Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Coherence Tomography
3.2. Narrow Band Imaging
3.3. Storz Professional Image Enhancement System
3.4. Autofluorescence Imaging
3.5. Hyperspectral Imaging
3.6. Near-Infrared Fluorescence
3.7. Near-Infrared Fluorescence (Tagged Probes)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Database Search Parameters
- PubMed: ((“head and neck”(All Fields) OR “salivary gland”(All Fields) OR “oral”(All Fields) OR “oral cavity”(All Fields) OR “oral cavity”(All Fields) OR “nasopharyngeal”(All Fields) OR “oropharyngeal”(All Fields) OR “pharyngeal”(All Fields) OR “laryngeal”(All Fields)) AND (“cancer”(All Fields) OR “malignancy”(All Fields) OR “neoplasm”(All Fields)) AND “intraoperative imaging”(All Fields)) AND (english(Filter))
- CINAHL: (“head and neck” OR “salivary gland” OR “oral” OR “oral cavity” OR “oral cavity” OR “nasopharyngeal” OR “oropharyngeal” OR “pharyngeal” OR “laryngeal”) AND (“cancer” OR “malignancy” OR “neoplasm”) AND (“intraoperative imaging”)
- Web of Science: (“head and neck” OR “salivary gland” OR “oral” OR “oral cavity” OR “oral cavity” OR “nasopharyngeal” OR “oropharyngeal” OR “pharyngeal” OR “laryngeal”) AND (“cancer” OR “malignancy” OR “neoplasm”) AND (“intraoperative imaging”)
References
- Li, M.M.; Puram, S.V.; Silverman, D.A.; Old, M.O.; Rocco, J.W.; Kang, S.Y. Margin Analysis in Head and Neck Cancer: State of the Art and Future Directions. Ann. Surg. Oncol. 2019, 26, 4070–4080. [Google Scholar] [CrossRef] [PubMed]
- Binahmed, A.; Nason, R.W.; Abdoh, A.A. The clinical significance of the positive surgical margin in oral cancer. Oral Oncol. 2007, 43, 780–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldeeb, H.; Macmillan, C.; Elwell, C.; Hammod, A. The Effect of the Surgical Margins on the Outcome of Patients with Head and Neck Squamous Cell Carcinoma: Single Institution Experience. Cancer Biol. Med. 2012, 9, 29–33. [Google Scholar] [CrossRef]
- Orosco, R.K.; Tapia, V.J.; Califano, J.A.; Clary, B.; Cohen, E.E.W.; Kane, C.; Lippman, S.M.; Messer, K.; Molinolo, A.; Murphy, J.D.; et al. Positive Surgical Margins in the 10 Most Common Solid Cancers. Sci. Rep. 2018, 8, 5686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halicek, M.; Fabelo, H.; Ortega, S.; Little, J.V.; Wang, X.; Chen, A.Y.; Callico, G.M.; Myers, L.L.; Sumer, B.D.; Fei, B. Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth. Proc. SPIE 2019, 10951, 109511A. [Google Scholar] [CrossRef]
- Berdugo, J.; Thompson, L.D.R.; Purgina, B.; Sturgis, C.D.; Tuluc, M.; Seethala, R.; Chiosea, S.I. Measuring Depth of Invasion in Early Squamous Cell Carcinoma of the Oral Tongue: Positive Deep Margin, Extratumoral Perineural Invasion, and Other Challenges. Head Neck Pathol. 2018, 13, 154–161. [Google Scholar] [CrossRef]
- Kerawala, C.J.; Ong, T.K. Relocating the site of frozen sections—Is there room for improvement? Head Neck 2001, 23, 230–232. [Google Scholar] [CrossRef]
- Hinni, M.L.; Ferlito, A.; Brandwein-Gensler, M.S.; Takes, R.P.; Silver, C.E.; Westra, W.H.; Seethala, R.R.; Rodrigo, J.P.; Corry, J.; Bradford, C.R.; et al. Surgical margins in head and neck cancer: A contemporary review. Head Neck 2012, 35, 1362–1370. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Head and Neck Cancers (Version 2.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 31 May 2022).
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Zysk, A.M.; Nguyen, F.; Oldenburg, A.L.; Marks, D.L.; Boppart, S. Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 2007, 12, 051403. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia 2000, 2, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Kraft, M.; Lüerssen, K.; Lubatschowski, H.; Glanz, H.; Arens, C. Technique of Optical Coherence Tomography of the Larynx During Microlaryngoscopy. Laryngoscope 2007, 117, 950–952. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.J.F.; Ms, R.P.J.; Guo, S.; Ridgway, J.M.; Mahmood, U.; Su, J.; Shibuya, T.Y.; Crumley, R.L.; Gu, M.; Armstrong, W.B.; et al. In Vivo Optical Coherence Tomography of the Human Larynx: Normative and Benign Pathology in 82 Patients. Laryngoscope 2005, 115, 1904–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, W.B.; Ridgway, J.M.; Vokes, D.E.; Guo, S.; Pérez, J.; Jackson, R.P.; Gu, M.; Su, J.; Crumley, R.L.; Shibuya, T.Y.; et al. Optical Coherence Tomography of Laryngeal Cancer. Laryngoscope 2006, 116, 1107–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englhard, A.S.; Betz, T.; Volgger, V.; Lankenau, E.; Ledderose, G.J.; Stepp, H.; Homann, C.; Betz, C.S. Intraoperative assessment of laryngeal pathologies with optical coherence tomography integrated into a surgical microscope. Lasers Surg. Med. 2017, 49, 490–497. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, J.; Liu, C.; Zhang, J.; Hou, F.; Liang, Y. Intraoperative imaging of oral-maxillofacial lesions using optical coherence tomography. J. Innov. Opt. Health Sci. 2020, 13, 2050010. [Google Scholar] [CrossRef] [Green Version]
- Hamdoon, Z.; Jerjes, W.; McKenzie, G.; Jay, A.; Hopper, C. Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins. Photodiagnosis Photodyn. Ther. 2015, 13, 211–217. [Google Scholar] [CrossRef]
- Sunny, S.P.; Agarwal, S.; James, B.L.; Heidari, E.; Muralidharan, A.; Yadav, V.; Pillai, V.; Shetty, V.; Chen, Z.; Hedne, N.; et al. Intra-operative point-of-procedure delineation of oral cancer margins using optical coherence tomography. Oral Oncol. 2019, 92, 12–19. [Google Scholar] [CrossRef]
- Singh, R.; Mei, S.C.Y.; Sethi, S. Advanced endoscopic imaging in Barrett’s oesophagus: A review on current practice. World J. Gastroenterol. 2011, 17, 4271–4276. [Google Scholar] [CrossRef]
- Watanabe, A.; Tsujie, H.; Taniguchi, M.; Hosokawa, M.; Fujita, M.; Sasaki, S. Laryngoscopic Detection of Pharyngeal Carcinoma in Situ with Narrowband Imaging. Laryngoscope 2006, 116, 650–654. [Google Scholar] [CrossRef]
- Muto, M.; Nakane, M.; Katada, C.; Sano, Y.; Ohtsu, A.; Esumi, H.; Ebihara, S.; Yoshida, S. Squamous cell carcinoma in situ at oropharyngeal and hypopharyngeal mucosal sites. Cancer 2004, 101, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Garofolo, S.; Piazza, C.; Del Bon, F.; Mangili, S.; Guastini, L.; Mora, F.; Nicolai, P.; Peretti, G. Intraoperative Narrow Band Imaging Better Delineates Superficial Resection Margins During Transoral Laser Microsurgery for Early Glottic Cancer. Ann. Otol. Rhinol. Laryngol. 2014, 124, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Klimza, H.; Jackowska, J.; Piazza, C.; Banaszewski, J.; Wierzbicka, M. The role of intraoperative narrow-band imaging in transoral laser microsurgery for early and moderately advanced glottic cancer. Braz. J. Otorhinolaryngol. 2019, 85, 228–236. [Google Scholar] [CrossRef]
- Piersiala, K.; Klimza, H.; Jackowska, J.; Majewska, A.; Wierzbicka, M. Narrow band imaging in transoral laser microsurgery (TLM) in moderately advanced (T2, T3) glottic cancer. Otolaryngol. Polska 2018, 72, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Nothdurft, R.; Sarder, P.; Bloch, S.; Culver, J.; Achilefu, S. Fluorescence lifetime imaging microscopy using near-infrared contrast agents. J. Microsc. 2012, 247, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Vu, A.; Farah, C.S. Narrow band imaging: Clinical applications in oral and oropharyngeal cancer. Oral Dis. 2016, 22, 383–390. [Google Scholar] [CrossRef]
- Kamphuis, G.M.; de Bruin, D.M.; de Reijke, T.M.; de la Rosette, J. iSPIES—A novel approach to advanced endoscopic imaging. J. Endourol. 2014, 28, 894–895. [Google Scholar]
- Emiliani, E.; Talso, M.; Baghdadi, M.; Barreiro, A.; Orosa, A.; Serviàn, P.; Gavrilov, P.; Proietti, S.; Traxer, O. Evaluation of the Spies (TM) modalities image quality. Int. Braz. J. Urol. 2017, 43, 476–480. [Google Scholar] [CrossRef]
- Staníková, L.; Walderová, R.; Jančatová, D.; Formánek, M.; Zeleník, K.; Komínek, P. Comparison of narrow band imaging and the Storz Professional Image Enhancement System for detection of laryngeal and hypopharyngeal pathologies. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 1819–1825. [Google Scholar] [CrossRef]
- Abdullah, B.; Rasid, N.S.A.; Lazim, N.M.; Volgger, V.; Betz, C.S.; Mohammad, Z.W.; Hassan, N.F.H.N. Ni endoscopic classification for Storz Professional Image Enhancement System (SPIES) endoscopy in the detection of upper aerodigestive tract (UADT) tumours. Sci. Rep. 2020, 10, 6941. [Google Scholar] [CrossRef]
- Ni, X.-G.; He, S.; Xu, Z.-G.; Gao, L.; Lu, N.; Yuan, Z.; Lai, S.-Q.; Zhang, Y.-M.; Yi, J.-L.; Wang, X.-L.; et al. Endoscopic diagnosis of laryngeal cancer and precancerous lesions by narrow band imaging. J. Laryngol. Otol. 2010, 125, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Z.; Wang, Y.; Sun, Y.; Li, C.; Qu, J.; Cui, S.; Huang, Q.; Zhou, B. Storz Professional Image Enhancement System (SPIES) endoscopy in the detection of sinonasal inverted papilloma: A pilot study. Acta Oto-Laryngologica 2021, 141, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Englhard, A.S.; Ledderose, C.; Volgger, V.; Ledderose, G.J. Evaluation of an image enhancement system for the assessment of nasal and paranasal sinus diseases. Am. J. Otolaryngol. 2021, 43, 103323. [Google Scholar] [CrossRef] [PubMed]
- Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 1994, 263, 802–805. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Phipps, J.E.; Meier, J.; Hatami, N.; Poirier, B.; Elson, D.S.; Farwell, D.G.; Marcu, L. Endoscopic Fluorescence Lifetime Imaging for In Vivo Intraoperative Diagnosis of Oral Carcinoma. Microsc. Microanal. 2013, 19, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Weyers, B.W.; Marsden, M.; Sun, T.; Bec, J.; Bewley, A.F.; Gandour-Edwards, R.F.; Moore, M.G.; Farwell, D.G.; Marcu, L. Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery. Transl. Biophotonics 2019, 1, e201900017. [Google Scholar] [CrossRef] [Green Version]
- Marsden, M.; Weyers, B.W.; Bec, J.; Sun, T.; Gandour-Edwards, R.F.; Birkeland, A.C.; Abouyared, M.; Bewley, A.F.; Farwell, D.G.; Marcu, L. Intraoperative Margin Assessment in Oral and Oropharyngeal Cancer Using Label-Free Fluorescence Lifetime Imaging and Machine Learning. IEEE Trans. Biomed. Eng. 2020, 68, 857–868. [Google Scholar] [CrossRef]
- Huang, S.; Alhiyari, Y.; Hu, Y.; Tam, K.; Han, A.Y.; Krane, J.F.; Shori, R.; John, M.A.S.; Stafsudd, O. Ex vivo hypercellular parathyroid gland differentiation using dynamic optical contrast imaging (DOCI). Biomed. Opt. Express 2022, 13, 549. [Google Scholar] [CrossRef]
- Kim, I.A.; Taylor, Z.D.; Cheng, H.; Sebastian, C.; Maccabi, A.; Garritano, J.; Tajudeen, B.; Razfar, A.; Diaz, F.P.; Yeh, M.; et al. Dynamic Optical Contrast Imaging: A Technique to Differentiate Parathyroid Tissue from Surrounding Tissues. Otolaryngol. Neck Surg. 2017, 156, 480–483. [Google Scholar] [CrossRef]
- Tajudeen, B.A.; Taylor, Z.D.; Garritano, J.; Cheng, H.; Pearigen, A.; Sherman, A.J.; Palma-Diaz, F.; Mishra, P.; Bhargava, S.; Pesce, J.; et al. Dynamic optical contrast imaging as a novel modality for rapidly distinguishing head and neck squamous cell carcinoma from surrounding normal tissue. Cancer 2016, 123, 879–886. [Google Scholar] [CrossRef]
- Mehta, N.; Shaik, S.; Devireddy, R.; Gartia, M.R. Single-Cell Analysis Using Hyperspectral Imaging Modalities. J. Biomech. Eng. 2018, 140, 020802. [Google Scholar] [CrossRef]
- Nalepa, J. Recent Advances in Multi- and Hyperspectral Image Analysis. Sensors 2021, 21, 6002. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Little, J.V.; Wang, X.; Patel, M.R.; Griffith, C.C.; Chen, A.Y.; Fei, B. Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc. SPIE 2018, 10576, 17–27. [Google Scholar] [CrossRef]
- Halicek, M.; Fei, B.; Little, J.V.; Wang, X.; Patel, M.; Griffith, C.C.; Chen, A.Y.; El-Deiry, M.W. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc. SPIE 2018, 10469, 104690X. [Google Scholar] [CrossRef]
- Eggert, D.; Bengs, M.; Westermann, S.; Gessert, N.; Gerstner, A.O.H.; Mueller, N.A.; Bewarder, J.; Schlaefer, A.; Betz, C.; Laffers, W. In vivo detection of head and neck tumors by hyperspectral imaging combined with deep learning methods. J. Biophotonics 2021, 15, e202100167. [Google Scholar] [CrossRef]
- Stubbs, V.C.; Jaffe, S.; Rajasekaran, K.; Cannady, S.B.; Shanti, R.M.; Lee, J.Y.K.; Newman, J.G. Intraoperative Imaging with Second Window Indocyanine Green for Head and Neck Lesions and Regional Metastasis. Otolaryngol. Neck Surg. 2019, 161, 539–542. [Google Scholar] [CrossRef]
- Scott-Wittenborn, N.; Jackson, R.S. Intraoperative imaging during minimally invasive transoral robotic surgery using near-infrared light. Am. J. Otolaryngol. 2018, 39, 220–222. [Google Scholar] [CrossRef]
- Schmidt, F.; Dittberner, A.; Koscielny, S.; Petersen, I.; Guntinas-Lichius, O. Feasibility of real-time near-infrared indocyanine green fluorescence endoscopy for the evaluation of mucosal head and neck lesions. Head Neck 2016, 39, 234–240. [Google Scholar] [CrossRef]
- Pan, J.; Deng, H.; Hu, S.; Xia, C.; Chen, Y.; Wang, J.; Wang, Y. Real-time surveillance of surgical margins via ICG-based near-infrared fluorescence imaging in patients with OSCC. World J. Surg. Oncol. 2020, 18, 96. [Google Scholar] [CrossRef]
- van Keulen, S.; Nishio, N.; Fakurnejad, S.; Birkeland, A.; Martin, B.A.; Lu, G.; Zhou, Q.; Chirita, S.U.; Forouzanfar, T.; Colevas, A.D. The Clinical Application of Fluorescence-Guided Surgery in Head and Neck Cancer. J. Nucl. Med. 2019, 60, 758–763. [Google Scholar] [CrossRef] [Green Version]
- van Keulen, S.; Nishio, N.; Fakurnejad, S.; van den Berg, N.S.; Lu, G.; Birkeland, A.; Martin, B.A.; Forouzanfar, T.; Colevas, A.D.; Rosenthal, E.L. Intraoperative Tumor Assessment Using Real-Time Molecular Imaging in Head and Neck Cancer Patients. J. Am. Coll. Surg. 2019, 229, 560–567.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; van den Berg, N.S.; Kang, W.; Pei, J.; Nishio, N.; van Keulen, S.; Engelen, M.A.; Lee, Y.-J.; Hom, M.; Leonel, J.C.V. Factors for differential outcome across cancers in clinical molecular-targeted fluorescence imaging. J. Nucl. Med. 2022, 63. [Google Scholar] [CrossRef]
- Steinkamp, P.J.; Voskuil, F.J.; van der Vegt, B.; Doff, J.J.; Schepman, K.-P.; de Visscher, S.A.H.J.; Kelder, W.; Jayalakshmi, Y.; Gao, J.; Sumer, B.D.; et al. A Standardized Framework for Fluorescence-Guided Margin Assessment for Head and Neck Cancer Using a Tumor Acidosis Sensitive Optical Imaging Agent. Mol. Imaging Biol. 2021, 23, 809–817. [Google Scholar] [CrossRef]
- Voskuil, F.J.; Steinkamp, P.J.; Zhao, T.; van der Vegt, B.; Koller, M.; Doff, J.J.; Jayalakshmi, Y.; Hartung, J.P.; Gao, J.; Sumer, B.D. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 2020, 11, 3257. [Google Scholar] [CrossRef]
- Hope-Ross, M.; Yannuzzi, L.A.; Gragoudas, E.S.; Guyer, D.R.; Slakter, J.S.; Sorenson, J.A.; Krupsky, S.; Orlock, D.A.; Puliafito, C.A. Adverse Reactions due to Indocyanine Green. Ophthalmology 1994, 101, 529–533. [Google Scholar] [CrossRef]
- Štulhofer Buzina, D.; Martinac, I.; Ledić Drvar, D.; Čeović, R.; Bilić, I.; Marinović, B. Adverse Reaction to Cetuximab, an Epidermal Growth Factor Receptor Inhibitor. Acta Dermatovenerol. Croat. 2016, 24, 70–72. [Google Scholar]
- Kosaka, N.; Ogawa, M.; Choyke, P.L.; Kobayashi, H. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol. 2009, 5, 1501–1511. [Google Scholar] [CrossRef] [Green Version]
- Sharma, U.; Chang, E.W.; Yun, S.H. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth. Opt. Express 2008, 16, 19712–19723. [Google Scholar] [CrossRef]
- Li, Y.; Sudol, N.T.; Miao, Y.; Jing, J.C.; Zhu, J.; Lane, F.; Chen, Z. 1.7 micron optical coherence tomography for vaginal tissue characterization in vivo. Lasers Surg. Med. 2018, 51, 120–126. [Google Scholar] [CrossRef]
- Kostanyan, T.; Wollstein, G.; Schuman, J.S. New developments in optical coherence tomography. Curr. Opin. Ophthalmol. 2015, 26, 110–115. [Google Scholar] [CrossRef]
- Chen, Y.-I.; Chang, Y.-J.; Liao, S.-C.; Nguyen, T.D.; Yang, J.; Kuo, Y.-A.; Hong, S.; Liu, Y.-L.; Rylander, H.G.; Santacruz, S.R.; et al. Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells. Commun. Biol. 2022, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Nowotny, T.; Zhang, Y.; Yu, H.-Q.; Li, D.D.-U. Artificial neural network approaches for fluorescence lifetime imaging techniques. Opt. Lett. 2016, 41, 2561–2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.T.; Yao, R.; Sinsuebphon, N.; Rudkouskaya, A.; Un, N.; Mazurkiewicz, J.; Barroso, M.; Yan, P.; Intes, X. Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 24019–24030. [Google Scholar] [CrossRef]
- Gorpas, D.; Phipps, J.; Bec, J.; Ma, D.; Dochow, S.; Yankelevich, D.; Sorger, J.; Popp, J.; Bewley, A.; Gandour-Edwards, R.; et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients. Sci. Rep. 2019, 9, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.-H.; Lundy, D.J.; Toh, E.K.-W.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J.J.; Stayton, P.S.; Hoffman, A.S.; Hsieh, P.C.-H. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale 2015, 7, 15863–15872. [Google Scholar] [CrossRef] [PubMed]
- Roxburgh, C.S.D.; McMillan, D.C. Cancer and systemic inflammation: Treat the tumour and treat the host. Br. J. Cancer 2014, 110, 1409–1412. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, J.; Shen, H.; Ren, C.; Wang, L.; Gao, C.; Zhu, T.; Li, X.; Ding, W.; Zhu, D.; et al. Detection of HPV and Human Chromosome Sites by Dual-Color Fluorescence In Situ Hybridization Reveals Recurrent HPV Integration Sites and Heterogeneity in Cervical Cancer. Front. Oncol. 2021, 11, 734758. [Google Scholar] [CrossRef]
- Chen, H.-L.; Peng, J.; Zhu, X.-B.; Gao, J.; Xue, J.-L.; Wang, M.-W.; Xia, H.-S. Detection of EBV in nasopharyngeal carcinoma by quantum dot fluorescent in situ hybridization. Exp. Mol. Pathol. 2010, 89, 367–371. [Google Scholar] [CrossRef]
- Zhang, N.-N.; Lu, C.-Y.; Chen, M.-J.; Xu, X.-L.; Shu, G.-F.; Du, Y.-Z.; Ji, J.-S. Recent advances in near-infrared II imaging technology for biological detection. J. NanoBiotechnol. 2021, 19, 132. [Google Scholar] [CrossRef]
- Vasquez, D.; Knorr, F.; Hoffmann, F.; Ernst, G.; Marcu, L.; Schmitt, M.; Guntinas-Lichius, O.; Popp, J.; Schie, I.W. Multimodal Scanning Microscope Combining Optical Coherence Tomography, Raman Spectroscopy and Fluorescence Lifetime Microscopy for Mesoscale Label-Free Imaging of Tissue. Anal. Chem. 2021, 93, 11479–11487. [Google Scholar] [CrossRef]
- Mamede, A.P.; Santos, I.P.; de Carvalho, A.L.M.B.; Figueiredo, P.; Silva, M.C.; Tavares, M.V.; Marques, M.P.M.; de Carvalho, L.A.E.B. A New Look into Cancer—A Review on the Contribution of Vibrational Spectroscopy on Early Diagnosis and Surgery Guidance. Cancers 2021, 13, 5336. [Google Scholar] [CrossRef] [PubMed]
- Czigner, J.; Csanády, M.; Kiss, J.G.; Ivan, L.; Jori, J. ALA (5-aminolevulinic acid)-induced protoporphyrin IX fluorescence in the endoscopic diagnostic and control of pharyngo-laryngeal cancer. Eur. Arch. Oto-Rhino-Laryngol. Head Neck 2003, 261, 262–266. [Google Scholar] [CrossRef]
- Georges, J.F.; Valeri, A.; Wang, H.; Brooking, A.; Kakareka, M.; Cho, S.S.; Al-Atrache, Z.; Bamimore, M.; Osman, H.; Ifrach, J.; et al. Delta-Aminolevulinic Acid-Mediated Photodiagnoses in Surgical Oncology: A Historical Review of Clinical Trials. Front. Surg. 2019, 6, 45. [Google Scholar] [CrossRef] [PubMed]
Imaging Modality | Mechanism | Strengths | Weaknesses |
---|---|---|---|
Optical coherence tomography [10,11,12,13,14,15,16,17,18,19] | Measures the echo time delay and intensity of light, which is reflected and captured with low-coherence interferometry. This measurement is compared with that of a predetermined reference path length to generate the image. | Radiotracer-free, high-resolution, rapid image acquisition has been integrated on microscopes. | Limited depth by light penetrance, imaging quality may be often limited by optical scattering from blood vessels. |
Narrow band imaging [20,21,22,23,24,25,26,27] | Uses special filters that force the emission of narrow wavelengths of light. These wavelengths (usually between 440 and 560 nm) are more readily absorbed by hemoglobin, leading to a higher contrast of blood vessels along the surface mucosa. | Radiotracer-free, rapid switch between white light and NBI, readily applied to endoscopes/cameras. | Presence of blood and mucus may interfere with imaging, inflammatory changes may be misinterpreted as dysplasia. |
Storz Professional Image Enhancement System [28,29,30,31,32,33,34] | Utilizes several modes, including spectra A and spectra B, which are differentiated by separate color filters for detecting vascular arrangements. Additionally, the Clara and Chroma modalities alter the brightness of an image, leading to improved anatomical contrast, particularly regarding darker spots. | Radiotracer-free, several different filters/modes to select from, readily applied to endoscopes/cameras. | Similar weaknesses as NBI (mucus, inflammation, bleeding), with comparable results and costs despite increased complexity. |
Fluorescence lifetime imaging [35,36,37,38] | Excites endogenous fluorophores with pulsed laser; subsequent fluorescent lifetimes from photon emissions are measured and quantified. The half-life and intensity of the resulting emission can be compared between tissues of different types. | Radiotracer-free autofluorescence-guided, readily applicable to endoscope/camera, minimally affected by nonuniform illumination or absorptive mediums (blood). | Prolonged scan time due to laser technology, point-scanning, off-line image data processing, and complex mathematical processes, need for validated database of FLIM features confirmed through histopathology. |
Dynamic optical contrast imaging [39,40,41] | Utilizes similar fluorophore-dependent mechanism as FLIM but utilizes a unique methodology in data processing that allows for the summation of pixel distributions that are proportional to the actual measured fluorophore activity. | Similar benefits as FLIM but with shorter imaging times. | Very limited testing completed in head and neck cancers, no side-by-side comparison with other modalities. |
Hyperspectral imaging [5,42,43,44,45,46] | Makes use of extended spectral information from tissues, outside the limited range of RGB wavelengths. This allows for the generation of a 2D image with a corresponding 3D dataset on wavelengths (hyperspectral cube). | Radiotracer-free, provides valuable data to the granularity of cell nuclei, rapid image acquisition (seconds). | Limited by motion artifact, blood flow/oxygenation, saliva/mucous, complex analysis that cannot be performed normally by physicians. |
Near-infrared fluorescence (tag-free) [47,48,49,50] | Unbound fluorescent dyes. This method depends on the increased vascularity of malignant tissues, leading to increased fluorescence of the targeted region of interest. Near-infrared light is used due to its greater tissue penetration. | Modern radiotracers rarely result in serious adverse effects. | Dye dependent, must preinject tracer and wait for distribution in targeted tissue, nonspecific dye distribution potential. |
Near-infrared fluorescence (tagged probe) [51,52,53,54,55,56,57] | Fluorescent dyes are conjugated with probes (oftentimes antibodies). These probes either target specific antigens (e.g., EGFR) or are activated under specific environments (metabolic acidosis), allowing for more specific identifications of target tissues. | Targets tissue of interest with specific ligands, tagged fluorescence tumor-to-background ratio was consistent regardless of receptor (EGFR) density. | Certain probes may cause adverse effects not typically encountered with untagged fluorescent dyes, variability in ligand expression may limit probes. |
Ref. | Year | Author | Imaging Modality (In Vivo, Intraoperative) | n | Neoplasm Site | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
[19] | 2019 | Sunny et al. | Optical coherence tomography | 14 | Oral cavity | 100.0% | 100.0% |
[25] | 2018 | Piersiala et al. | Narrow band imaging (NBI) | 98 | Larynx | 100.0% | 99.0% |
[24] | 2019 | Klimza et al. | Narrow band imaging (NBI) | 44 | Larynx | 100.0% | - |
[30] | 2018 | Staníková et al. | Narrow band imaging (NBI) | 73 | Larynx, hypopharynx | 83.0% | 98.0% |
Storz Professional Image Enhancement System (SPIES) | 86.0% | 96.0% | |||||
[31] | 2020 | Abdullah et al. | Storz Professional Image Enhancement System (SPIES) | 59 | Larynx, nasal cavity, nasopharynx, oral cavity, oropharynx | 97.5% | 94.7% |
[33] | 2021 | Li et al. | Storz Professional Image Enhancement System (SPIES) | 115 | Sinonasal | 91.7% | 95.5% |
[38] | 2020 | Marsden et al. | Fluorescence lifetime imaging | 53 | Oral, oropharynx | 86.0% | 87.0% |
[46] | 2022 | Eggert et al. | Hyperspectral imaging | 98 | Oropharynx, larynx, hypopharynx | 83.3% | 79.2% |
[49] | 2016 | Schmidt et al. | Near-infrared fluorescence (tag-free) | 55 | Oral cavity, larynx, oropharynx, hypopharynx | 90.5%, | 90.9% |
[53] | 2022 | Zhou et al. | Near-infrared fluorescence (tagged probe) | 31 | Head and neck, high-grade glioma, lung adenocarcinoma | 97.0% | 86.0% |
Ref. | Authors (Year) | Study Design (n) | Site | Imaging Modality of Interest | Key Findings/Outcome Measures | Clinical Significance |
---|---|---|---|---|---|---|
[16] | Englhard et al. (2017) | Prospective (28) | Larynx | Optical coherence tomography (OCT) |
| OCT was able to differentiate malignant from benign lesions |
[19] | Sunny et al. (2019) | Prospective (14) | Oral cavity | Optical coherence tomography (OCT) |
| Landmark study demonstrating the potential of OCT in in vivo imaging |
[24] | Klimza et al. (2019) | Prospective (44) | Larynx | Narrow band imaging (NBI) |
| NBI was superior to white light alone in detecting glottic cancers |
[25] | Piersiala et al. (2018) | Prospective (98) | Larynx | Narrow band imaging (NBI) |
| NBI can reduce the chance of positive margins for laryngeal cancers |
[23] | Garofolo et al. (2015) | Prospective (82) | Larynx | Narrow band imaging (NBI) |
| NBI may increase the accuracy of detecting glottic cancers during early stages |
[30] | Staníková et al. (2018) | Prospective (73) | Larynx and hypopharynx | Storz Professional Image Enhancement System (SPIES) and narrow band imaging (NBI) |
| NBI and SPIES are comparable in the detection of pathology in larynx and hypopharynx |
[34] | Englhard et al. (2022) | Prospective (27) | Sinonasal | Storz Professional Image Enhancement System (SPIES) |
| SPIES is a promising adjunct tool to evaluate nasal pathologies intraoperatively, especially in vascularized tumors |
[33] | Li et al. (2021) | Prospective (115) | Sinonasal | Storz Professional Image Enhancement System (SPIES) |
| SPIES is a rapid and noninvasive, accurate, real-time modality that can be used to detect SIP against normal tissues |
[31] | Abdullah et al. (2020) | Prospective (59) | Larynx, nasal cavity, nasopharynx, oral cavity, oropharynx | Storz Professional Image Enhancement System (SPIES) |
| SPIES can be used in the detection of upper aerodigestive tract tumors, promoting early diagnosis and accurate margin delineation |
Ref. | Authors (Year) | Study Design (n) | Site | Imaging Modality of Interest | Key Findings/Outcome Measures | Clinical Significance |
---|---|---|---|---|---|---|
[38] | Marsden et al. (2020) | Prospective (53) | Oral cavity and oropharynx | Fluorescence lifetime imaging (endoscopic and TORS) |
| Cellular dysplasia was found at tumor margins, signifying that FLIM can detect the gradient between healthy and cancerous tissues |
[36] | Sun et al. (2013) | Prospective (10) | Oral cavity | Fluorescence lifetime imaging (endoscopic) |
| Findings suggest possible use in determining surgical margins intraoperatively |
[37] | Weyers et al. (2019) | Prospective (10) | Oropharynx | Fluorescence lifetime imaging (TORS) |
| FLIM delineated cancerous tissues in the oropharynx and was more effective in vivo |
[41] | Tajudeen et al. (2017) | Prospective (15) | Head and neck (cutaneous and mucosal) | Optical contrast imaging (dynamic) |
| Novel imaging modality, with the goal of improving on FLIM by offering scalable data mapping |
[46] | Eggert et al. (2022) | Prospective (98) | Oropharynx, larynx, hypopharyngeal | Hyperspectral imaging |
| Noninvasive, label-free, accurate detection of malignant from healthy tissue |
[47] | Stubbs et al. (2019) | Prospective (14) | Oropharynx and salivary gland | Free ICG-near-infrared fluorescent dye imaging (NIR) |
| Provides temporal data regarding optimal ICG dosing and demonstrates benefit in locating both primary tumors and sentinel nodes |
[48] | Scott-Wittenborn et al. (2018) | Prospective (6) | Oropharynx | Free ICG-near-infrared fluorescence imaging |
| ICG may not be effective in head and neck cancers due to increased vasculature |
[49] | Schmidt et al. (2016) | Prospective (55) | Oral cavity, larynx, oropharynx, hypopharynx | Free ICG-near-infrared fluorescent dye imaging (NIR) |
| This modality was demonstrated to be safe, feasible, and helpful when differentiating malignant from healthy tissue |
[50] | Pan et al. (2020) | Prospective (20) | Oral cavity | Free ICG-near-infrared fluorescent dye imaging (NIR) |
| The findings emphasize the utility of using ICG in margin determination before resection, as well as the tumor bed |
[53] | Zhou et al. (2022) | Open-label phase I/II clinical trials (31) | Head and neck (HNSCC), high-grade glioma (HGG), lung adenocarcinoma (LAC) | Panitumumab-IRDye800- tagged near-infrared fluorescent images using Novadaq (open-field) |
| NIR may be used with white light endoscopy in the detection of head and neck cancers. This may be performed at a higher fidelity compared with other tumors (HGG) |
[51] | van Keulen et al. (2019) | Prospective (14) | Head and neck SCC (cutaneous and mucosal) | Panitumumab-IRDYE800CW- tagged near-infrared fluorescence imaging |
| NIR may help define the primary tumor from surrounding mucosa |
[52] | van Keulen et al. (2019) | Prospective (20) | Head and neck SCC (cutaneous and mucosal) | Panitumumab-IRDYE800CW- tagged near-infrared fluorescence imaging |
| Helpful with irregularly defined tumors, reduced positive margin rate |
[54] | Steinkamp et al. (2021) | Prospective (13) | Oral cavity | ONM-100-ICG-tagged infrared fluorescence imaging |
| Potential for ONM-100 in malignant tissue identification in the context of metabolic acidotic tissue |
[55] | Voskuil et al. (2020) | Prospective (13 HNC) | Head and neck SCC, breast, esophageal, colorectal | ONM-100-ICG-tagged infrared fluorescence imaging |
| Safe, acid-dependent fluorescence that helps identify hypoxic, acidotic malignant tissues vs. healthy tissues |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, K.; Ma, E.; Kejriwal, S.; Nielsen, T.; Aulakh, S.S.; Birkeland, A.C. Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review. Cancers 2022, 14, 3416. https://doi.org/10.3390/cancers14143416
Young K, Ma E, Kejriwal S, Nielsen T, Aulakh SS, Birkeland AC. Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review. Cancers. 2022; 14(14):3416. https://doi.org/10.3390/cancers14143416
Chicago/Turabian StyleYoung, Kurtis, Enze Ma, Sameer Kejriwal, Torbjoern Nielsen, Sukhkaran S. Aulakh, and Andrew C. Birkeland. 2022. "Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review" Cancers 14, no. 14: 3416. https://doi.org/10.3390/cancers14143416
APA StyleYoung, K., Ma, E., Kejriwal, S., Nielsen, T., Aulakh, S. S., & Birkeland, A. C. (2022). Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review. Cancers, 14(14), 3416. https://doi.org/10.3390/cancers14143416