Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Common Dual CAR Strategies
- (i)
- Cocktail/sequential infusion of two separate Si-CAR T-cell products
- (ii)
- Heterogeneous cell products of Si-CART and Bi-CART resulted from co-transduction of two separate vectors
- (iii)
- One Bi-CAR T-cell product with bicistronic CAR (Bicistronic Bi-CART)
- (iv)
- One Bi-CAR T-cell product with bivalent tandem CAR (Tandem Bi-CART)
- (v)
- One Bi-CAR T-cell product with bivalent loop CAR (Loop Bi-CART)
3. Clinical Efficacy and Safety
3.1. Clinical Efficacy of Dual-Targeting CAR T-Cell Therapy for Hematological Malignancies
Ref.: First Author | Target | CAR Strategy | Sample Size (CR Patients) | Durability | OS (mon and %) | In Vivo Expansion |
---|---|---|---|---|---|---|
Maude [60] | CD19 | One Si-CAR-T product | 30 (27 CR) | NA | 78% (6-mon OS) | Median Cmax: 39.8% Cmax: >5000 copies/μg gDNA (>15,000 copies/μg gDNA in 26 pts) |
Maude [3] | CD19 | One Si-CAR-T product | 75 (61 CR) | 73% (6-mon RFS), 50% (12-mon RFS) | 19.1 mon (median OS), 90% (6-mon OS), 76% (12-mon OS) | Median Tmax: 10 days Cmax: NA |
Grupp [63] | CD19 | One Si-CAR-T product | 79 (65 CR) | 66% (18-mon PFS); Responses were ongoing in 29 pts (max DOR, 29 mon and ongoing) | 70% (18-mon OS) | NA |
Shah [62] | CD22 | One Si-CAR-T product | 56 (40 CR) | 31.6 mon (EFS), 6 mon (RFS in CR), 11 remain in remission with a median f/u of 9.7 mon | 13.4 mon (median OS) | Tmax: days 14∼21 Median Cmax: 77% CAR+T cells; 480.5 CAR-T/μL |
Wang [30] | CD19 | One Si-CAR-T product | 35 (31 CR) | ∼2 mon (median LFS in 19 non-HSCT pts) | ∼12 mon (median OS in all pts) | Tmax: day 10.5 Median Cmax: 590.4 CAR-T/μL |
Wang [30] | CD19/CD22 | One Tandem Bi-CAR-T product | 15 (13 CR) | ∼3 mon (median LFS in 13 non-HSCT pts) | ∼21 mon (median OS in all pts) | Tmax: day 9 Median Cmax: 448.2 CAR-T/μL |
Wang [16] | CD19/CD22 | Cocktail/Sequential infusion of two Si-CAR-T products | 51 (48 CR) | 52.9% (12-mon PFS) 13.6 mon (median PFS) | 62.8% (12-mon OS) 31 mon (median OS) | Median Tmax and Mean/Median Cmax NA |
Pan [15] | CD19/CD22 | Cocktail/Sequential infusion of two Si-CAR-T products | 20 (20 CR) | 79.5% (12-mon LFS) | 92.3% (12-mon OS) | Median Tmax and Mean/Median Cmax NA |
Schultz [64] | CD19/CD22 | One Bivalent Bi-CAR-T product | 12 (10 CR) | NA | 92% (9.5-mon median f/u) | Median Cmax: 11.13% (Dose Level 1) and 29.1% (Dose Level 2) |
Dai [29] | CD19/CD22 | One Tandem Bi-CAR-T product | 6 (6 CR) | ≥ 5 mon (RFS in 5 CR, 3 ongo-ing > 8 mon, 1 relapse after 3 mon) | NA | Median Tmax and Mean/Median Cmax NA |
Yang [35] | CD19/CD22 | One Loop Bi-CAR-T product | 16 (>6/7 CR) | 3 mon (median observed time without relapse) | NA | Median Cmax: 109,000 copies/μg gDNA |
Tang [61] | CD19/CD22 | One Tandem Bi-CAR-T product | 22 (22 CR) | 76.9% (6-mon RFS), 67.3% (12-mon RFS) | 94.4% (6-mon OS), 57.2% (12-mon OS) | NA |
Spiegel [34] | CD19/CD22 | One Loop Bi-CAR-T product | 17 (15 CR) | 5.8 mon (PFS) | 11.8 mon (median OS) | Median Cmax: 36 CAR-T/μL 1794 copies/50 ng gDNA Tmax: days 10–14 |
Cordoba [32] | CD19/CD22 | One Bicistronic Bi-CAR-T product | 15 (13 CR) | 48% (6-mon EFS), 32% (12-mon EFS) | 80% (6-mon OS), 60% (12-mon OS) | Cmax > 30,000 copies/μg DNA Median Tmax: 12 days |
Ref.: First Author | Target | CAR Strategy | Sample Size (CR Patients) | Durability | OS (mon and %) | In Vivo Expansion |
---|---|---|---|---|---|---|
Locke [65] | CD19 | One Si-CAR-T product | 7 | 3 ongoing CR at 12+mon | NA | Median Tmax and Mean/Median Cmax NA |
Locke [66] | CD19 | One Si-CAR-T product | 108 | 11.1 mon (Median DOR), 44% (12-mon PFS) | 59% (12-mon OS) | Median Tmax and Mean/Median Cmax NA |
Schuster [67,58] | CD19 | One Si-CAR-T product | 93–99 | Median DOR NR (10 mon-NR), 66% (12-mon PFS) | 49% (12-mon OS) | Median Tmax and Mean/Median Cmax NA |
Jacobson [68] | CD19 | One Si-CAR-T product | 109 | 65.6% (18-mon PFS) | 87.4% (18-mon OS) | Median Tmax: 9 days Median Cmax NA |
Abramson [1] | CD19 | One Si-CAR-T product | 269 | 6.8 mon (PFS), 51.4% (6-mon PFS), 44.1% (12-mon PFS); Median DOR NR (8.6-NR) | 74.7% (6-mon OS), 57.9% (12-mon OS) | Median Tmax: 12 days Median Cmax: 23,928.2 copies/μg gDNA |
Wang [4] | CD19 | One Si-CAR-T product | 60 | 61% (12-mon PFS) | 83% (12-mon OS) | Median Tmax: 15 days Median Cmax NA |
Zhang [69] | CD20 | One Si-CAR-T product | 11 | >6 mon (PFS), 1 CR for 27 mons | NA | Median Tmax: ∼28 days Median Cmax NA |
Tong [28] | CD19/CD20 | One Tandem Bi-CAR-T product | 27 | 79% (6-mon PFS), 64% (12-mon PFS) | 82% (6-mon OS), 71% (12-mon OS) | Mean Cmax: 496 CAR-T/μL Median Tmax: NA |
Shah [27] | CD19/CD20 | One Tandem Bi-CAR-T product | 22 | 12 CR > 6 mon; 6 CR > 12 mon; 8 CR ongoing | NA | Median Tmax and Mean/Median Cmax NA |
Tholouli [70] | CD19/CD22 | One Bicistronic Bi-CAR-T product | 35 | 4 CR > 10 mon; 4 CR > 5 mon. | NA | Median Tmax and Mean/Median Cmax NA |
Wang [16] | CD19/CD22 | Cocktail/Sequential infusion of two Si-CAR products | 36 | 9.9 mon (median PFS) 50.0% (12-mon PFS) | 18.0 mon (median OS) 55.3% (12-mon OS) | Median Tmax and Mean/Median Cmax NA |
Zhang [31] | CD19/CD22 | One Loop Bi-CAR-T product | 32 | 40.0% (12-mon PFS) 66.7% (12-mon PFS in CR at 3 mon) | 63.3% (12-mon OS) 100% (12-mon OS in CR at 3 mon) | Median Tmax: 12 days Geometric mean Cmax: 286,294.4 copies/μg DNA |
Spiegel [34] | CD19/CD22 | One Loop Bi-CAR-T product | 21 | 3.2 mon (median PFS) | 22.5 mon (median OS) | Cmax: 36 CAR-T/μL 1794 copies/50 ng gDNA Tmax: days 10–14 |
3.2. Expansion of Dual-Targeting CAR T Cells in Hematological Malignancies
3.3. Clinical Safety Profile of Dual-Targeting CAR T-Cell Therapy in the Treatment of Hematological Malignancies
4. Comparison of Different Dual-Targeting CAR T-Cell Therapies
5. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Chavez, J.C.; Bachmeier, C.; Kharfan-Dabaja, M.A. CAR T-cell therapy for B-cell lymphomas: Clinical trial results of available products. Ther. Adv. Hematol. 2019, 10, 2040620719841581. [Google Scholar] [CrossRef] [Green Version]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Lemoine, J.; Ruella, M.; Houot, R. Born to survive: How cancer cells resist CAR T cell therapy. J. Hematol. Oncol. 2021, 14, 199. [Google Scholar] [CrossRef]
- Majzner, R.G.; Mackall, C.L. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018, 8, 1219–1226. [Google Scholar] [CrossRef] [Green Version]
- van der Schans, J.J.; van de Donk, N.; Mutis, T. Dual Targeting to Overcome Current Challenges in Multiple Myeloma CAR T-Cell Treatment. Front. Oncol. 2020, 10, 1362. [Google Scholar] [CrossRef]
- Cronk, R.J.; Zurko, J.; Shah, N.N. Bispecific Chimeric Antigen Receptor T Cell Therapy for B Cell Malignancies and Multiple Myeloma. Cancers 2020, 12, 2523. [Google Scholar] [CrossRef]
- Kailayangiri, S.; Altvater, B.; Wiebel, M.; Jamitzky, S.; Rossig, C. Overcoming Heterogeneity of Antigen Expression for Effective CAR T Cell Targeting of Cancers. Cancers 2020, 12, 1075. [Google Scholar] [CrossRef]
- Gardner, R.; Annesley, C.; Wilson, A.; Summers, C.; Narayanaswamy, P.; Wu, V.; Lamble, A.J.; Rivers, J.; Crews, K.; Huang, L.; et al. Efficacy of SCRI-CAR19x22 T cell product in B-ALL and persistence of anti-CD22 activity. J. Clin. Oncol. 2020, 38, 3035. [Google Scholar] [CrossRef]
- Pan, J.; Zuo, S.; Deng, B.; Xu, X.; Li, C.; Zheng, Q.; Ling, Z.; Song, W.; Xu, J.; Duan, J.; et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 2020, 135, 387–391. [Google Scholar] [CrossRef]
- Wang, N.; Hu, X.; Cao, W.; Li, C.; Xiao, Y.; Cao, Y.; Gu, C.; Zhang, S.; Chen, L.; Cheng, J.; et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood 2020, 135, 17–27. [Google Scholar] [CrossRef]
- Pavlasova, G.; Mraz, M. The regulation and function of CD20: An "enigma" of B-cell biology and targeted therapy. Haematologica 2020, 105, 1494–1506. [Google Scholar] [CrossRef]
- Ghodke, K.; Bibi, A.; Rabade, N.; Patkar, N.; Subramanian, P.G.; Kadam, P.A.; Badrinath, Y.; Ghogale, S.; Gujral, S.; Tembhare, P. CD19 negative precursor B acute lymphoblastic leukemia (B-ALL)-Immunophenotypic challenges in diagnosis and monitoring: A study of three cases. Cytom. Part B Clin. Cytom. 2017, 92, 315–318. [Google Scholar] [CrossRef]
- Rufener, G.A.; Press, O.W.; Olsen, P.; Lee, S.Y.; Jensen, M.C.; Gopal, A.K.; Pender, B.; Budde, L.E.; Rossow, J.K.; Green, D.J.; et al. Preserved Activity of CD20-Specific Chimeric Antigen Receptor-Expressing T Cells in the Presence of Rituximab. Cancer Immunol. Res. 2016, 4, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wang, Y.; Wei, J.; Han, W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J. Hematol. Oncol. 2019, 12, 128. [Google Scholar] [CrossRef]
- Zah, E.; Lin, M.Y.; Silva-Benedict, A.; Jensen, M.C.; Chen, Y.Y. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol. Res. 2016, 4, 498–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roybal, K.T.; Rupp, L.J.; Morsut, L.; Walker, W.J.; McNally, K.A.; Park, J.S.; Lim, W.A. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell 2016, 164, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Salter, A.I.; Liggitt, D.; Yechan-Gunja, S.; Sarvothama, M.; Cooper, K.; Smythe, K.S.; Dudakov, J.A.; Pierce, R.H.; Rader, C.; et al. Logic-Gated ROR1 Chimeric Antigen Receptor Expression Rescues T Cell-Mediated Toxicity to Normal Tissues and Enables Selective Tumor Targeting. Cancer Cell 2019, 35, 489–503.e488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, J.H.; Watchmaker, P.B.; Simic, M.S.; Gilbert, R.D.; Li, A.W.; Krasnow, N.A.; Downey, K.M.; Yu, W.; Carrera, D.A.; Celli, A.; et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 2021, 13, eabe7378. [Google Scholar] [CrossRef]
- Hyrenius-Wittsten, A.; Su, Y.; Park, M.; Garcia, J.M.; Alavi, J.; Perry, N.; Montgomery, G.; Liu, B.; Roybal, K.T. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci. Transl. Med. 2021, 13, eabd8836. [Google Scholar] [CrossRef]
- Schneider, D.; Xiong, Y.; Wu, D.; Nlle, V.; Schmitz, S.; Haso, W.; Kaiser, A.; Dropulic, B.; Orentas, R.J. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J. Immunother. Cancer 2017, 5, 42. [Google Scholar] [CrossRef]
- Shah, N.N.; Johnson, B.D.; Schneider, D.; Zhu, F.; Szabo, A.; Keever-Taylor, C.A.; Krueger, W.; Worden, A.A.; Kadan, M.J.; Yim, S.; et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: A phase 1 dose escalation and expansion trial. Nat. Med. 2020, 26, 1569–1575. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, Y.; Liu, Y.; Ji, X.; Zhang, W.; Guo, Y.; Han, X.; Ti, D.; Dai, H.; Wang, C.; et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood 2020, 136, 1632–1644. [Google Scholar] [CrossRef]
- Dai, H.; Wu, Z.; Jia, H.; Tong, C.; Guo, Y.; Ti, D.; Han, X.; Liu, Y.; Zhang, W.; Wang, C.; et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J. Hematol. Oncol 2020, 13, 30. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Hong, R.; Zhao, H.; Wei, G.; Wu, W.; Xu, H.; Cui, J.; Zhang, Y.; Chang, A.H.; et al. A retrospective comparison of CD19 single and CD19/CD22 bispecific targeted chimeric antigen receptor T cell therapy in patients with relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J. 2020, 10, 105. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Lou, X.; Chen, X.; Yu, Z.; Kang, L.; Chen, J.; Zhou, J.; Zong, X.; Yang, Z.; et al. A Prospective Investigation of Bispecific CD19/22 CAR T Cell Therapy in Patients With Relapsed or Refractory B Cell Non-Hodgkin Lymphoma. Front. Oncol. 2021, 11, 664421. [Google Scholar] [CrossRef]
- Cordoba, S.; Onuoha, S.; Thomas, S.; Pignataro, D.S.; Hough, R.; Ghorashian, S.; Vora, A.; Bonney, D.; Veys, P.; Rao, K.; et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: A phase 1 trial. Nat. Med. 2021, 27, 1797–1805. [Google Scholar] [CrossRef]
- Qin, H.; Ramakrishna, S.; Nguyen, S.; Fountaine, T.J.; Ponduri, A.; Stetler-Stevenson, M.; Yuan, C.M.; Haso, W.; Shern, J.F.; Shah, N.N.; et al. Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Mol. Ther. Oncolytics 2018, 11, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: A phase 1 trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, P.; Zhang, X.; Zhu, X.; Dong, Q.; He, J.; Lin, N.; Wang, Z.; Cai, S.; Ye, X.; et al. Anti-CD19/CD22 Dual CAR-T Therapy for Refractory and Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood 2019, 134, 284. [Google Scholar] [CrossRef]
- Ruella, M.; Xu, J.; Barrett, D.M.; Fraietta, J.A.; Reich, T.J.; Ambrose, D.E.; Klichinsky, M.; Shestova, O.; Patel, P.R.; Kulikovskaya, I.; et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 2018, 24, 1499–1503. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, J.; Li, M.; Xu, N.; Qi, W.; Tan, J.; Lou, X.; Yu, Z.; Sun, J.; Wang, Z.; et al. Characterization of novel dual tandem CD19/BCMA chimeric antigen receptor T cells to potentially treat multiple myeloma. Biomark. Res. 2020, 8, 14. [Google Scholar] [CrossRef]
- Mei, H.; Li, C.; Jiang, H.; Zhao, X.; Huang, Z.; Jin, D.; Guo, T.; Kou, H.; Liu, L.; Tang, L.; et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J. Hematol. Oncol. 2021, 14, 161. [Google Scholar] [CrossRef]
- de Larrea, C.F.; Staehr, M.; Lopez, A.V.; Ng, K.Y.; Chen, Y.; Godfrey, W.D.; Purdon, T.J.; Ponomarev, V.; Wendel, H.G.; Brentjens, R.J.; et al. Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape-Driven Relapse in Multiple Myeloma. Blood Cancer Discov. 2020, 1, 146–154. [Google Scholar] [CrossRef]
- Globerson Levin, A.; Rawet Slobodkin, M.; Waks, T.; Horn, G.; Ninio-Many, L.; Deshet Unger, N.; Ohayon, Y.; Suliman, S.; Cohen, Y.; Tartakovsky, B.; et al. Treatment of Multiple Myeloma Using Chimeric Antigen Receptor T Cells with Dual Specificity. Cancer Immunol. Res. 2020, 8, 1485–1495. [Google Scholar] [CrossRef]
- Dai, Z.; Mu, W.; Zhao, Y.; Cheng, J.; Lin, H.; Ouyang, K.; Jia, X.; Liu, J.; Wei, Q.; Wang, M.; et al. T cells expressing CD5/CD7 bispecific chimeric antigen receptors with fully human heavy-chain-only domains mitigate tumor antigen escape. Signal Transduct. Target. Ther. 2022, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Zah, E.; Nam, E.; Bhuvan, V.; Tran, U.; Ji, B.Y.; Gosliner, S.B.; Wang, X.; Brown, C.E.; Chen, Y.Y. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 2020, 11, 2283. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Wada, M.; Pinz, K.G.; Liu, H.; Shuai, X.; Chen, X.; Yan, L.E.; Petrov, J.C.; Salman, H.; Senzel, L.; et al. A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia 2018, 32, 402–412. [Google Scholar] [CrossRef]
- Kumar, M.; Keller, B.; Makalou, N.; Sutton, R.E. Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther. 2001, 12, 1893–1905. [Google Scholar] [CrossRef]
- Sweeney, N.P.; Vink, C.A. The impact of lentiviral vector genome size and producer cell genomic to gag-pol mRNA ratios on packaging efficiency and titre. Mol. Ther. Methods Clin. Dev. 2021, 21, 574–584. [Google Scholar] [CrossRef]
- Bos, T.J.; De Bruyne, E.; Van Lint, S.; Heirman, C.; Vanderkerken, K. Large double copy vectors are functional but show a size-dependent decline in transduction efficiency. J. Biotechnol. 2010, 150, 37–40. [Google Scholar] [CrossRef]
- Tipanee, J.; VandenDriessche, T.; Chuah, M.K. Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Hum. Gene Ther. 2017, 28, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhao, L.; Zhang, Y.; Qin, Y.; Guan, Y.; Zhang, T.; Liu, C.; Zhou, J. Understanding the Mechanisms of Resistance to CAR T-Cell Therapy in Malignancies. Front. Oncol. 2019, 9, 1237. [Google Scholar] [CrossRef] [Green Version]
- Hamieh, M.; Dobrin, A.; Cabriolu, A.; van der Stegen, S.J.C.; Giavridis, T.; Mansilla-Soto, J.; Eyquem, J.; Zhao, Z.; Whitlock, B.M.; Miele, M.M.; et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 2019, 568, 112–116. [Google Scholar] [CrossRef]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef]
- Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015, 5, 1282–1295. [Google Scholar] [CrossRef] [Green Version]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.; Wu, D.; Cherian, S.; Fang, M.; Hanafi, L.A.; Finney, O.; Smithers, H.; Jensen, M.C.; Riddell, S.R.; Maloney, D.G.; et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016, 127, 2406–2410. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.G.; Rothberg, P.G.; Burack, W.R.; Huntington, S.F.; Porter, D.L.; Friedberg, J.W.; Liesveld, J.L. Evolution to plasmablastic lymphoma evades CD19-directed chimeric antigen receptor T cells. Br. J. Haematol. 2015, 171, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Teachey, D.T.; Rheingold, S.R.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Barker, C.S.; Callahan, C.; Noelle, V.F.; Nazimuddin, F. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. J. Clin. Oncol. 2016, 34, 3011. [Google Scholar] [CrossRef]
- Lee, D.W.; Stetler-Stevenson, M.; Yuan, C.M.; Shah, N.N.; Delbrook, C.; Yates, B.; Zhang, H.; Ling Zhang, P.; James, N.; Kochenderfer, M.; et al. Long-Term Outcomes Following CD19 CAR T Cell Therapy for B-ALL Are Superior in Patients Receiving a Fludarabine/Cyclophosphamide Preparative Regimen and Post-CAR Hematopoietic Stem Cell Transplantation. Blood 2016, 128, 218. [Google Scholar] [CrossRef]
- Park, J.H.; Riviere, I.; Gonen, M.; Wang, X.; Senechal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jager, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, L.; Xie, J.; Shi, N.; Zhang, Z.; Luo, Z.; Yue, D.; Zhang, Z.; Wang, L.; Han, W.; et al. Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: A meta-analysis. Oncotarget 2015, 6, 33961–33971. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Kang, L.; Qi, W.; Cui, W.; Dai, H.; Li, Z.; Yin, J.; Qu, C.; Xu, T.; Zhu, X.; et al. Tandem CAR T Cells Targeting CD19 and CD22 Is a Safe and Highly Efficacious Treatment for Relapse/ Refractory ALL Patients. Blood 2019, 134, 1338. [Google Scholar] [CrossRef]
- Shah, N.N.; Highfill, S.L.; Shalabi, H.; Yates, B.; Jin, J.; Wolters, P.L.; Ombrello, A.; Steinberg, S.M.; Martin, S.; Delbrook, C.; et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J. Clin. Oncol. 2020, 38, 1938–1950. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Maude, S.L.; Rives, S.; Baruchel, A.; Boyer, M.W.; Bittencourt, H.; Bader, P.; Büchner, J.; Laetsch, T.W.; Stefanski, H.; et al. Updated Analysis of the Efficacy and Safety of Tisagenlecleucel in Pediatric and Young Adult Patients with Relapsed/Refractory (r/r) Acute Lymphoblastic Leukemia. Blood 2018, 132, 895. [Google Scholar] [CrossRef]
- Schultz, L.M.; Muffly, L.S.; Spiegel, J.Y.; Ramakrishna, S.; Hossain, N.; Baggott, C.; Sahaf, B.; Patel, S.; Craig, J.; Yoon, J.; et al. Phase I Trial Using CD19/CD22 Bispecific CAR T Cells in Pediatric and Adult Acute Lymphoblastic Leukemia (ALL). Blood 2019, 134, 744. [Google Scholar] [CrossRef]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2017, 25, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Borchmann, P.; Jager, U.; Waller, E.K.; Holte, H.; McGuirk, J.P.; Jaglowski, S.; Andreadis, C.; et al. Sustained Disease Control for Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma: An Updated Analysis of Juliet, a Global Pivotal Phase 2 Trial of Tisagenlecleucel. Blood 2018, 132, 1684. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Yang, Q.M.; Zhang, Y.J.; Zhang, Y.; Chen, M.X.; Wang, C.M.; Feng, K.C.; et al. Treatment of CD20-directed Chimeric Antigen Receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: An early phase IIa trial report. Signal Transduct. Target. Ther. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Tholouli, E.; Osborne, W.; Bachier, C.; Ramakrishnan, A.; Marzolini, M.; Irvine, D.; McSweeney, P.; Bartlet, N.; Zhang, Y.; Thomas, S.; et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR.T cell, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. Ann. Oncol. 2020, 31, S651. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, M.; Raje, N. Anti-BCMA CAR T-cell therapy in multiple myeloma: Can we do better? Leukemia 2020, 34, 21–34. [Google Scholar] [CrossRef]
- Zhao, W.H.; Liu, J.; Wang, B.Y.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 2018, 11, 141. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, D.; Hu, G.; Yang, Y.; Zhou, X.; Meng, L.; Hong, Z.; Chen, L.; Mao, X.; et al. Efficacy and Safety of Fully Human Bcma Targeting CAR T Cell Therapy in Relapsed/Refractory Multiple Myeloma. Blood 2019, 134, 929. [Google Scholar] [CrossRef]
- Green, D.J. Fully Human Bcma Targeted Chimeric Antigen Receptor T Cells Administered in a Defined Composition Demonstrate Potency at Low Doses in Advanced Stage High Risk Multiple Myeloma. Blood 2018, 132, 1011. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Singh, I.; Zudaire, E.; Yeh, T.; Allred, A.J.; Olyslager, Y.; Banerjee, A.; Goldberg, J.D.; et al. Update of CARTITUDE-1: A phase Ib/II study of JNJ-4528, a B-cell maturation antigen (BCMA)-directed CAR-T-cell therapy, in relapsed/refractory multiple myeloma. J. Clin. Oncol 2020, 38, 8505. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, J.N.; Jagannath, S.; Berdeja, J.G.; Lonial, S.; Raje, N.S.; Siegel, D.S.D.D.; Lin, Y.; Oriol, A.; et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results. J. Clin. Oncol. 2020, 38, 8503. [Google Scholar] [CrossRef]
- Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Investig. 2019, 129, 2210–2221. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, J.; Hu, G.; Wang, W.; Xiao, Y.; Cai, H.; Jiang, L.; Meng, L.; Yang, Y.; Zhou, X.; et al. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma. Blood 2021, 137, 2890–2901. [Google Scholar] [CrossRef]
- Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; et al. T Cells Genetically Modified to Express an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Poor-Prognosis Relapsed Multiple Myeloma. J. Clin. Oncol. 2018, 36, 2267–2280. [Google Scholar] [CrossRef]
- Ali, S.A.; Shi, V.; Maric, I.; Wang, M.; Stroncek, D.F.; Rose, J.J.; Brudno, J.N.; Stetler-Stevenson, M.; Feldman, S.A.; Hansen, B.G.; et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 2016, 128, 1688–1700. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, L.; Liu, L.; Wang, J.; Wang, S.; Zhang, C.; Liu, Y.; Kong, P.; Liu, J.; He, J.; et al. A Bcma and CD19 Bispecific CAR-T for Relapsed and Refractory Multiple Myeloma. Blood 2019, 134, 3147. [Google Scholar] [CrossRef]
- Li, C.; Mei, H.; Hu, Y.; Guo, T.; Liu, L.; Jiang, H.; Tang, L.; Wu, Y.; Ai, L.; Deng, J.; et al. A Bispecific CAR-T Cell Therapy Targeting Bcma and CD38 for Relapsed/Refractory Multiple Myeloma: Updated Results from a Phase 1 Dose-Climbing Trial. Blood 2019, 134, 930. [Google Scholar] [CrossRef]
- Madduri, D.; Usmani, S.Z.; Jagannath, S.; Singh, I.; Zudaire, E.; Yeh, T.; Allred, A.J.; Banerjee, A.; Goldberg, J.D.; Schecter, J.M.; et al. Results from CARTITUDE-1: A Phase 1b/2 Study of JNJ-4528, a CAR-T Cell Therapy Directed Against B-Cell Maturation Antigen (BCMA), in Patients with Relapsed and/or Refractory Multiple Myeloma (R/R MM). Blood 2019, 134, 577. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Leo, I.G.; Lunning, M.A.; Jon, E.A.; Forero-Torres, A.; Wang, M.; Tina, M.A.; Allen, T.; Sutherland, C.; et al. CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017 (TRANSCEND NHL 001). J. Clin. Oncol. 2017, 35, 7513. [Google Scholar] [CrossRef]
- Shah, N.N.; Zhu, F.; Schneider, D.; Taylor, C.; Krueger, W.; Worden, A.; Walter, L.L.; Hamadani, M.; Fenske, T.; Johnson, B.; et al. Results of a phase I study of bispecific anti-CD19, anti-CD20 chimeric antigen receptor (CAR) modified T cells for relapsed, refractory, non-Hodgkin lymphoma. J. Clin. Oncol. 2019, 37, 2510. [Google Scholar] [CrossRef]
- Zhang, Y. Safety and efficacy of optimized tandem CD19/CD20 CAR-engineered T cells in patients with relapsed/refractory non-Hodgkin lymphoma. J. Clin. Oncol. 2020, 38, 3034. [Google Scholar] [CrossRef]
- Tang, F.; Lu, Y.; Ge, Y.; Shang, J.; Zhu, X. Infusion of chimeric antigen receptor T cells against dual targets of CD19 and B-cell maturation antigen for the treatment of refractory multiple myeloma. J. Int. Med. Res. 2020, 48, 300060519893496. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Cao, J.; Cheng, H.; Qiao, J.; Zhang, H.; Wang, Y.; Shi, M.; Lan, J.; Fei, X.; Jin, L.; et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: A single-arm, phase 2 trial. Lancet Haematol 2019, 6, e521–e529. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, P.; Zhang, X.; Li, J.; Wu, Y.; Xu, L.; Su, Y.; Hu, X.; Zhao, X.; Dong, Q.; et al. Successful 24-Hours Manufacture of Anti-CD19/CD22 Dual Chimeric Antigen Receptor (CAR) T Cell Therapy for B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood 2020, 136, 2–3. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Zhang, X.; LV, F.; Guo, X.; Wang, Q.; Wang, L.; Chen, D.; Zhou, X.; Ren, J.; et al. A Feasibility and Safety Study of CD19 and CD22 Chimeric Antigen Receptors-Modified T Cell Cocktail for Therapy of B Cell Acute Lymphoblastic Leukemia. Blood 2018, 132, 277. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, B.; Gao, L.; Liu, L.; Ge, J.; He, A.; Li, L.; Lu, J.; Chen, X.; Sersch, M.A.; et al. Long-term follow-up results of a multicenter first-in-human study of the dual BCMA/CD19 Targeted FasT CAR-T GC012F for patients with relapsed/refractory multiple myeloma. J. Clin. Oncol 2021, 39, 8014. [Google Scholar] [CrossRef]
CAR Strategy | Advantages | Disadvantages |
---|---|---|
Cocktail/ sequential infusion of two Si-CAR T-cell products |
|
|
Co-transduction with two Si-CAR vectors |
|
|
Bicistronic Bi-CART |
|
|
Bivalent Tandem Bi-CART |
|
|
Bivalent Loop Bi-CART |
|
|
Ref.: First Author | Target | Stage | Construct/CAR Strategy | Transduction Efficiency | IL-2 | IFN-ɣ | Cytotoxicity | In Vivo |
---|---|---|---|---|---|---|---|---|
Zah [21] | CD19/ CD20 | Preclinic | Tandem19-20 long (CD19-LinkerG4S-CD20-HingeCH2CH3-CD28tm-4-1BB-CD3-T2A-EGFRt; HingeCH2CH3=229 aa) | NA | ∼0 (CD19 K562); ∼200 pg/Ml (CD20 K562) | ∼1000 pg/Ml (CD19 K562); ∼2200 pg/Ml (CD20 K562) | ∼11% (E:T = 10:1, CD20 K562) | (Only comparing Si-CART with Bi-CART) |
Tandem20-19 long (CD20-LinkerG4S-CD19-HingeCH2CH3-CD28tm-4-1BB-CD3-T2A-EGFRt; HingeCH2CH3=229 aa) | ∼0 (CD19 K562); ∼10 pg/mL (CD20 K562) | ∼1800 pg/mL (CD19 K562); ∼2000 pg/mL (CD20 K562) | ∼13% (E:T = 10:1, CD20 K562) | |||||
Tandem19-20 short (CD19-LinkerG4S-CD20-Hinge-CD28tm-4-1BB-CD3-T2A-EGFRt; Hinge=12 aa) | ∼1400 pg/mL (CD19 K562); ∼200 pg/mL (CD20 K562) | ∼3800 pg/mL (CD19 K562); ∼600 pg/mL (CD20 K562) | ∼21% (E:T = 10:1, CD20 K562) | |||||
Tandem20-19 short (CD20-LinkerG4S-CD19-Hinge-CD28tm-4-1BB-CD3-T2A-EGFRt; Hinge=12 aa) | ∼1500 pg/mL (CD19 K562); ∼100 pg/mL (CD20 K562) | ∼4200 pg/mL (CD19 K562); ∼2100 pg/mL (CD20 K562) | ∼35% (E:T = 10:1, CD20 K562) | |||||
Tandem20-19 short=ii (CD20-LinkerG4Sx4-CD19-Hinge-CD28tm-41BB-CD3-T2A-EGFRt; Hinge=12 aa) * | ∼150 pg/mL (CD19- Raji); highest in CD19- Raji | ∼2200 pg/mL (CD19- Raji) | ∼60% (E:T = 10:1, CD19- Raji) # | |||||
Schneider [26] | CD19/CD20 | Preclinic | Tandem1920 (CD19-LinkerGS-CD20-CD8tm-41BB-CD3) | 85% | ∼2000 pg/mL | ∼4000 pg/mL | Tandem2019 > Tandem1920 in various cell lines | Tumor burden 25 days after inoculation: No difference between 2019, 1920 and 19 + 20 co-administration; Survival 25 days after inoculation: 2019 > 19 + 20 co-administration |
Tandem2019 (CD20-LinkerGS-CD19-CD8tm-41BB-CD3) * | 89% | ∼2200 pg/mL | ∼4500 pg/mL | |||||
Shah [27] | CD19/ CD20 | Clinic | Tandem (CD20-CD19-CD8 hinge-4-1BB-CD3) | 7.4–28% | NA | NA | NA | NA |
Tong [28] | CD19/ CD20 | Preclinic & Clinic | TanCAR1 (CD19VL-CD19VH-LinkerEA-CD20VH-CD20VL-CD8-4-1BB) | 22% | <3500 pg/mL | ∼1500 pg/mL | <40% | (Only comparing Si-CART with Bi-CART) |
TanCAR2 (CD19VL-CD19VH-LinkerG4S-CD20VH-CD20VL-CD8-41BB) | 19% | ∼4000 pg/mL | ∼1600 pg/mL | <60% | ||||
TanCAR3 (CD19VH-CD19VL-LinkerEA-CD20VL-CD20VH-CD8-41BB) | 33% | <3500 pg/mL | ∼1600 pg/mL | <60% | ||||
TanCAR4 (CD19VH-CD19VL-LinkerG4S-CD20VL-CD20VH-CD8-41BB) | 39% | <3500 pg/mL | ∼1600 pg/mL | <60% | ||||
TanCAR5 (CD20VL-CD20VH-LinkerEA-CD19VH-CD19VL-CD8-41BB) | 17% | <3500 pg/mL | ∼1500 pg/mL | <60% | ||||
TanCAR6 (CD20VL-CD20VH-LinkerG4S-CD19VH-CD19VL-CD8-41BB) | 33% | <3500 pg/mL | ∼1500 pg/mL | <60% | ||||
TanCAR7 (CD20VH-CD20VL-LinkerEA-CD19VL-CD19VH-CD8-41BB) * | 35% (10.1–35.1% in patients’ PBMC) | ∼3500 pg/mL | ∼1600 pg/mL | >60% (Raji) | ||||
TanCAR8 (CD20VH-CD20VL-LinkerG4S-CD19VL-CD19VH-CD8-41BB) | 33% | <3500 pg/mL | ∼1600 pg/mL | <60% | ||||
Dai [29] | CD19/ CD22 | Clinic | TanCAR (CD22m971-LinkerEAAAK-CD19FMC63-CD8-4-1BB-CD3) | 10.32–16.91% | 1700 pg/mL | 4000 pg/mL | NA | |
Wang [30] | CD19/ CD22 | Clinic | TanCAR (CD19VL-CD19VH-CD22VL- CD22VH-4-1BB-CD3) | 60.1 (30–75.1)% | NA | NA | NA | NA |
Zhang [31] | CD19/ CD22 | Clinic | Loop (CD22VL-CD19VL-CD19VH-CD22VH-4-1BB-CD3) | 20 to ∼78% | NA | NA | NA | NA |
Cordoba [32] | CD19/ CD22 | Clinic | Bicistronic | 17.7% (8.6–39.3%) | NA | NA | ∼100% | Tumor burden in CD19- mice: Bi-CAR-T < CD19 Si-CART |
Qin [33] | CD19/ CD22 | Preclinic | Co-transduction with two Si-CAR vectors | 23% | NA | NA | NA | Tumor burden 13 days after inoculation: TanCAR1 < TanCAR4; (For LoopCAR, only comparing Si-CART with Bi-CART) |
TanCAR1 (CD22VH-Linker1G4Sx1-CD22VL-L5G4Sx5-CD19VL-Linker6TKPE-CD19VH-CD8-4-1BB) | 60% | ∼11,000 pg/mL (CD19CD22 K562) | ||||||
TanCAR2 (CD19VL-Linker6TKPE-CD19VH-Linker5G4Sx5-CD22VH-Linker1G4Sx1-CD22VL-CD8-4-1BB) | 29% | NA | ||||||
TanCAR3 (CD22VH-Linker6TKPE-CD22VL-Linker5G4Sx5-CD19VL-Linker6TKPE-CD19VH-CD8-4-1BB) | 0% | NA | ||||||
TanCAR4 (CD22VH-Linker1G4Sx1-CD22VL-Linker4G4Sx4-CD19VL-Linker6TKPE-CD19VH-CD8-4-1BB) | 56% | ∼26,000 pg/mL (CD19CD22 K562) | ||||||
LoopCAR1 (CD19VL-Linker3G4Sx3-CD22VH-Linker1G4Sx1-CD22VL-Linker3G4Sx3-CD19VH-CD8-4-1BB) | 19% | ∼<2000 pg/mL (CD19CD22 K562) | ||||||
LoopCAR2 (CD19VL-Linker3G4Sx3A-CD22VH-Linker6TKPE-CD22VL-Linker3G4Sx3B-CD19VH-CD8-4-1BB) | 42% | ∼2800 pg/mL (CD19CD22 K562) | ||||||
LoopCAR3 (CD19VL-Linker2G4Sx2-CD22VH-Linker6TKPE-CD22VL-Linker2G4Sx2-CD19VH-CD8-491BB) | 24% | ∼25000 pg/mL (CD19CD22 K562) | ||||||
LoopCAR4 (CD22VH-Linker2G4Sx2-CD19VL-Linker2G4Sx2-CD19VH-Linker2G4Sx2-CD22VL-CD8-4-1BB) | 63% | ∼5000–26,000 pg/mL (CD19CD22 K562) | ||||||
LoopCAR5 (CD19VL-Linker3G4Sx3C-CD22VH-Linker2G4Sx2-CD22VL-Linker3G4Sx3D-CD19VH-CD8-4-1BB) | 49% | ∼10,000 pg/mL (CD19CD22 K562) | ||||||
LoopCAR6 (CD19VL-Linker1G4Sx1-CD22VH-Linker6TKPE-CD22VL-Linker1G4Sx1-CD19VH-CD8-4-1BB) * | 82% | ∼22,000 pg/mL (CD19CD22 K562) | ||||||
Spiegel [34] | CD19/ CD22 | Clinic | Loop (CD19VH-CD22VL-CD22VH-CD19VL-CD8-4-1BB) * | 60.1% | NA | NA | NA | NA |
Yang [35] | CD19/ CD22 | Preclinic & Clinic | Loop GC022C | 67.50% | NA | NA | 75% (1:1) | NA |
Loop GC022F | 53.60% | NA | NA | 55% (1:1) | NA | |||
Wang [16] | CD19/ CD22 | Clinic | Cocktail/Sequential infusion of two Si-CAR-T products with separate Si-CAR vectors | 40.4% ± 18.4% (CAR19); 42.8% ± 19.6% (CAR22) | ∼3500 pg/mL (Raji) | ∼15,000 pg/mL(Raji) | ∼60% CD22;∼50% CD19 (E:T = 10:1; Raji) | Reducing Leukemia burden: infusion of one Si-CAR-T product ∼ co-infusion of two Si-CAR-T products |
Pan [15] | CD19/ CD22 | Clinic | Sequential infusion of two Si-CAR-T products with separate Si-CAR vectors | 10.4%∼74.7% (CAR19); 8.3%∼69.8% (CAR22) | NA | NA | NA | NA |
Ruella [36] | CD19/ CD123 | Preclinic | Bicistronic | 46% | NA | NA | NA | NA |
Kang [37] | BCMA/ CD19 | Preclinic | Tandem (BCMA-CD19-CD8tm-CD28-CD3) | 46% to 55% | NA | NA | NA | NA |
Mei [38] | BCMA/ CD38 | Preclinic | Tandem 38BM (CD38-BCMA-CD8-4-1BB-CD3) | 60.1% | NA | BM38 > 38BM | BM38 > 38BM | Survival: BM38 > 38BM |
Tandem BM38 (BCMA-CD38-CD8-4-1BB-CD3) | 59.4% | |||||||
Clinic | Tandem BM38 (BCMA-CD38-CD8-4-1BB-CD3) | 12% to 60% | NA | NA | NA | NA | ||
de Larrea [39] | BCMA/ GPRC5D | Preclinic | Co-infusion of two Si-CAR-T products with separate Si-CAR vectors | 60% to 70% | NA | NA | Efficacy: Bicistronic = separate Si-CAR vectors > Tandem in BCMA-GPRC5D+ models; Tandem > Bicistronic > separate Si-CAR vectors in BCMA+ GPRC5D+ models | |
Bicistronic (BCMA-4-1BB-GPRC5D-41BB) | 60% to 70% | NA | NA | ∼80% (BCMA-/GPRC5D+) | ||||
Bicistronic (BCMA-4-1BB-GPRC5D-CD28) | 60% to 70% | NA | NA | ∼65% (BCMA-/GPRC5D+) | ||||
Tandem (GPRC5D-BCMA-4-1BB) | 60% to 70% | NA | NA | ∼65% (BCMA-/GPRC5D+) | ||||
Globerson [40] | CD138/ CD38 | Preclinic | Bicistronic (CD138VL-Linker-CD138VH-CD28-CD38VL-CD38VH-CD8-FcγR) | 72% | 2000–3000 pg/mL | ∼90%(E:T = 1:1) | 97.4 days (n = 26) | |
Dai [41] | CD5/ CD7 | Preclinic | bicistronic (CD7-4-1BB-CD3-P2A-CD5-4-1BB-CD3-T2A-EGFRt) | 12.4%, 34.2% | NA | NA in concentrations | Tan5-7 =Tan7-5 > bicistronic | Expansion and persistence: Tan5-7 = Tan7-5 > bicistronic |
Tan5-7 (CD5-Linker-CD7-4-1BB-CD3-T2A-EGFRt) | 58.1%, 62.2% | NA | NA in concentrations | |||||
Tan7-5 (CD7-Linker-CD5-4-1BB-CD3-T2A-EGFRt) | 49%, 57.6% | NA | NA in concentrations | |||||
Zah [42] | BCMA/ CS1 (SLAMF7) | Preclinic | TanCS1-BCMA (CS1-LinkerG4S-BCMA-Hinge-CD28tm-41BB-CD3-T2A-EGFRt, 1122aa) | ∼41% | NA | NA | Si-CART < Bi-CART | Survival: TanCS1-BCMA = TanBCMA-CS1 |
TanBCMA-CS1 (BCMA-LinkerG4S-CS1-Hinge-CD28tm-41BB-CD3-T2A-EGFRt, 1121aa) | ∼35% | NA | NA | |||||
bicistronic (CS1-BCMA, 1194aa and 1411aa) | 0.97% to 2.56% | NA | NA | |||||
Chen [43] | Preclinic | bicistronic (BCMA-CS1) | 19.89% | NA | NA | NA | NA |
Ref.: First Author | Target | Characteristics of CD19 and CD22 Expression | Outcome |
---|---|---|---|
Fry [71] | CD22 | 10 ALL pts with CD19neg or CD19dim | CR: 6/10 *, 4 in CR for ≥ 6 mon; 1 in CR for 12 mon; 1 in CR for 9 mon ongoing |
Tong [28] | CD19/CD20 | 4 NHL pts with CD19neg | CR: 2/4; PR: 1/4; PD:1/4 |
Shah [27] | CD19/CD20 | 4 NHL pts with < 40% CD19 | CR: 3/4; PR: 1/4 |
Gardner [14] | CD19/CD22 | 13 ALL pts with diverse expression of CD19 and CD22 | CR: approximately 9–11/13 |
Ref.: First Author | Target | Enrollment | CRS Gr1-2 | CRS Gr3-4 | NT Gr1-2 | NT Gr3-4 |
---|---|---|---|---|---|---|
Maude [60] | CD19 | 30 | 22/30 (73%) | 8/30 (27%) | 13/30 (43%) | None |
Maude [3] | CD19 | 75 | 77% | ∼25% | 30/75 (40%) | None |
Wang [30] | CD19 | 35 | 19/35 (54.3%) | 16/35 (45.7%) | 2/35 (5.7%) | None |
Fry [71] | CD22 | 21 | 16/21 (76%) | None | Mild/transient/mild-moderate >2/21 (10%) | |
Shah [62] | CD22 | 58 * | 45/58 (90%) | 12/58 (24%) | minimal/transient | |
Dai [29] | CD19/CD22 | 6 | 100% | None | None | None |
Schultz [64] | CD19/CD22 | 12 | 9/12 (75%) | 1/12 (8%) | 2/12 (17%) | 1/12 (8%) |
Wang [30] | CD19/CD22 | 15 | 13/15 (86.7%) | 2/15 (13.3%) | None | None |
Wang [16] | CD19/CD22 | 51 | 40/51 (78.4%) | 11/51 (21.6%) ∫ | 11/51 (12%) | 1/51 (1%) |
Pan [15] | CD19/CD22 | 20 | 17/20 (85%) | 1/20 (5%) | 3/20 (15%) | 1/20 (5%) |
Spiegel [34] | CD19/CD22 | 17 | 12/17 (70.6%) | 1/17 (5.9%) | 2/17 (11.8%) | 3/17 (17.6%) |
Cordoba [32] | CD19/CD22 | 15 | 12/15 (80%) | 0 | 4/15 (26.7%) | 0 |
Ref.: First Author | Target | Enrollment | CRS Gr1-2 | CRS Gr3-4 | NT Gr1-2 | NT Gr3-4 |
---|---|---|---|---|---|---|
Locke [65] | CD19 | 7 | 5/7 (71%) | 1/7 (14%) | 100% | 4/7 (57%) |
Jacobson [68] | CD19 | 148 | 111/148 (75%) | 10/148 (7%) | 59/148 (40%) | 28/148 (19%) |
Abramson [85] | CD19 | 28 | 10/28 (36%) | None | 5/28 (18%) | 4/28 (14%) |
Abramson [1] | CD19 | 269 | ∼40% | 6/269 (2%) | ∼30% | 27/269 (10%) |
Zhang [69] | CD20 | 11 | None severe | |||
Shah [86] | CD19/CD20 | 11 | 6/11 (55%) | None | 3/11 (27%) | None |
Shah [27] | CD19/CD20 | 22 | 14/22 (64%) | 1 (5%) | 7/22 (32%) | 3 (14%) |
Tong [28] | CD19/CD20 | 28 | ∼30% | 4/28 (14%) | ∼14% | None |
Zhang [87] | CD19/CD20 | 87 | 61% | 10% | NA | 2% |
Tholouli [70] | CD19/CD22 | 35 | 12/35 (34%) | None | 1/35 (3%) | 2/35 (5.7%) |
Wang [16] | CD19/CD22 | 38 | 30 (78.9%) | 8 (21.1%)∫ | NA | NA |
Zhang [31] | CD19/CD22 | 32 | 20 (62.5%) | 9 (28.1%) | 1 (3.1%) | 4 (12.5%) |
Spiegel [34] | CD19/CD22 | 21 | 15/21 (71.4%) | 1/21 (4.8%) | 8/21 (38.1%) | 1/21 (4.8%) |
Ref.: First Author | Target | CAR Strategy | Optimization Process | Final CAR Transduction Efficiency (Normal Donor vs. Patient) | Durability | OS (mon and %) |
---|---|---|---|---|---|---|
Schneider [26], Shah [27] | CD19/CD20 | One Tandem Bi-CAR-T product | 2 constructs Change order of CAR19 and CAR20 Final: CD20 scFv distal to 4-1BB | 85%–89% vs. 7.4–28% | NHL: 12 CR > 6 mon; 6 CR > 12 mon; 8 CR ongoing | NHL: NA |
Tong [28] | CD19/CD20 | One Tandem Bi-CAR-T product | 8 constructs Change order of CAR19 and CAR20 Final: CD20 scFv distal to 4-1BB | 35% vs. 10.1%–35.1% | NHL: 64% (12-mon PFS) | NHL: 71% (12-mon OS) |
Wang [30] | CD19/CD22 | One Tandem Bi-CAR-T product | Undisclosed Final: CD19 scFv distal to 4-1BB | Undisclosed vs. 60.1 (30–75.1)% | ALL: ∼3 mon (median LFS in 13 non-HSCT pts) | ALL: ∼21 mon (median OS in all pts) |
Wang [16] | CD19/CD22 | Cocktail/Sequential infusion of two Si-CAR products | Not required | 52.2% vs. 40.4% ± 18.4% (CAR19); 53.8% vs. 42.8% ± 19.6% (CAR22) | ALL: 52.9% (12-mon PFS) 13.6 mon (median PFS) NHL: 9.9 mon (median PFS) 50.0% (12-mon PFS) | ALL: 62.8% (12-mon OS) 31 mon (median OS) NHL: 18.0 mon (median OS) 55.3% (12-mon OS) |
Qin [33], Spiegel [34] | CD19/CD22 | One Loop Bi-CAR-T product | Co-transduction vs. 4 Bivalent/Tan constructs vs. 6 Loop constructs Final: CD22 scFv distal to 4-1BB | 82% vs. 60.1% (34.6–75.2%) | ALL: 5.8 mon (PFS) ∼0% (12-mon PFS) NHL: 3.2 mon (PFS) ∼25% (12-mon PFS) | ALL: 11.8 mon (median OS in all pts) ∼25% (12-mon OS) NHL: 22.5 mon (median OS) ∼64% (12-mon OS) |
Zhang [31] | CD19/CD22 | One Loop Bi-CAR-T product | Undisclosed Final: CD19 scFv distal to 4-1BB | Undisclosed vs. 20-(∼)78% | NHL: 40.0% (12-mon PFS) 66.7% (12-mon PFS in CR at 3 mon) | NHL: 63.3% (12-mon OS) 100% (12-mon OS in CR at 3 mon) |
Cordoba [32] | CD19/CD22 | One Bicistronic Bi-CAR-T product | Binder humanization | 56.8% vs. 17.7% (8.6–39.3%) | ALL: 32% (12-mon EFS) | ALL: 60% (12-mon OS) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Li, Z.; Zhou, J.; Wang, W. Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers 2022, 14, 3230. https://doi.org/10.3390/cancers14133230
Xie B, Li Z, Zhou J, Wang W. Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers. 2022; 14(13):3230. https://doi.org/10.3390/cancers14133230
Chicago/Turabian StyleXie, Bailu, Zhengdong Li, Jianfeng Zhou, and Wen Wang. 2022. "Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies" Cancers 14, no. 13: 3230. https://doi.org/10.3390/cancers14133230
APA StyleXie, B., Li, Z., Zhou, J., & Wang, W. (2022). Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers, 14(13), 3230. https://doi.org/10.3390/cancers14133230