Cerroni, L. Within European margins. Lancet 2011, 377, 178. [Google Scholar] [CrossRef]
- Fetica, B.; Pop, B.; Blaga, M.L.; Fulop, A.; Dima, D.; Zdrenghea, M.T.; Vlad, C.I.; Bojan, A.S.; Achimas-Cadariu, P.; Lisencu, C.I.; et al. High prevalence of viral hepatitis in a series of splenic marginal zone lymphomas from Romania. Blood Cancer J. 2016, 6, e498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lue, J.K.; O’Connor, O.A.; Bertoni, F. Targeting pathogenic mechanisms in marginal zone lymphoma: From concepts and beyond. Ann. Lymphoma 2020, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wu, B.; Liao, A.J.; Yang, W.; Wang, H.H. Watch-and-wait or immediate immunotherapy/immunochemotherapy in patients with phase IE primary pulmonary MALT lymphoma? A multicenter retrospective study. Ann. Hematol. 2021, 100, 709–714. [Google Scholar] [CrossRef]
- Fischbach, W.; Dorlöchter, C. Patients with gastric MALT lymphoma revealing persisting endoscopic abnormalities after successful eradication of Helicobacter pylori can be safely managed by a watch-and-wait strategy. Z. Gastroenterol. 2019, 57, 593–599. [Google Scholar] [CrossRef]
- Fischbach, W.; Goebeler, M.E.; Ruskone-Fourmestraux, A.; Wündisch, T.; Neubauer, A.; Raderer, M.; Savio, A. Most patients with minimal histological residuals of gastric MALT lymphoma after successful eradication of Helicobacter pylori can be managed safely by a watch and wait strategy: Experience from a large international series. Gut 2007, 56, 1685–1687. [Google Scholar] [CrossRef] [Green Version]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3067. [Google Scholar] [CrossRef]
- Albano, D.; Durmo, R.; Treglia, G.; Giubbini, R.; Bertagna, F. 18 F-FDG PET/CT or PET Role in MALT Lymphoma: An Open Issue not Yet Solved-A Critical Review. Clin. Lymphoma. Myeloma Leuk. 2020, 20, 137–146. [Google Scholar] [CrossRef]
- Cohen, D.; Perry, C.; Hazut-Krauthammer, S.; Kesler, M.; Herishanu, Y.; Luttwak, E.; Even-Sapir, E.; Avivi, I. Is There a Role for [18F]FDG PET-CT in Staging MALT Lymphoma? Cancers 2022, 14, 750. [Google Scholar] [CrossRef]
- Park, Y.J.; Hyun, S.H.; Moon, S.H.; Lee, K.H.; Min, B.H.; Lee, J.H.; Kim, W.S.; Kim, S.J.; Choi, J.Y. Role in staging and prognostic value of pretherapeutic F-18 FDG PET/CT in patients with gastric MALT lymphoma without high-grade transformation. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Raderer, M.; Wöhrer, S.; Streubel, B.; Troch, M.; Turetschek, K.; Jäger, U.; Skrabs, C.; Gaiger, A.; Drach, J.; Puespoek, A.; et al. Assessment of disease dissemination in gastric compared with extragastric mucosa-associated lymphoid tissue lymphoma using extensive staging: A single-center experience. J. Clin. Oncol. 2006, 24, 3136–3141. [Google Scholar] [CrossRef]
- Extranodales Marginalzonen-Lymphom (MALT LYMPHOM)—Onkopedia. Available online: https://www.onkopedia.com/de/onkopedia/guidelines/extranodales-marginalzonen-lymphom-malt-lymphom/@@guideline/html/index.html (accessed on 19 February 2022).
- Ruskoné-Fourmestraux, A.; Fischbach, W.; Aleman, B.M.P.; Boot, H.; Du, M.Q.; Megraud, F.; Montalban, C.; Raderer, M.; Savio, A.; Wotherspoon, A. EGILS consensus report. Gastric extranodal marginal zone B-cell lymphoma of MALT. Gut 2011, 60, 747–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musshoff, K. Clinical staging classification of non-Hodgkin’s lymphomas (author’s transl). Strahlentherapie 1977, 153, 218–221. [Google Scholar] [PubMed]
- Rohatiner, A.; D’Amore, F.; Coiffier, B.; Crowther, D.; Gospodarowicz, M.; Isaacson, P.; Lister, T.; Norton, A.; Salem, P.; Shipp, M.; et al. Report on a workshop convened to discuss the pathological and staging classifications of gastrointestinal tract lymphoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 1994, 5, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Ruskoné-Fourmestroux, A.; Drogosics, B.; Morgner, A.; Wotherspoon, A.; De Jong, D. Paris staging system for primary gastrointestinal lymphomas. Gut 2003, 52, 912–913. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guidelines Version 1.2022 Primary Cutaneous Lymphoma; NCCN: Plymouth Meeting, PA, USA, 2022; Available online: https://www.nccn.org/guidelines/category_1 (accessed on 14 June 2022).
- Raderer, M.; Kiesewetter, B.; Ferreri, A.J.M. Clinicopathologic characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). CA Cancer J. Clin. 2016, 66, 152–171. [Google Scholar] [CrossRef]
- Thieblemont, C.; Cascione, L.; Conconi, A.; Kiesewetter, B.; Raderer, M.; Gaidano, G.; Martelli, M.; Laszlo, D.; Coiffier, B.; Lopez Guillermo, A.; et al. A MALT lymphoma prognostic index. Blood 2017, 130, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Conconi, A.; Thieblemont, C.; Cascione, L.; Torri, V.; Kiesewetter, B.; Casaluci, G.M.; Gaidano, G.; Raderer, M.; Cavalli, F.; Guillermo, A.L.; et al. Early progression of disease predicts shorter survival in MALT lymphoma patients receiving systemic treatment. Haematologica 2020, 105, 2592–2597. [Google Scholar] [CrossRef] [Green Version]
- Tsang, R.W.; Gospodarowicz, M.K.; Pintilie, M.; Wells, W.; Hodgson, D.C.; Sun, A.; Crump, M.; Patterson, B.J. Localized mucosa-associated lymphoid tissue lymphoma treated with radiation therapy has excellent clinical outcome. J. Clin. Oncol. 2003, 21, 4157–4164. [Google Scholar] [CrossRef]
- Sehn, L.H.; Salles, G. Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Networt. NCCN Guidelines—B-Cell Lymphomas. Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 24 January 2022).
- Lowry, L.; Smith, P.; Qian, W.; Falk, S.; Benstead, K.; Illidge, T.; Linch, D.; Robinson, M.; Jack, A.; Hoskin, P. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: A randomised phase III trial. Radiother. Oncol. 2011, 100, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.J.; Kirkwood, A.A.; Popova, B.; Smith, P.; Robinson, M.; Gallop-Evans, E.; Coltart, S.; Illidge, T.; Madhavan, K.; Brammer, C.; et al. 4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): A randomised phase 3 non-inferiority trial. Lancet. Oncol. 2014, 15, 457–463. [Google Scholar] [CrossRef]
- Pinnix, C.C.; Dabaja, B.S.; Milgrom, S.A.; Smith, G.L.; Abou, Z.; Nastoupil, L.; Romaguera, J.; Turturro, F.; Fowler, N.; Fayad, L.; et al. Ultra-low-dose radiotherapy for definitive management of ocular adnexal B-cell lymphoma. Head Neck 2017, 39, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.; Popova, B.; Schofield, O.; Brammer, C.; Robinson, M.; Brunt, A.M.; Madhavan, K.; Illidge, T.; Gallop-Evans, E.; Syndikus, I.; et al. 4 Gy versus 24 Gy radiotherapy for follicular and marginal zone lymphoma (FoRT): Long-term follow-up of a multicentre, randomised, phase 3, non-inferiority trial. Lancet. Oncol. 2021, 22, 332–340. [Google Scholar] [CrossRef]
- Ben Simon, G.J.; Cheung, N.; McKelvie, P.; Fox, R.; McNab, A.A. Oral chlorambucil for extranodal, marginal zone, B-cell lymphoma of mucosa-associated lymphoid tissue of the orbit. Ophthalmology 2006, 113, 1209–1213. [Google Scholar] [CrossRef]
- Hammel, P.; Haioun, C.; Chaumette, M.T.; Gaulard, P.; Divine, M.; Reyes, F.; Delchier, J.C. Efficacy of single-agent chemotherapy in low-grade B-cell mucosa-associated lymphoid tissue lymphoma with prominent gastric expression. J. Clin. Oncol. 1995, 13, 2524–2529. [Google Scholar] [CrossRef]
- Zucca, E.; Conconi, A.; Martinelli, G.; Bouabdallah, R.; Tucci, A.; Vitolo, U.; Martelli, M.; Pettengell, R.; Salles, G.; Sebban, C.; et al. Final Results of the IELSG-19 Randomized Trial of Mucosa-Associated Lymphoid Tissue Lymphoma: Improved Event-Free and Progression-Free Survival with Rituximab Plus Chlorambucil Versus Either Chlorambucil or Rituximab Monotherapy. J. Clin. Oncol. 2017, 35, 1905–1912. [Google Scholar] [CrossRef]
- Hancock, B.W.; Qian, W.; Linch, D.; Delchier, J.C.; Smith, P.; Jakupovic, I.; Burton, C.; Souhami, R.; Wotherspoon, A.; Copie-Bergman, C.; et al. Chlorambucil versus observation after anti-Helicobacter therapy in gastric MALT lymphomas: Results of the international randomised LY03 trial. Br. J. Haematol. 2009, 144, 367. [Google Scholar] [CrossRef] [Green Version]
- Conconi, A.; Martinelli, G.; Thiéblemont, C.; Ferreri, A.J.M.; Devizzi, L.; Peccatori, F.; Ponzoni, M.; Pedrinis, E.; Dell’Oro, S.; Pruneri, G.; et al. Clinical activity of rituximab in extranodal marginal zone B-cell lymphoma of MALT type. Blood 2003, 102, 2741–2745. [Google Scholar] [CrossRef]
- Raderer, M.; Jäger, G.; Brugger, S.; Püspök, A.; Fiebiger, W.; Drach, J.; Wotherspoon, A.; Chott, A. Rituximab for treatment of advanced extranodal marginal zone B cell lymphoma of the mucosa-associated lymphoid tissue lymphoma. Oncology 2003, 65, 306–310. [Google Scholar] [CrossRef]
- Jäger, G.; Neumeister, P.; Brezinschek, R.; Hinterleitner, T.; Fiebiger, W.; Penz, M.; Neumann, H.J.; Mlineritsch, B.; DeSantis, M.; Quehenberger, F.; et al. Treatment of extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type with cladribine: A phase II study. J. Clin. Oncol. 2002, 20, 3872–3877. [Google Scholar] [CrossRef] [PubMed]
- Kiesewetter, B.; Troch, M.; Dolak, W.; Müllauer, L.; Lukas, J.; Zielinski, C.C.; Raderer, M. A phase II study of lenalidomide in patients with extranodal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT lymphoma). Haematologica 2013, 98, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Kiesewetter, B.; Troch, M.; Mayerhoefer, M.E.; Dolak, W.; Simonitsch-Klupp, I.; Raderer, M. Delayed Efficacy After Treatment with Lenalidomide or Thalidomide in Patients with Mucosa-Associated Lymphoid Tissue Lymphoma. Oncologist 2016, 21, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiesewetter, B.; Lamm, W.; Neuper, O.; Mayerhoefer, M.E.; Simonitsch-Klupp, I.; Raderer, M. Prolonged follow-up on lenalidomide-based treatment for mucosa-associated lymphoid tissue lymphoma (MALT lymphoma)-Real-world data from the Medical University of Vienna. Hematol. Oncol. 2019, 37, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, F.E.; Raje, N.; Hideshima, T.; Lentzsch, S.; Young, G.; Tai, Y.T.; Lin, B.; Podar, K.; Gupta, D.; Chauhan, D.; et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001, 98, 210–216. [Google Scholar] [CrossRef]
- Dredge, K.; Marriott, J.B.; Macdonald, C.D.; Man, H.W.; Chen, R.; Muller, G.W.; Stirling, D.; Dalgleish, A.G. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br. J. Cancer 2002, 87, 1166–1172. [Google Scholar] [CrossRef]
- Dredge, K.; Horsfall, R.; Robinson, S.P.; Zhang, L.H.; Lu, L.; Tang, Y.; Shirley, M.A.; Muller, G.; Schafer, P.; Stirling, D.; et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc. Res. 2005, 69, 56–63. [Google Scholar] [CrossRef]
- Ferreri, A.J.M.; Cecchetti, C.; Kiesewetter, B.; Sassone, M.; Calimeri, T.; Perrone, S.; Ponzoni, M.; Raderer, M. Clarithromycin as a “repurposing drug” against MALT lymphoma. Br. J. Haematol. 2018, 182, 913–915. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, A.J.M.; Sassone, M.; Kiesewetter, B.; Govi, S.; Scarfò, L.; Donadoni, G.; Raderer, M. High-dose clarithromycin is an active monotherapy for patients with relapsed/refractory extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT): The HD-K phase II trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 1760–1765. [Google Scholar] [CrossRef]
- Govi, S.; Dognini, G.P.; Licata, G.; Crocchiolo, R.; Resti, A.G.; Ponzoni, M.; Ferreri, A.J.M. Six-month oral clarithromycin regimen is safe and active in extranodal marginal zone B-cell lymphomas: Final results of a single-centre phase II trial. Br. J. Haematol. 2010, 150, 226–229. [Google Scholar] [CrossRef]
- Vanazzi, A.; Grana, C.; Crosta, C.; Pruneri, G.; Rizzo, S.; Radice, D.; Pinto, A.; Calabrese, L.; Paganelli, G.; Martinelli, G. Efficacy of 90Yttrium-ibritumomab tiuxetan in relapsed/refractory extranodal marginal-zone lymphoma. Hematol. Oncol. 2014, 32, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Lossos, I.S.; Fabregas, J.C.; Koru-Sengul, T.; Miao, F.; Goodman, D.; Serafini, A.N.; Hosein, P.J.; Stefanovic, A.; Rosenblatt, J.D.; Hoffman, J.E. Phase II study of (90)Y Ibritumomab tiuxetan (Zevalin) in patients with previously untreated marginal zone lymphoma. Leuk. Lymphoma 2015, 56, 1750–1755. [Google Scholar] [CrossRef] [PubMed]
- Illidge, T.M.; Mckenzie, H.S.; Mayes, S.; Bates, A.; Davies, A.J.; Pettengell, R.; Stanton, L.; Cozens, K.; Hampson, G.; Dive, C.; et al. Short duration immunochemotherapy followed by radioimmunotherapy consolidation is effective and well tolerated in relapsed follicular lymphoma: 5-year results from a UK National Cancer Research Institute Lymphoma Group study. Br. J. Haematol. 2016, 173, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Leahy, M.F.; Seymour, J.F.; Hicks, R.J.; Turner, J.H. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J. Clin. Oncol. 2006, 24, 4418–4425. [Google Scholar] [CrossRef] [PubMed]
- Zucca, E.; Conconi, A.; Laszlo, D.; López-Guillermo, A.; Bouabdallah, R.; Coiffier, B.; Sebban, C.; Jardin, F.; Vitolo, U.; Morschhauser, F.; et al. Addition of rituximab to chlorambucil produces superior event-free survival in the treatment of patients with extranodal marginal-zone B-cell lymphoma: 5-year analysis of the IELSG-19 Randomized Study. J. Clin. Oncol. 2013, 31, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Rummel, M.J.; Al-Batran, S.E.; Kim, S.Z.; Welslau, M.; Hecker, R.; Kofahl-Krause, D.; Josten, K.M.; Dürk, H.; Rost, A.; Neise, M.; et al. Bendamustine plus rituximab is effective and has a favorable toxicity profile in the treatment of mantle cell and low-grade non-Hodgkin’s lymphoma. J. Clin. Oncol. 2005, 23, 3383–3389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rummel, M.J.; Niederle, N.; Maschmeyer, G.; Banat, G.A.; Von Grünhagen, U.; Losem, C.; Kofahl-Krause, D.; Heil, G.; Welslau, M.; Balser, C.; et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: An open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet 2013, 381, 1203–1210. [Google Scholar] [CrossRef]
- Salar, A.; Domingo-Domenech, E.; Panizo, C.; Nicolás, C.; Bargay, J.; Muntañola, A.; Canales, M.; Bello, J.L.; Sancho, J.M.; Tomás, J.F.; et al. First-line response-adapted treatment with the combination of bendamustine and rituximab in patients with mucosa-associated lymphoid tissue lymphoma (MALT2008-01): A multicentre, single-arm, phase 2 trial. Lancet. Haematol. 2014, 1, e104–e111. [Google Scholar] [CrossRef]
- Morigi, A.; Argnani, L.; Lolli, G.; Broccoli, A.; Pellegrini, C.; Nanni, L.; Stefoni, V.; Coppola, P.E.; Carella, M.; Casadei, B.; et al. Bendamustine-rituximab regimen in untreated indolent marginal zone lymphoma: Experience on 65 patients. Hematol. Oncol. 2020, 38, 487–492. [Google Scholar] [CrossRef]
- Alderuccio, J.P.; Arcaini, L.; Watkins, M.P.; Beaven, A.W.; Shouse, G.; Epperla, N.; Spina, M.; Stefanovic, A.; Sandoval-Sus, J.; Torka, P.; et al. An international analysis evaluating frontline bendamustine with rituximab in extranodal marginal zone lymphoma. Blood Adv. 2022, 6, 2035–2044. [Google Scholar] [CrossRef]
- Knauf, W.; Abenhardt, W.; Koenigsmann, M.; Maintz, C.; Sandner, R.; Zahn, M.O.; Schnell, R.; Tech, S.; Kaiser-Osterhues, A.; Houet, L.; et al. Rare lymphomas in routine practice—Treatment and outcome in marginal zone lymphoma in the prospective German Tumour Registry Lymphatic Neoplasms. Hematol. Oncol. 2021, 39, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Kiesewetter, B.; Mayerhoefer, M.E.; Lukas, J.; Zielinski, C.C.; Müllauer, L.; Raderer, M. Rituximab plus bendamustine is active in pretreated patients with extragastric marginal zone B cell lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma). Ann. Hematol. 2014, 93, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Rummel, M.J.; Koenigsmann, M.; Chow, K.U.; Knauf, W.; Lerchenmuller, C.A.; Losem, C.; Goerner, M.; Hertenstein, B.; Decker, T.; Ganser, A.; et al. Two years rituximab maintenance vs. observation after first line treatment with bendamustine plus rituximab (B-R) in patients with marginal zone lymphoma (MZL): Results of a prospective, randomized, multicenter phase 2 study (the StiL NHL7-2008 MAINTAIN trial). J. Clin. Oncol. 2018, 36, 7515. [Google Scholar] [CrossRef]
- Salar, A.; Domingo-Domenech, E.; Estany, C.; Canales, M.A.; Gallardo, F.; Servitje, O.; Fraile, G.; Montalbán, C. Combination therapy with rituximab and intravenous or oral fludarabine in the first-line, systemic treatment of patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue type. Cancer 2009, 115, 5210–5217. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Friedberg, J.W.; Feng, Y.; Scofield, S.; Phillips, K.; Dal Cin, P.; Joyce, R.; Takvorian, R.W.; Fisher, D.C.; Fisher, R.I.; et al. A phase 2 study of concurrent fludarabine and rituximab for the treatment of marginal zone lymphomas. Br. J. Haematol. 2009, 145, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Pellegrini, C.; Broccoli, A.; Gandolfi, L.; Stefoni, V.; Casadei, B.; Maglie, R.; Argnani, L.; Pileri, S. Fludarabine-Mitoxantrone-Rituximab regimen in untreated indolent non-follicular non-Hodgkin’s lymphoma: Experience on 143 patients. Hematol. Oncol. 2015, 33, 141–146. [Google Scholar] [CrossRef]
- Karmali, R.; Kassar, M.; Venugopal, P.; Shammo, J.M.; Fung, H.C.; Bayer, R.; O’Brien, T.; Gregory, S.A. Safety and efficacy of combination therapy with fludarabine, mitoxantrone, and rituximab followed by yttrium-90 ibritumomab tiuxetan and maintenance rituximab as front-line therapy for patients with follicular or marginal zone lymphoma. Clin. Lymphoma Myeloma Leuk. 2011, 11, 467–474. [Google Scholar] [CrossRef]
- Economopoulos, T.; Psyrri, A.; Fountzilas, G.; Tsatalas, C.; Anagnostopoulos, A.; Papageorgiou, S.; Xiros, N.; Dimopoulos, M.A. Phase II study of low-grade non-Hodgkin lymphomas with fludarabine and mitoxantrone followed by rituximab consolidation: Promising results in marginal zone lymphoma. Leuk. Lymphoma 2008, 49, 68–74. [Google Scholar] [CrossRef]
- Cencini, E.; Fabbri, A.; Lauria, F.; Bocchia, M. Long-term efficacy and toxicity of rituximab plus fludarabine and mitoxantrone (R-FM) for gastric marginal zone lymphoma: A single-center experience and literature review. Ann. Hematol. 2018, 97, 821–829. [Google Scholar] [CrossRef]
- Rummel, M.; Kaiser, U.; Balser, C.; Stauch, M.; Brugger, W.; Welslau, M.; Niederle, N.; Losem, C.; Boeck, H.P.; Weidmann, E.; et al. Bendamustine plus rituximab versus fludarabine plus rituximab for patients with relapsed indolent and mantle-cell lymphomas: A multicentre, randomised, open-label, non-inferiority phase 3 trial. Lancet Oncol. 2016, 17, 57–66. [Google Scholar] [CrossRef]
- Kang, H.J.; Kim, W.S.; Kim, S.J.; Lee, J.J.; Yang, D.H.; Kim, J.S.; Lee, S.R.; Lee, G.W.; Kim, H.J.; Kim, H.Y.; et al. Phase II trial of rituximab plus CVP combination chemotherapy for advanced stage marginal zone lymphoma as a first-line therapy: Consortium for Improving Survival of Lymphoma (CISL) study. Ann. Hematol. 2012, 91, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Bujanda, D.; Llorca-Mártinez, I.; Rivero-Vera, J.C.; Blanco-Sánchez, M.J.; Jiménez-Gallego, P.; Mori-De Santiago, M.; Limeres-Gonzalez, M.A.; Cabrera-Marrero, J.C.; Hernández-Sosa, M.; Galván-Ruíz, S.; et al. Treatment of gastric marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue with rituximab, cyclophosphamide, vincristine and prednisone. Hematol. Oncol. 2014, 32, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Kim, W.S.; Kim, J.S.; Kim, S.J.; Yoon, D.H.; Yang, D.H.; Lee, W.S.; Kim, H.J.; Yhim, H.Y.; Jeong, S.H.; et al. Phase II study of R-CVP followed by rituximab maintenance therapy for patients with advanced marginal zone lymphoma: Consortium for improving survival of lymphoma (CISL) study. Cancer Commun. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, N.H.; Davis, R.E.; Rawal, S.; Nastoupil, L.; Hagemeister, F.B.; McLaughlin, P.; Kwak, L.W.; Romaguera, J.E.; Fanale, M.A.; Fayad, L.E.; et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: An open-label, phase 2 trial. Lancet. Oncol. 2014, 15, 1311–1318. [Google Scholar] [CrossRef] [Green Version]
- Kiesewetter, B.; Willenbacher, E.; Willenbacher, W.; Egle, A.; Neumeister, P.; Voskova, D.; Mayerhoefer, M.E.; Simonitsch-Klupp, I.; Melchardt, T.; Greil, R.; et al. A phase 2 study of rituximab plus lenalidomide for mucosa-associated lymphoid tissue lymphoma. Blood 2017, 129, 383–385. [Google Scholar] [CrossRef] [Green Version]
- Alderuccio, J.P.; Beaven, A.W.; Shouse, G.; Epperla, N.; Stefanovic, A.; Torka, P.; Castillo, J.J.; Argnani, L.; Voorhees, T.J.; Alpert, A.B.; et al. Frontline Bendamustine and Rituximab in Extranodal Marginal Zone Lymphoma: An International Analysis. Blood 2020, 136, 2–3. [Google Scholar] [CrossRef]
- Becnel, M.R.; Nastoupil, L.J.; Samaniego, F.; Davis, R.E.; You, M.J.; Green, M.; Hagemeister, F.B.; Fanale, M.A.; Fayad, L.E.; Westin, J.R.; et al. Lenalidomide plus rituximab (R2) in previously untreated marginal zone lymphoma: Subgroup analysis and long-term follow-up of an open-label phase 2 trial. Br. J. Haematol. 2019, 185, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Stathis, A.; Chini, C.; Bertoni, F.; Proserpio, I.; Capella, C.; Mazzucchelli, L.; Pedrinis, E.; Cavalli, F.; Pinotti, G.; Zucca, E. Long-term outcome following Helicobacter pylori eradication in a retrospective study of 105 patients with localized gastric marginal zone B-cell lymphoma of MALT type. Ann. Oncol. 2009, 20, 1086–1093. [Google Scholar] [CrossRef]
- Zullo, A.; Hassan, C.; Cristofari, F.; Andriani, A.; De Francesco, V.; Ierardi, E.; Tomao, S.; Stolte, M.; Morini, S.; Vaira, D. Effects of Helicobacter pylori Eradication on Early Stage Gastric Mucosa–Associated Lymphoid Tissue Lymphoma. Clin. Gastroenterol. Hepatol. 2010, 8, 105–110. [Google Scholar] [CrossRef]
- Raderer, M.; Streubel, B.; Wöhrer, S.; Häfner, M.; Chott, A. Successful antibiotic treatment of Helicobacter pylori negative gastric mucosa associated lymphoid tissue lymphomas. Gut 2006, 55, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Raderer, M.; Wöhrer, S.; Kiesewetter, B.; Dolak, W.; Lagler, H.; Wotherspoon, A.; Muellauer, L.; Chott, A. Antibiotic treatment as sole management of Helicobacter pylori-negative gastric MALT lymphoma: A single center experience with prolonged follow-up. Ann. Hematol. 2015, 94, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Zullo, A.; Hassan, C.; Ridola, L.; De Francesco, V.; Rossi, L.; Tomao, S.; Vaira, D.; Genta, R.M. Eradication therapy in Helicobacter pylori-negative, gastric low-grade mucosa-associated lymphoid tissue lymphoma patients: A systematic review. J. Clin. Gastroenterol. 2013, 47, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Winthrop, K.; Emery, P. COVID-19 vaccination and antirheumatic therapy. Rheumatology 2021, 60, 3496–3502. [Google Scholar] [CrossRef] [PubMed]
- Duléry, R.; Lamure, S.; Delord, M.; Di Blasi, R.; Chauchet, A.; Hueso, T.; Rossi, C.; Drenou, B.; Deau Fischer, B.; Soussain, C.; et al. Prolonged in-hospital stay and higher mortality after Covid-19 among patients with non-Hodgkin lymphoma treated with B-cell depleting immunotherapy. Am. J. Hematol. 2021, 96, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Ruskoné-Fourmestraux, A.; Lavergne, A.; Aegerter, P.H.; Megraud, F.; Palazzo, L.; De Mascarel, A.; Molina, T.; Rambaud, J.C.L. Predictive factors for regression of gastric MALT lymphoma after anti-Helicobacter pyloritreatment. Gut 2001, 48, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.; Bazzoli, F.; El-Omar, E.; Graham, D.; Hunt, R.; Rokkas, T.; Vakil, N.; Kuipers, E.J.; et al. Current concepts in the management of Helicobacter pylori infection: The Maastricht III Consensus Report. Gut 2007, 56, 772–781. [Google Scholar] [CrossRef]
- Aleman, B.M.P.; Haas, R.L.M.; van der Maazen, R.W.M. Role of radiotherapy in the treatment of lymphomas of the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 27–34. [Google Scholar] [CrossRef]
- Won, J.H.; Kim, S.M.; Kim, J.W.; Park, J.H.; Kim, J.Y. Clinical features, treatment and outcomes of colorectal mucosa-associated lymphoid tissue (MALT) lymphoma: Literature reviews published in English between 1993 and 2017. Cancer Manag. Res. 2019, 11, 8577. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zhu, Z.; Zhang, C.; Xie, H.P. Successful Endoscopic Resection of Primary Rectal Mucosa-Associated Lymphoid Tissue Lymphoma by Endoscopic Submucosal Dissection: A Case Report. Front. Med. 2021, 8, 1469. [Google Scholar] [CrossRef]
- Shah, R.M.; Kuo, V.; Schwartz, A. Endoscopic mucosal resection and cure for rectal mucosa-associated lymphoid tissue lymphoma. Bayl. Univ. Med. Cent. Proc. 2021, 34, 305. [Google Scholar] [CrossRef]
- Stefanovic, A.; Morgensztern, D.; Fong, T.; Lossos, I. Pulmonary marginal zone lymphoma: A single centre experience and review of the SEER database. Leuk. Lymphoma 2009, 49, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Troch, M.; Streubel, B.; Petkov, V.; Turetschek, K.; Chott, A.; Raderer, M. Does MALT Lymphoma of the Lung Require Immediate Treatment? An Analysis of 11 Untreated Cases with Long-term Follow-up. Anticancer Res. 2007, 27, 3633–3637. [Google Scholar] [PubMed]
- Sammassimo, S.; Pruneri, G.; Andreola, G.; Montoro, J.; Steffanoni, S.; Nowakowski, G.S.; Gandini, S.; Negri, M.; Habermann, T.M.; Raderer, M.; et al. A retrospective international study on primary extranodal marginal zone lymphoma of the lung (BALT lymphoma) on behalf of International Extranodal Lymphoma Study Group (IELSG). Hematol. Oncol. 2016, 34, 177–183. [Google Scholar] [CrossRef]
- Bilici, A.; Seker, M.; Ustaalioglu, B.B.O.; Canpolat, N.; Salepci, T.; Gumus, M. Pulmonary BALT Lymphoma Successfully Treated with Eight Cycles Weekly Rituximab: Report of First Case and F-18 FDG PET/CT Images. J. Korean Med. Sci. 2011, 26, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seker, M.; Bilici, A.; Ustaalioglu, B.O.; Salman, T.; Sonmez, B.; Canpolat, N.A.; Salepci, T.; Gumus, M.; Yaylaci, M. Extended rituximab schedules may result in increased efficacy in pulmonary malt lymphoma. Leuk. Res. 2009, 33. [Google Scholar] [CrossRef]
- Tanimoto, K.; Kaneko, A.; Suzuki, S.; Sekiguchi, N.; Maruyama, D.; Kim, S.W.; Watanabe, T.; Kobayashi, Y.; Kagami, Y.; Maeshima, A.; et al. Long-term follow-up results of no initial therapy for ocular adnexal MALT lymphoma. Ann. Oncol. 2006, 17, 135–140. [Google Scholar] [CrossRef]
- Bonzheim, I.; Giese, S.; Deuter, C.; Süsskind, D.; Zierhut, M.; Waizel, M.; Szurman, P.; Federmann, B.; Schmidt, J.; Quintanilla-Martinez, L.; et al. High frequency of MYD88 mutations in vitreoretinal B-cell lymphoma: A valuable tool to improve diagnostic yield of vitreous aspirates. Blood 2015, 126, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Sassone, M.; Ponzoni, M.; Ferreri, A.J.M. Ocular adnexal marginal zone lymphoma: Clinical presentation, pathogenesis, diagnosis, prognosis, and treatment. Best Pract. Res. Clin. Haematol. 2017, 30, 118–130. [Google Scholar] [CrossRef]
- Husain, A.; Roberts, D.; Pro, B.; McLaughlin, P.; Esmaeli, B. Meta–analyses of the association between Chlamydia psittaci and ocular adnexal lymphoma and the response of ocular adnexal lymphoma to antibiotics. Cancer 2007, 110, 809–815. [Google Scholar] [CrossRef]
- Ferreri, A.J.M.; Govi, S.; Pasini, E.; Mappa, S.; Bertoni, F.; Zaja, F.; Montalbán, C.; Stelitano, C.; Cabrera, M.E.; Resti, A.G.; et al. Chlamydophila psittaci eradication with doxycycline as first-line targeted therapy for ocular adnexae lymphoma: Final results of an international phase II trial. J. Clin. Oncol. 2012, 30, 2988–2994. [Google Scholar] [CrossRef] [Green Version]
- Han, J.J.; Kim, T.M.; Jeon, Y.K.; Kim, M.K.; Khwarg, S.I.; Kim, C.W.; Kim, I.H.; Heo, D.S. Long-term outcomes of first-line treatment with doxycycline in patients with previously untreated ocular adnexal marginal zone B cell lymphoma. Ann. Hematol. 2015, 94, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, A.J.M.; Ponzoni, M.; Guidoboni, M.; Resti, A.G.; Politi, L.S.; Cortelazzo, S.; Demeter, J.; Zallio, F.; Palmas, A.; Muti, G.; et al. Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: A multicenter prospective trial. J. Natl. Cancer Inst. 2006, 98, 1375–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreri, A.J.M.; Sassone, M.; Miserocchi, E.; Govi, S.; Cecchetti, C.; Corti, M.E.; Mappa, S.; Arcaini, L.; Zaja, F.; Todeschini, G.; et al. Treatment of MALT lymphoma of the conjunctiva with intralesional rituximab supplemented with autologous serum. Blood Adv. 2020, 4, 1013. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Willemze, R.; Pimpinelli, N.; Whittaker, S.; Olsen, E.A.; Ranki, A.; Dummer, R.; Hoppe, R.T. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sézary syndrome: A proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007, 110, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Johnson, A.; Fabbro, S.; Hastings, J.; Haverkos, B.; Chung, C.; Porcu, P.; William, B. Topical imiquimod monotherapy for indolent primary cutaneous B-cell lymphomas: A single-institution experience. Br. J. Dermatol. 2020, 183, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Servitje, O.; Muniesa, C.; Benavente, Y.; Monsálvez, V.; Garcia-Muret, M.P.; Gallardo, F.; Domingo-Domenech, E.; Lucas, A.; Climent, F.; Rodriguez-Peralto, J.L.; et al. Primary cutaneous marginal zone B-cell lymphoma: Response to treatment and disease-free survival in a series of 137 patients. J. Am. Acad. Dermatol. 2013, 69, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Mary Dwyer, N.; Hema Sundar, M.; Haverkos, B.M.; Hoppe, R.T.; Jacobsen, E.; Jagadeesh, D.; Kim, Y.H.; Lunning, M.A.; Mehta, A.; Mehta-Shah, N.; et al. NCCN Guidelines Version 2.2018 Panel Members Primary Cutaneous B-Cell Lymphoma; NCCN: Plymouth Meeting, PA, USA, 2022. [Google Scholar]
- Senff, N.J.; Noordijk, E.M.; Kim, Y.H.; Bagot, M.; Berti, E.; Cerroni, L.; Dummer, R.; Duvic, M.; Hoppe, R.T.; Pimpinelli, N.; et al. European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood 2008, 112, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Dumont, M.; Battistella, M.; Ram-Wolff, C.; Bagot, M.; de Masson, A. Diagnosis and Treatment of Primary Cutaneous B-Cell Lymphomas: State of the Art and Perspectives. Cancers 2020, 12, 1497. [Google Scholar] [CrossRef]
- Vazquez, A.; Khan, M.N.; Sanghvi, S.; Patel, N.R.; Caputo, J.L.; Baredes, S.; Eloy, J.A. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue of the salivary glands: A population-based study from 1994 to 2009. Head Neck 2015, 37, 18–22. [Google Scholar] [CrossRef]
- MacDermed, D.; Thurber, L.; George, T.I.; Hoppe, R.T.; Le, Q.T. Extranodal nonorbital indolent lymphomas of the head and neck: Relationship between tumor control and radiotherapy. Int. J. Radiat. Oncol. 2004, 59, 788–795. [Google Scholar] [CrossRef]
- Avilés, A.; Delgado, S.; Huerta-Guzmán, J. Marginal Zone B cell lymphoma of the parotid glands: Results of a randomised trial comparing radiotherapy to combined therapy. Eur. J. Cancer Part B Oral Oncol. 1996, 32, 420–422. [Google Scholar] [CrossRef]
- Verstappen, G.M.; van Nimwegen, J.F.; Vissink, A.; Kroese, F.G.M.; Bootsma, H. The value of rituximab treatment in primary Sjögren’s syndrome. Clin. Immunol. 2017, 182, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Kim, W.S.; Kim, J.S.; Kim, S.J.; Lee, S.; Lee, D.H.; Kang, H.J.; Song, M.K.; Kim, H.J.; Kwon, J.H.; et al. Primary thyroid marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue type: Clinical manifestation and outcome of a rare disease—Consortium for improving survival of lymphoma study. Acta Haematol. 2012, 127, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Mayer, A.; Dumontet, C.; Barbier, Y.; Callet-Bauchu, E.; Felman, P.; Berger, F.; Ducottet, X.; Martin, C.; Salles, G.; et al. Primary thyroid lymphoma is a heterogeneous disease. J. Clin. Endocrinol. Metab. 2002, 87, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Copie-Bergman, C.; Wotherspoon, A.C.; Capella, C.; Motta, T.; Pedrinis, E.; Pileri, S.A.; Bertoni, F.; Conconi, A.; Zucca, E.; Ponzoni, M.; et al. Gela histological scoring system for post-treatment biopsies of patients with gastric MALT lymphoma is feasible and reliable in routine practice. Br. J. Haematol. 2013, 160, 47–52. [Google Scholar] [CrossRef]
- Zucca, E.; Pinotti, G.; Roggero, E.; Comi, M.A.; Pascarella, A.; Capella, C.; Pedrinis, E.; Cavalli, E. High incidence of other neoplasms in patients with low-grade gastric MALT lymphoma. Ann. Oncol. 1995, 6, 726–728. [Google Scholar] [CrossRef]
- Treon, S.P.; Tripsas, C.K.; Meid, K.; Warren, D.; Varma, G.; Green, R.; Argyropoulos, K.V.; Yang, G.; Cao, Y.; Xu, L.; et al. Ibrutinib in Previously Treated Waldenström’s Macroglobulinemia. N. Engl. J. Med. 2015, 372, 1430–1440. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.; Jones, J.A.; Coutre, S.E.; Mato, A.R.; Hillmen, P.; Tam, C.; Österborg, A.; Siddiqi, T.; Thirman, M.J.; Furman, R.R.; et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): A phase 2, open-label, multicentre study. Lancet Oncol. 2016, 17, 1409–1418. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Trotman, J.; Tedeschi, A.; Matous, J.V.; Macdonald, D.; Tam, C.; Tournilhac, O.; Ma, S.; Oriol, A.; Heffner, L.T.; et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): An open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017, 18, 241–250. [Google Scholar] [CrossRef]
- Noy, A.; De Vos, S.; Thieblemont, C.; Martin, P.; Flowers, C.R.; Morschhauser, F.; Collins, G.P.; Ma, S.; Coleman, M.; Peles, S.; et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood 2017, 129, 2224. [Google Scholar] [CrossRef]
- Noy, A.; de Vos, S.; Coleman, M.; Martin, P.; Flowers, C.R.; Thieblemont, C.; Morschhauser, F.; Collins, G.P.; Ma, S.; Peles, S.; et al. Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: Long-term follow-up and biomarker analysis. Blood Adv. 2020, 4, 5773–5784. [Google Scholar] [CrossRef] [PubMed]
- Ibrutinib, First FDA-Approved Therapy for Marginal Zone Lymphoma|ESMO. Available online: https://www.esmo.org/oncology-news/archive/ibrutinib-first-fda-approved-therapy-for-marginal-zone-lymphoma (accessed on 27 March 2022).
- Opat, S.; Tedeschi, A.; Linton, K.; McKay, P.; Hu, B.; Chan, H.; Jin, J.; Sobieraj-Teague, M.; Zinzani, P.L.; Coleman, M.; et al. The MAGNOLIA Trial: Zanubrutinib, a Next-Generation Bruton Tyrosine Kinase Inhibitor, Demonstrates Safety and Efficacy in Relapsed/Refractory Marginal Zone Lymphoma. Clin. Cancer Res. 2021, 27, 6323–6332. [Google Scholar] [CrossRef] [PubMed]
- FDA Grants Accelerated Approval to Zanubrutinib for Marginal Zone Lymphoma|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zanubrutinib-marginal-zone-lymphoma (accessed on 27 March 2022).
- Gopal, A.K.; Kahl, B.S.; de Vos, S.; Wagner-Johnston, N.D.; Schuster, S.J.; Jurczak, W.J.; Flinn, I.W.; Flowers, C.R.; Martin, P.; Viardot, A.; et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 2014, 370, 1008–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, P.; Armas, A.; Gopal, A.K.; Gyan, E.; Wagner-Johnston, N.D.; Walewski, J.; Abella, S.; Ye, W.; Philip, B.; Sorenson, B.; et al. Idelalisib Monotherapy and Durable Responses in Patients with Relapsed or Refractory Marginal Zone Lymphoma (MZL). Blood 2015, 126, 1543. [Google Scholar] [CrossRef]
- Flinn, I.W.; Miller, C.B.; Ardeshna, K.M.; Tetreault, S.; Assouline, S.E.; Mayer, J.; Merli, M.; Lunin, S.D.; Pettitt, A.R.; Nagy, Z.; et al. DYNAMO: A Phase II Study of Duvelisib (IPI-145) in Patients with Refractory Indolent Non-Hodgkin Lymphoma. J. Clin. Oncol. 2019, 37, 912–922. [Google Scholar] [CrossRef]
- Dreyling, M.; Santoro, A.; Mollica, L.; Leppä, S.; Follows, G.A.; Lenz, G.; Kim, W.S.; Nagler, A.; Panayiotidis, P.; Demeter, J.; et al. Phosphatidylinositol 3-Kinase Inhibition by Copanlisib in Relapsed or Refractory Indolent Lymphoma. J. Clin. Oncol. 2017, 35, 3898–3905. [Google Scholar] [CrossRef]
- Fowler, N.H.; Samaniego, F.; Jurczak, W.; Ghosh, N.; Derenzini, E.; Reeves, J.A.; Knopińska-Posłuszny, W.; Cheah, C.Y.; Phillips, T.; Lech-Maranda, E.; et al. Umbralisib, a Dual PI3Kδ/CK1ε Inhibitor in Patients With Relapsed or Refractory Indolent Lymphoma. J. Clin. Oncol. 2021, 39, 1609. [Google Scholar] [CrossRef]
- FDA Grants Accelerated Approval to Umbralisib for Marginal Zone Lymphoma and Follicular Lymphoma|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-umbralisib-marginal-zone-lymphoma-and-follicular-lymphoma (accessed on 27 March 2022).
- Davids, M.S.; Roberts, A.W.; Seymour, J.F.; Pagel, J.M.; Kahl, B.S.; Wierda, W.G.; Puvvada, S.; Kipps, T.J.; Anderson, M.A.; Salem, A.H.; et al. Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Handunnetti, S.M.; Khot, A.; Anderson, M.A.; Blombery, P.; Burbury, K.; Ritchie, D.; Hicks, R.J.; Birbirsa, B.; Bressel, M.; Di Iulio, J.; et al. Safety and Efficacy of Ibrutinib in Combination with Venetoclax in Patients with Marginal Zone Lymphoma: Preliminary Results from an Open Label, Phase II Study. Blood 2019, 134, 3999. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef]
Anatomic Involvement | Ann Arbor | Lugano Staging | Paris Staging System |
---|---|---|---|
Mucosa | I1E | I | T1m N0 M0 |
Submucosa | I1E | I | T1sm N0 M0 |
Muscularis propria | I2E | I | T2 N0 M0 |
Serosa | I2E | I | T3 N0 M0 |
Penetration of serosa involving adjacent tissues | I2E | IIE | T4 N0-2 M0 |
Abdominal local lymph nodes | II1E | II1 | T1-3 N1 M0 |
Abdominal distant lymph nodes | II2E | II2 | T1-3 N2 M0 |
Extra abdominal lymph nodes | IIIE | IV | T1-4 N3 M0 |
Disseminated extranodal involvement or infra- and supradiaphragmatic lymph nodes | IV | IV | T1-4 N0-3 M1 T1-4 N0-3 M2 T1-4 N0-3 M0-2 BX T1-4 N0-3 M0-2 B0 T1-4 N0-3 M2 B1 |
Different shades of grey highlight the differences in the stage classification (I, II, III and IV) between Ann arbor and Lugano staging systems. |
Author and Year | Substance | Study Type | n | Population | ORR or CR |
---|---|---|---|---|---|
Hammel 1995 [90] | Chlorambucil or Cyclophosphamide p.o. | Not defined | 24 | Symptomatic gastric EMZL multiple stages | CR 75% |
Simon 2006 [89] | Chlorambucil p.o. | Retrospective | 33 | Ocular EMZL stage IE | CR 79% |
Zucca 2017 [91] | Chlorambucil monotherapy | Open label randomized phase III | 131 | Multiple stages, gastric and extra gastric EMZL | ORR 85.5% |
Chlorambucil + rituximab | 132 | ORR 94.7% | |||
Rituximab monotherapy | 138 | ORR 78.3% | |||
Conconi 2003 [93] | Rituximab monotherapy | Phase II | 34 | Multiple stages, gastric and extra gastric EMZL, previously treated and naive | ORR 73% |
Jäger 2002 [95] | Cladribine | Phase II | 25 | Multiple stages, gastric and extra gastric EMZL | ORR 100% CR 84% |
Kiesewetter 2013 [96] | Lenalidomide | Phase II | 18 | Histologically advanced stages gastric and extra gastric EMZL | ORR 61% |
Kiesenwetter 2019 [98] | Lenalidomide alone or in combination | Real world data | 50 | Multiple stages, gastric and extra gastric EMZL | ORR 72% CR 48% |
Rummel 2005 [110] | Rituximab plus Bendamustine | Phase II | 63 (6 EMZL) | Low grade NHL | ORR 83% for MZL |
Morigi 2020 [113] | Rituximab plus bendamustine | Retrospective | 65 (28 EMZL) | Untreated MZL | ORR 89.3% for EMZL |
Alderuccio 2022 [130] | Rituximab plus bendamustine | Mostly retrospective | 237 | Mostly advanced stage EMZL. Frontline therapy | ORR 93.2% CR 81% |
Kiesewetter 2014 [116] | Rituximab plus bendamustine | Retrospective | 14 | Previously treated EMZL | ORR 92.8% CR 71% |
Salar, 2009 [118] | Rituximab plus fludarabine | Phase II | 22 | Untreated EMZL, multiple stages, gastric and extra gastric | ORR 100% CR 90% |
Brown, 2009 [119] | Rituximab plus fludarabine | Phase II | 26 (8 EMZL) | Mostly previously untreated MZL | ORR 85% (only EMZL not available) |
Zinzani 2012 [120] | Fludarabine, mitoxantrone, rituximab | Phase II | 143 (49 EMZL) | Untreated all stages | ORR 96.5% MZL: ORR 95.5% and CR: 87.4% |
Cencini 2018 [123] | Fludarabine, mitoxantrone, rituximab | Retrospective | 13 | Eradication refractory gastric EMZL | CR 100% |
Rummel 2016 [124] | Rituximab plus bendamustine | Phase III non inferiority | 114 (10 MZL) | Relapse indolent and mantle-cell lymphomas | General 1Y PFS: 0.76 |
Rituximab plus fludarabine | 105 (8 MZL) | General 1Y PFS: 0.48 | |||
Kang 2012 [125] | Rituximab, Cyclophosphamide, Vincristine and prednisolone | Phase II | 40 (28 EMZL; 5 gastric) | First line therapy MZL, stage III and IV | General ORR 88% (Gastric EMZL 100% Non-gastric 87%) |
Aguiar-Bujanda 2014 [126] | Rituximab, Cyclophosphamide, Vincristine and prednisolone | Retrospective | 20 | Gastric EMZL with or without previous eradication; multiple stages | ORR 100% CR 95% |
Becnel, 2019 [131] | Lenalidomid plus rituximab | Phase II | 30 (11 EMZL) | Untreated MZL stage III/IV | General: 93% EMZL: 88% |
Kiesewetter 2017 [129] | Lenalidomid plus rituximab | Phase II | 46 | Treated and untreated, all stages EMZL | ORR 80% |
Differences According to | NCCN | ESMO |
---|---|---|
Eradication | ||
H. Pylori eradication frontline alone only for early-stage, negative t(11;18) and H. pylori positivity | Upfront H. Pylori eradication alone for all stages, irrespective of stage and H. pylori status | |
Patients with early-stage and t(11;18) should receive eradication followed by ISRT or if contraindicated or not possible rituximab instead | Patients with t(11;18) should receive upfront H. pylori eradication. Earlier local/systemic treatment if lack of improvement or symptoms | |
H. pylori-negative patients should receive ISRT. | Upfront H. pylori eradication indicated. Primary local therapy possible. Earlier local/systemic treatment if lack of improvement or symptoms | |
Staging | ||
Stages II2 and IIE follow the algorithm of stage IV | Stages II2 and IIE follow the algorithm of more localized stages | |
Follow-up: | ||
after antibiotics | H. pylori evaluation after 3 months | H. pylori test after 6 weeks starting eradication and 2 weeks after PPI |
Endoscopic restaging 3 months after antibiotics | First endoscopic restaging 2–3 after months documentation of H. pylori eradication | |
If negative for lymphoma | Endoscopy after three months, if persistent negative, follow-up every 3–6 months for 5 years, then yearly | Endoscopy and biopsy every 6 months for 2 years, then every 12–18 months |
If residual lymphoma is asymptomatic | Observe for 3 months or ISRT | Observe for 3–6 months |
NCCN | ESMO |
---|---|
Candidate for clinical trial Symptoms GI bleeding Threatened end-organ function Bulky disease Steady or rapid progression Patient preference | Symptoms Overt progression Deep invasion Bulky disease Impending organ damage Patient preference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaddu-Mulindwa, D.; Thurner, L.; Christofyllakis, K.; Bewarder, M.; Kos, I.A. Management of Extranodal Marginal Zone Lymphoma: Present and Upcoming Perspectives. Cancers 2022, 14, 3019. https://doi.org/10.3390/cancers14123019
Kaddu-Mulindwa D, Thurner L, Christofyllakis K, Bewarder M, Kos IA. Management of Extranodal Marginal Zone Lymphoma: Present and Upcoming Perspectives. Cancers. 2022; 14(12):3019. https://doi.org/10.3390/cancers14123019
Chicago/Turabian StyleKaddu-Mulindwa, Dominic, Lorenz Thurner, Konstantinos Christofyllakis, Moritz Bewarder, and Igor Age Kos. 2022. "Management of Extranodal Marginal Zone Lymphoma: Present and Upcoming Perspectives" Cancers 14, no. 12: 3019. https://doi.org/10.3390/cancers14123019